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Abstract

Reprogrammed metabolism is a hallmark of colorectal cancer (CRC). CRC cells are geared 

toward rapid proliferation, requiring nutrients and the removal of cellular waste in nutrient-poor 

environments. Intestinal stem cells (ISCs), the primary cell of origin for CRCs, must adapt 

their metabolism along the adenoma-carcinoma sequence to the unique features of their complex 

microenvironment that include interactions with intestinal epithelial cells, immune cells, stromal 

cells, commensal microbes, and dietary components. Emerging evidence implicates modifiable 

risk factors related to the environment, such as diet, as important in CRC pathogenesis. Here, we 

focus on describing the metabolism of ISCs, diets that influence CRC initiation, CRC genetics 

and metabolism, and the tumor microenvironment. The mechanistic links between environmental 

factors, metabolic adaptations, and the tumor microenvironment in enhancing or supporting CRC 

tumorigenesis are becoming better understood. Thus, greater knowledge of CRC metabolism holds 

promise for improved prevention and treatment.
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1. INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide, claiming 

nearly one million lives in 2020 (1). The majority of CRC cases and deaths in the United 

States are potentially attributable to modifiable risk factors, including diet (29%), physical 

inactivity (16%), alcohol intake (13%), smoking (11%), and excess body weight (5%), on 

the basis of large-scale meta-analyses (2). CRC incidence has been increasing in countries 
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with a rising human development index, especially in those under age 50, correlating with 

changes in diet and lifestyle (3). Therefore, there is much interest in studying the role of 

nutrient consumption or metabolism in CRC tumorigenesis.

CRC initiation and progression are driven by the accumulation of somatic mutations in 

oncogenes and tumor suppressor genes in colon stem cells (4, 5). In the adenoma-carcinoma 

model, sequential mutations over a period of years in the wingless/integrated (WNT), 

epidermal growth factor receptor (EGFR), tumor protein 53 (TP53), and transforming 

growth factor beta (TGF-β) signaling pathways result in CRC formation and progression. 

A small subset of CRCs, such as those found in Lynch syndrome, are driven by mutations 

in DNA mismatch repair genes. Further characterization of the molecular events underlying 

CRC initiation and progression led to the establishment of four CRC consensus molecular 

subtypes (CMSs): microsatellite unstable (CMS1), canonical WNT and MYC (MYC proto-

oncogene, BHLH transcription factor) signaling driven (CMS2), metabolic dysregulation 

driven by mutant KRAS (KRAS proto-oncogene, GTPase) (CMS3), and mesenchymal-

associated (CMS4) (6). A common feature of all CRC CMSs is alterations in metabolic 

pathways that supply the energy and nutrients necessary to support proliferation. As such, 

a major focus of research in CRC pathogenesis is to understand the mechanisms of 

dysregulated cancer metabolism.

The field of cancer metabolism was born in the 1920s when Otto Warburg reported that 

cancers metabolize substantially more glucose and subsequently produce more lactate 

relative to healthy tissues (7), an observation that became known as the Warburg effect. 

Nearly a century later, there has been an explosion of cancer metabolism research to 

understand how metabolism is reprogrammed in cancer cells and how metabolic changes 

in cancer can be therapeutically exploited (8). Genetic and pharmacological studies 

have demonstrated that the Warburg effect is required for cancer growth and is not 

simply a bystander effect (9). Cancer cells—and rapidly proliferating cells in general—

perform aerobic glycolysis, not primarily for energy production but to shuttle glycolytic 

intermediates and lactate into the cellular building blocks (e.g., amino acids, lipids, and 

nucleic acids) necessary for increasing biomass (10). Cancer metabolism has also become 

clinically important: Antimetabolites serve as chemotherapeutics and fluorodeoxyglucose 

(FDG) positron emission tomography scans are used to stage cancers by monitoring glucose 

metabolism in cancerous tissue in comparison with the normal surrounding tissue. Cancer 

metabolism is now recognized as a hallmark of cancer (11).

This review aims to discuss our current understanding of CRC metabolism, with a focus 

on characterizing the metabolism of intestinal stem cells (ISCs), environmental factors that 

influence CRC initiation, CRC genetics and metabolism, and the microbiome.

2. INTESTINAL STEM CELLS AND THEIR ROLE IN CANCER

The epithelial lining of the small intestine and colon constitute the largest external 

surface area of the body, facilitating efficient nutrient transfer while serving as a barrier 

to microbes (12). Approximately 8 to 10 L of fluid passes through the small intestine 

daily, where protruding finger-like villi (not found in the colon) aid in the digestion and 

Sedlak et al. Page 2

Annu Rev Pathol. Author manuscript; available in PMC 2023 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



absorption of nutrients (e.g., amino acids, carbohydrates, lipids, and vitamins) and water 

(13). Approximately 1.5 to 2 L of ileal effluent passes through the ileocecal valve, and 

90% of the effluent is absorbed in the colon each day as water and electrolytes (14). The 

colon harbors approximately 99% of the approximately 38 trillion microbes composing the 

human microbiome (15). This nutrient absorption and barrier function is achieved by a 

one-cell-thick epithelial layer that turns over every 5 to 7 days, maintained by the highly 

proliferative leucine-rich repeat–containing G protein–coupled receptor 5 positive (LGR5+) 

ISCs at the base of the intestinal crypts (16).

The ISCs produce transit-amplifying cells that undergo several divisions to differentiate into 

all epithelial cells lining the intestine, primarily consisting of absorptive (e.g., enterocytes 

and M cells) and secretory (e.g., goblet, tuft, Paneth, and enteroendocrine) cells. The colonic 

crypt and associated cell types are illustrated in Figure 1. ISC proliferation depends on 

ligands of the WNT signaling pathway and their R-spondin cofactors, with a gradient of 

WNT signaling strongest at the crypt base and weakest at the villus tip (17, 18). A decrease 

in WNT ligands and an increase in bone morphogenic protein (BMP) signaling higher up 

the crypt drives differentiation (19). Cells differentiate as they move away from the base of 

the crypt and up the villi until they eventually undergo anoikis and are sloughed off into 

the lumen of the intestine. Paneth cells are the exception, as they differentiate toward the 

base of the crypt. Paneth cells are secretory epithelial cells that specialize in maintaining 

intestinal homeostasis by secreting antimicrobial compounds and by contributing WNT 

ligands for the proliferation of ISCs (20). While small intestine ISCs are interspersed 

with WNT-producing Paneth cells, the colon ISCs are interspersed with Paneth-related, 

regenerating family member 4 positive (REG4+), and CD24+ deep crypt secretory cells in 

mice (21, 22). In humans, Paneth cells are also present in the right and transverse colon. 

Paneth cells primarily maintain ISCs in the small intestine by secreting WNT, whereas 

GLI family zinc finger 1 positive (GLI1+) mesenchymal cells and family forkhead box 

11 positive (FOX11+)/platelet-derived growth factor receptor alpha positive (PDGFRα+) 

telocytes supply essential WNT signals to maintain the colon ISCs (23, 24). Precise cell 

specification during differentiation is guided by the amount of WNT ligand, BMP signaling, 

NOTCH signaling, and other cytokines and growth factors in the microenvironment (25). 

In addition to maintaining the epithelial lining of the intestine, ISCs are also the primary 

cell of origin for CRC, and their stemness pathways are hijacked during CRC initiation and 

progression (16).

2.1. Intestinal Stem Cells

ISCs of the small intestine and colon are highly proliferative relative to stem cells from 

many other tissue compartments, meaning that their metabolic demands are relatively high. 

ISCs fulfill their metabolic needs, in part, by undergoing aerobic glycolysis, like cancer cells 

(26). While glycolysis is elevated in ISCs, glycolysis is even higher in adjacent Paneth cells 

(26). ISCs are spatially associated and metabolically linked with Paneth cells. Paneth cells 

play an important role in maintaining ISCs through the secretion of EGF, TGF-α, WNT3, 

and the NOTCH ligands DLL1 and DLL4 (21). However, Paneth cells are dispensable for 

ISC self-renewal and differentiation (27, 28). A study used organoid models to report that 

Paneth cells may metabolically support the needs of proliferating ISCs by secreting lactate. 
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High oxidative phosphorylation (OXPHOS) in ISCs, in turn, produces reactive oxygen 

species (ROS) that induce crypt differentiation through mitogen-activated protein kinase p38 

signaling (29). However, another study found that ISCs do not fuel OXPHOS with lactate 

due to a reduction in the expression of mitochondrial pyruvate carrier (MPC) (30). Thus, 

while the importance of Paneth cells for ISC function is controversial, they may play an 

important role in maintaining the metabolic needs of ISCs.

Another metabolic function that differs between ISCs and their differentiated progeny is 

pyruvate utilization. The expression of MPC, the gatekeeper of pyruvate transfer from the 

cytosol to the mitochondria (31), is low in ISCs but high in their differentiated progeny (30). 

ISCs shuttle pyruvate away from energy production through OXPHOS in the mitochondria 

and toward the production of biosynthetic molecules necessary for increasing cell biomass. 

Conversely, differentiated cells directly utilize pyruvate for energy production. While ISCs 

do not convert pyruvate into energy within the mitochondria, ISCs largely generate energy 

through other mechanisms, such as fatty acid and amino acid oxidation (29, 30). Thus, 

the downregulation of MPC in ISCs leads to a greater reliance on fatty acids for energy 

production.

Fatty acids provide energy for ISCs and thus promote their proliferation. As discussed 

in Section 3.4, high-fat diet (HFD)-induced obesity stimulates components of the WNT/β-

catenin pathway and fatty acid oxidation through peroxisome proliferator-activated receptor 

(PPAR) signaling, thereby increasing stemness (32–34). Moreover, ISC proliferation is 

enhanced by cholesterol, a major constituent of the cell membrane. Increased intestinal 

cholesterol availability, through diet or genetic events, promotes tumorigenesis in Apcmin/+ 

mice (a commonly used model of CRC) (35). Given how diet can directly impact the 

composition of cells in the intestinal crypt, differing metabolism in ISC progenitors is not 

simply a byproduct of differentiation but one of several drivers of differentiation (36).

Lineage tracing experiments demonstrated that LGR5+ ISCs in the colon are the cell of 

origin of most CRCs (37). LGR5, a seven-transmembrane receptor for R-spondin, strongly 

enhances WNT signaling by neutralizing the RNF43/ZNRF3 transmembrane E3 ligases 

that remove WNT receptors from the membrane (38). These LGR5+ ISCs give rise to 

transit-amplifying cells with a finite number of divisions. While LGR5+ ISCs of the colon 

have by far the greatest potential to transform into CRC, genetic mouse models of CRC 

initiation have demonstrated that transit-amplifying cells and/or differentiated cells may also 

initiate cancer in specific contexts such as inflammation, obesity, or microenvironmental 

changes (39).

2.2. Mesenchymal Niche

The subepithelial mesenchyme supporting the ISCs has become better characterized and 

appreciated in recent years. Studies using single-cell RNA sequencing, organoid cocultures, 

immunofluorescent cell sorting, genetic engineering, and microscopy have provided a more 

in-depth understanding of how the mesenchyme supports ISCs (40). These experiments have 

demonstrated that the mesenchymal cell populations provide signals to maintain the ISC 

niche. GLI1+ mesenchymal cells and FOXL1+/PDGFRα+ telocytes provide WNT ligands 

to ISCs (23, 24). Additionally, a population of CD81+ and PDGFRαlo fibroblasts, termed 

Sedlak et al. Page 4

Annu Rev Pathol. Author manuscript; available in PMC 2023 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trophocytes, is located just below the crypt and secretes the BMP antagonist, Gremlin1 (41). 

While we now have some understanding of how the supporting mesenchyme guides the 

differentiation of the epithelium, much less is known about the metabolism of the intestinal 

mesenchyme.

3. ENVIRONMENTAL FACTORS THAT INFLUENCE COLORECTAL CANCER 

INITIATION

CRC remains the second-leading cause of cancer death globally and in the United States 

(1). From 2008 to 2017, CRC death rates have decreased 3% annually in individuals aged 

65 years and older and decreased 0.6% annually in individuals who are 50 to 64 years of 

age in the United States (3). The decrease in CRC deaths in those 50 years of age and older 

is thought to be due to more widespread screening (predominantly with colonoscopy and 

stool-based tests) and removal of precancerous adenomas (42). However, during the same 

10-year period in the United States, the death rate of CRC increased by 1.3% annually in 

individuals younger than 50 years of age (3). This increase in the death rate of individuals 

younger than 50 years of age is also occurring in many other high-income countries, 

including Australia, Canada, Germany, and the United Kingdom (3). The reason for the 

increase in CRC cases and deaths in young individuals is unknown but is thought to be due 

to an increase in lifestyle risk factors.

Over half of all CRC cases and deaths in the United States are potentially attributable 

to environmental or otherwise modifiable risk factors on the basis of large-scale pooled 

analyses and meta-analyses (2). Most of the population-attributable fraction of CRC deaths 

is related to dietary habits: low dietary fiber (10.3%), processed meat consumption (8.2%), 

red meat consumption (5.4%), and low dietary calcium (4.9%) (2). The connection between 

diet and CRC may be partially explained by nutrient intake altering metabolite levels in 

the tumor microenvironment, thereby impacting cancer cell metabolism and growth. Many 

studies have linked an elevated body-mass index (BMI) with an increased risk of developing 

CRC (43). The relationship between BMI and early-onset CRC is especially pronounced for 

individuals experiencing obesity at a young age. In one recent study, individuals with a BMI 

above 30 at age 20, at age 30, and 10 years before CRC diagnosis/interview were at 2.56-, 

2.06-, and 1.88-fold increased risk of developing early-onset CRC, respectively (44).

A summary of the effects of various diets on CRC risk and ISC biology is listed in Table 1.

3.1. Calorie Restriction and Fasting

Calorie restriction (CR) without malnutrition has been associated with an increase in 

overall survival and a decrease in the incidence of cancer in many animal studies (45). 

Our understanding of the effects of CR on life span and cancer incidence has largely 

come from animal, epidemiological, and observational studies because of the difficulty of 

conducting diet-based randomized clinical trials in humans over decades. The most relevant 

data to humans that support the benefit of CR come from two prospective studies on rhesus 

monkeys by the University of Wisconsin (UW) and National Institute of Aging (NIA) (46). 

Adult-onset CR with a 30% reduction of calories compared with controls over the lifetime 
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of the rhesus monkeys resulted in a statistically significant increase in overall survival in 

the UW study [hazard ratio (HR) = 1.865; 95% confidence interval (CI) of 1.119 to 3.108] 

and no statistical difference in the NIA study. However, the NIA study was not powered 

to observe a survival difference. Morbidity and cancer incidence on CR was significantly 

lower in both the UW (HR = 2.665; 95% CI of 1.527 to 4.653) and NIA (HR = 2.063; 95% 

CI of 1.169 to 3.641) studies. These positive findings for CR in rhesus monkeys have been 

corroborated in many animal models. For example, in the Apcmin/+ mouse model, a 40% CR 

diet reduced the frequency of colorectal polyps by 57% (47). The benefits of CR observed 

in animal studies and the potential for a drug to provide the same life extension without 

the inherent challenges of maintaining a CR lifestyle have motivated scientists to investigate 

mechanisms underlining the effects of CR on survival and protection against cancer.

The mechanisms by which CR extends survival and reduces CRC incidence have been well 

studied. In animal studies of CR, a decrease in insulin-like growth factor (IGF)-1 signaling 

is posited as one of the life-extending mechanisms of CR. IGF-1 is a major mediator of 

growth hormone (GH) signaling and other anabolic processes. Corroborating this hypothesis 

are genetic studies that identified a higher frequency of heterozygous inactivating mutations 

in IGFR1, the receptor for IGF-1, in female centenarians compared with controls (48). An 

Igfr1 knockout mouse model demonstrated an increase in average life expectancy of 33% 

for females and 14% for males compared with wild-type mice (49). Conversely, patients 

with enhanced IGF-1 signaling, such as those with acromegaly, have a twofold increased 

risk of gastrointestinal cancer compared with controls (50). IGF-1 signaling was examined 

in 218 nonobese young and middle-aged males and females for two years in the longest 

randomized trial of CR in humans (51). The researchers targeted a CR of 25%, though after 

six months the average CR was only 9.1%, which may have contributed to no observed 

decrease in absolute IGF-1 levels in the CR cohort. However, the authors noted a reduction 

in the activity of IGF-1 and concluded that the absolute levels of IGF-1 may not have 

decreased due to the higher proportion of calories that came from protein in the participants’ 

diet (51). Daily CR was shown to decrease the risk of CRC and metastasis greater than 

fasting-mimicking diets in mice (52). Additional pathways influenced by CR and believed 

to extend life include reduced mTORC1 (mammalian target of rapamycin complex 1) 

signaling, activation of GCN2 (eukaryotic translation initiation factor 2 alpha kinase 4), 

reduced protein synthesis, increased activity of FGF21 (fibroblast growth factor 21), and 

activation of sirtuins, all of which have been summarized in a recent review (53).

A related dietary intervention to CR studied for its role in preventing cancer and extending 

life span is fasting. While CR is typically applied chronically with a 20% to 40% reduction 

of the normal caloric intake and consistent frequency of meals, fasting is defined by 

periods of abstinence, ranging from hours to weeks, from calorie-containing food and 

beverages followed by unrestricted caloric consumption. There are many types of fasts, 

with intermittent fasting (IF) (e.g., alternate day fasting) and periodic fasting (PF) (e.g., 

fasting lasting three days or longer every two or more weeks) being the most common 

(54, 55). Fasting may or may not change the overall number of consumed calories. 

Furthermore, unlike CR, fasting creates unique fasting, refeeding, and postrefeeding phases. 

The fasting phase is characterized by ketogenesis, a cellular stress response, cellular 

lipolysis, and autophagy. Through these evolutionarily conserved stress response programs, 
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fasting has been observed to extend life span in Escherichia coli, Saccharomyces cerevisiae, 
Caenorhabditis elegans, and mice and to decrease IGF-1 in mice and humans (54).

Short-term fasting increases the function of stem cells in many adult tissues during the 

refeeding phase (54, 56, 57). Our lab studied the effects of a 24-h fast on the metabolism 

and regenerative capacity of ISCs in young and aged mice. We found that short-term fasting 

enhances fatty-acid oxidation (FAO) in mouse ISCs, resulting in an ISC proregenerative 

effect in intestinal crypts grown as organoids in nutrient-rich media from young and aged 

mice (58). While aging reduces ISC number and function in mice, enhanced FAO through 

PPARδ agonist treatment restores the regenerative function of aging stem cells. Conversely, 

inhibiting FAO through genetic disruption of carnitine palmitoyltransferase 1A (CPT1A), 

the rate-limiting enzyme in FAO, nullifies the regenerative effects of fasting. Thus, ISCs 

experience a period of elevated proliferation during the refeeding phase, dependent on FAO.

Several preclinical studies have identified mechanisms by which CR and fasting inhibit the 

progression of cancer. CR may directly reduce CRC risk by increasing the number of ISCs, 

thereby allowing normal ISCs to outcompete mutant ISCs (59). Additionally, a recent study 

of CR in an allograft mouse model of pancreatic adenocarcinoma and lung adenocarcinoma 

found that CR induced a significant reduction in tumor size, with the mechanism linked to 

an imbalance of the ratio of unsaturated to saturated lipids available to the tumor (60). 

In a mouse model of CRC, fasting reduced CRC’s proliferation by inhibiting aerobic 

glycolysis via the upregulation of the cholesterogenic gene, Fdt1 (farnesyl-diphosphate 

farnesyltransferase 1) (61). Fdt1 acted as a tumor suppressor by inhibiting the AKT/mTOR/

HIF1-α pathway (61). Intermittent fasting reduced the size of CRC in another study with a 

similar mouse model, but the authors focused on the role of tumor-associated macrophages 

(TAMs) (62). It is generally accepted that M2-polarized TAsMs support tumor growth 

by blocking tumor immune surveillance and supporting angiogenesis. By suppressing M2 

polarization of macrophages and decreasing extracellular adenosine, fasting inhibits CRC 

growth in vitro and in vivo (62). Thus, studies in preclinical models have identified many 

mechanisms by which CR and fasting reduce tumorigenesis.

CR and fasting have been explored clinically as adjuvant therapy to enhance the effects of 

chemotherapy and other cancer treatments (63, 64). However, CR and fasting have not yet 

proven effective in the treatment of CRC in clinical trials (65). While CR can be tolerated 

by healthy individuals, patients diagnosed with cancer are at greater risk of weight loss, 

cachexia, and sarcopenia from tumor-derived factors. Given the nutritional concerns of CR 

and fasting, CR mimetics, such as metformin, resveratrol, hydroxycitrate, and rapamycin 

and its analogs, are being assessed in clinical trials (63). The current mismatch between the 

promise shown in preclinical models and the effect of fasting and CR in the clinic warrants 

further exploration.

While there are many reported benefits to fasting, there is a potential protumor susceptibility 

from increased cellular proliferation during the refeeding phase. Unlike the fasting phase, 

which is associated with lower cellular proliferation, increased cell death, increased 

atrophy, and decreases in glucose, insulin, and IGF-1, the refeeding phase of fasting is 

characterized by an increase in growth factors and cellular proliferation. Greater cellular 
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proliferation during the refeeding phase may elevate the potency of carcinogens and 

accelerate tumorigenesis. A study of rats fasted for four days followed by refeeding and 

administration of a subnecrogenic dose of the carcinogen diethylnitrosamine (DENA) found 

significantly more hepatocyte foci/nodules compared with controls on an ad libitum diet 

given the same dose of DENA (66). Thus, at least one study suggests that the refeeding 

phase of fasting can increase susceptibility to carcinogens.

3.2. Vitamins D and C

Vitamin D’s role in preventing and reducing CRC has been studied in dozens of 

observational studies and clinical trials. In an international pooled study of 17 cohorts, 

higher levels of circulating 25-hydroxyvitamin D3 were associated with a 19% reduction 

in risk of CRC in women and a 7% reduction in risk for men (67). Vitamin D may also 

improve CRC-specific survival: Stage III CRC patients in the highest quintile of vitamin D 

score had significantly improved recurrence-free and overall survival compared with those 

in the lowest (adjusted HR for death or recurrence 0.62; 95% CI of 0.44 to 0.86) (68). 

Low postoperative vitamin D levels have been associated with significantly worse survival 

(adjusted HR for CRC-specific mortality 0.68; 95% CI of 0.50 to 0.90) (69). One meta-

analysis of randomized controlled trials found that patients with CRC who took vitamin 

D supplements manifested a 24% increase in CRC-specific survival (70), and another meta-

analysis of five clinical trials reported that vitamin D supplementation increased overall 

cancer survival by 13% (71). Although promising, the correlation between vitamin D status 

and survival may not be causal; this association may be due to confounders such as those in 

poorer health getting less sunlight or the levels of vitamin D being impacted by the severity 

of the disease. Nonetheless, on the basis of these compelling observational data, it seems 

reasonable to assess vitamin D levels in patients with newly diagnosed CRC and to replete 

those with low levels (serum 25-hydroxyvitamin D3 < 20 mg/mL or 50 nmol/L).

Many studies have examined possible antineoplastic mechanisms for vitamin D’s role 

in preventing and treating CRC. The active form of vitamin D, calcitriol (1α,25-

dihydroxyvitamin D3), acts as a steroid hormone, binding to the vitamin D receptor (VDR) 

and forming a heterodimer with the retinoid X receptor to control gene expression by 

complexing with vitamin D response elements in multiple regulatory regions of the genome 

(72). While numerous cell types express VDR, the intestines have the highest transcriptomic 

expression of VDR after the parathyroid glands (73). In normal colon organoids, calcitriol 

induces the expression of stemness genes and reduces proliferation (74). Conversely, in 

CRC organoids, calcitriol induces differentiation and inhibits proliferation. Several of the 

actions of calcitriol in CRC are to induce differentiation through inhibition of β-catenin 

transcriptional activity (72). Other antineoplastic mechanisms of calcitriol include inhibiting 

inflammation, invasion and metastasis, and angiogenesis and inducing apoptosis (72).

In contrast to the relatively strong epidemiological and clinical data to support the 

antineoplastic effects of vitamin D, the use of vitamin C to treat CRC has a controversial 

history owing to conflicting results in clinical trials (75). Although previous randomized 

controlled trials failed to show efficacy of vitamin C to treat cancer, the limitations of 

those trials and recent promising research on preclinical models have revived interest, and 
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there are now several ongoing randomized clinical trials (75). Vitamin C administration at 

physiologically nontoxic concentrations in the millimolar range is selectively toxic to KRAS 
and BRAF mutant human CRC cell lines (76). The mechanism is believed to be the uptake 

of the oxidized form of vitamin C via glucose transport 1 (GLUT1), which is upregulated in 

KRAS and BRAF mutant CRC, inhibiting glycolysis (76). Another recent study suggested 

that vitamin C may inhibit CRC growth through a T cell–dependent mechanism (77). In 

mouse models of mismatch repair-deficient cancers with a high tumor mutational burden, 

the combination of vitamin C and immune checkpoint inhibitors could significantly enhance 

survival and cure a subset of mice (77). While these animal studies are promising, the role 

of vitamin C in the prevention or treatment of CRC has not been demonstrated in human 

patients.

3.3. Fructose

Fructose has become a large part of the diet in the United States, with the average 

daily consumption reaching 50 g in 2004 (78). Dietary fructose is primarily absorbed 

by the small intestinal cells through the GLUT5 apical transporter and stored in the cell 

through phosphorylation by ketohexokinase (78). While low doses of fructose are absorbed 

in the small intestine, high doses of fructose can saturate the absorptive and catabolic 

enzymes of the small intestine, allowing fructose to reach the colon (78). Thus, the rise 

in obesity incidence and concomitant rise in CRC incidence may be linked to an increase 

in consumption of high-fructose corn syrup (HFCS) in sweetened beverages. There was a 

positive association between sweetened beverage intake in adolescence and conventional 

adenomas on colonoscopy in the Nurses’ Health Study II population (79).

The association between fructose consumption, obesity, and tumorigenesis may be explained 

by the effect of fructose on the intestine in animal models (80). HFCS increases the survival 

of intestinal epithelial cells in several mouse models, thereby extending intestinal villi length 

by 25% to 40% (80). Longer villi enhance nutrient absorption and result in an increase in 

adiposity in mice fed an HFD (80). Moreover, fructose-1-phosphate was found to inhibit 

the M2 isotype of pyruvate kinase and extend survival in hypoxic intestinal epithelial cells, 

thereby promoting tumor growth. In addition, HFCS at moderate doses increases the number 

and grade of intestinal tumors formed in Apc-deficient mouse models by fueling aerobic 

glycolysis and contributing to an increase in de novo fatty acid synthesis (81). Fructose 

metabolism may also promote CRC metastasis to the liver. CRC liver metastasis upregulates 

aldolase B expression, the rate-limiting enzyme in the utilization of fructose. Targeting 

aldolase B, or its upstream regulator, GATA binding protein 6, reduces CRC liver metastasis 

in mice. Moreover, dietary fructose restriction suppresses CRC liver metastasis and extends 

survival in a CRC mouse model (82). Other cancers appear to selectively utilize fructose, 

with an increased number of fructose transporters, Glut5 and Glut9, identified in malignant 

versus benign prostate tumors (83). Although the role of fructose in CRC development 

in humans is not well understood, there are compelling preclinical studies showing a 

mechanistic link between dietary fructose consumption, obesity, and CRC tumorigenesis 

(79, 81, 82). A summary of the impact of a high-fructose diet on CRC tumorigenesis is 

shown in Figure 2a.
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3.4. High-Fat Diet and Obesity

There is mixed evidence for an association between fat intake and CRC in humans but 

strong evidence for an association between obesity and CRC. A recent systemic review 

and meta-analysis of prospective studies from 18 articles identified no association between 

total fat, saturated fatty acid, monounsaturated fatty acid, and polyunsaturated fatty acid 

intake and the risk of CRC (28). The mixed findings in these individual studies may 

be the result of different fat sources, such as fat from red and processed meats that are 

consistently associated with CRC risk, contributing to the primary fat content of the diet 

of the individuals studied. Nonetheless, dietary fat is believed to contribute to the growing 

obesity epidemic, on the basis of short-term feeding studies in humans and in mice (84, 85). 

A large body of evidence strongly links obesity (BMI greater than or equal to 30 kg/m2) 

to CRC; obesity is the second-highest modifiable risk factor for all cancers (86). A recent 

case-control study found an association between excess body weight and CRC risk, where 

the adjusted odds ratio for the first to fourth quartile of excess body weight was 1.25 and 

2.54, respectively (87). In addition, CRC patients with obesity have a fivefold increased risk 

of death compared with normal-weight counterparts (BMI < 25) (88). Conversely, weight 

loss through bariatric surgery is associated with reduced cancer incidence (89, 90).

Several mouse studies have shown a mechanistic association between an ad libitum HFD 

and CRC. These studies typically use a dietary fat content composed of 60% of calories 

resulting in the mice consuming up to 40% more daily calories, thereby inducing obesity 

(91). As such, an ad libitum HFD that promotes overeating does not distinguish the 

effects of the higher fat content in the diet, increased calorie intake that causes obesity, 

and obesity itself. Obesity is a key confounder to note when discussing HFD-induced 

tumorgenicity because obesity is an established risk factor for CRC (44). We and others 

have found that a pro-obesity HFD enhances intestinal tumorigenesis by increasing the 

number, proliferation, and function of ISCs (32, 33, 92, 93). ISCs increase their proliferation 

and tumorigenicity through PPAR-mediated activation of an FAO metabolic program; 

the increase in tumorigenesis is sensitive to FAO inhibition by pharmacologic inhibitors 

and genetic disruption (33). Another distinct path by which an HFD promotes CRC 

tumorigenesis is through increasing the production of specific bile acids (94). A recently 

described mechanism for bile-acid-induced CRC tumorigenesis came from a study of Apc-

deficient mice on an HFD. The authors found that Apc mutation and HFD increase levels 

of the bile acids tauro-β-muricholic acid and deoxycholic acid, antagonizing the intestinal 

farnesoid X receptor (FXR) and inducing proliferation and DNA damage in Lgr5+ ISCs 

(95). Affirming these findings, the protumorigenic effect of these bile acids could be blocked 

by agonists of intestinal FXR (95). Thus, there are clear protumorigenic effects of an ad 

libitum HFD in mice with multiple identified mechanisms, which are summarized in Figure 

2b.

The immune system and microbiome play important roles in the protumorigenic effects of 

an ad libitum HFD in mice. Using immunocompetent C57BL/6 background mouse models, 

our group showed that an HFD contributes to CRC tumorigenesis through a microbiome–

ISC–immune cell interaction (34). Major histocompatibility complex class II (MHC-II) is 

expressed on the surface of antigen-presenting cells for recognition by CD4+ T cells. While 
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antigen-presenting cells are most commonly macrophages and dendritic cells, intestinal 

epithelial cells can also monitor and present local antigens on MHC-II, presumably for 

microbial and tumor immune surveillance (96). An HFD causes intestinal epithelial and 

Lgr5+ ISCs to lose expression of MHC-II, which is not seen in leptin-deficient mice (db/db) 
that develop obesity on normal chow, suggesting that the decrease in MHC-II expression 

is specific to the higher fat content of the diet. HFD lowers MHC-II expression via a 

reduction in the microbial diversity of the intestines, specifically the loss of Helicobacter 
sp. and Odoribacter sp. Germ-free mice and mice given broad-spectrum antibiotics produce 

a similar decrease in microbial diversity and MHC-II expression (34). Thus, decreased 

MHC-II expression on intestinal epithelial cells from an HFD may promote tumorigenesis 

through decreasing tumor immune surveillance (34).

Using a less physiological mouse model of a subcutaneously transplanted CRC cell line 

(i.e., MC38), another group identified an immune-related role of an HFD contributing to 

tumorigenesis through reducing CD8+ T cells in the tumor microenvironment (97). An 

HFD metabolically reprograms the CRC tumor to increase fat uptake, thereby depleting 

the availability of lipids in the tumor microenvironment for CD8+ T cells. Finally, a recent 

report concluded that an HFD promotes CRC by inducing intestinal microbial dysbiosis (i.e., 

increased Alistipes sp. and decreased Parabaceroides distasonis), metabolomic dysregulation 

(i.e., increased protumorigenic lysophosphatidic acid), and gut barrier dysfunction using 

the azoxymethane (AOM) and Apcmin/+ CRC mouse models (98). Interestingly, the 

protumorigenic effect of the HFD were abrogated with the administration of antibiotics, 

reaffirming previous research, suggesting that microbial dysbiosis contributes to HFD-

mediated CRC tumorigenesis (99). Thus, there is clear evidence that a pro-obesity HFD 

impacts ISC proliferation and tumorigenicity through multiple mechanisms. A summary 

of immune- and microbiome-mediated effects of an HFD on CRC tumorigenesis is shown 

inFigure 3.

3.5. Carbohydrate-Rich Diet

There is limited epidemiological and animal study evidence that a high-carbohydrate diet 

increases the risk of CRC (100). Most of the research on the effects of a high-carbohydrate 

diet in animal models coadminister an HFD (pro-obesity, Western diet), recapitulating 

many of the effects of an HFD (101). The importance of specific carbohydrates on CRC 

tumorigenesis is poorly understood and is an area of needed attention.

3.6. Ketone Bodies

Ketone bodies, consisting of β-hydroxybutyrate, acetoacetate, and acetone, are an alternative 

fuel source to glucose produced primarily by the liver from fatty acids during periods of 

fasting, prolonged physical activity, or a ketogenic diet (KD). While ketone bodies were first 

discovered as toxic byproducts in the urine of patients succumbing to diabetic ketoacidosis, 

the mild levels of ketones produced in nondiabetic and otherwise healthy individuals under 

nonstarvation conditions are not known to be toxic. The KD generally consists of 75% of 

calories from fat, 20% of calories from protein, and 5% of calories from carbohydrates 

and is used clinically to help control drug-resistant epilepsy (102). In theory, a KD could 

deprive cancer cells of the glucose consumed during aerobic glycolysis, thereby slowing the 
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growth of tumors. However, there is currently no randomized controlled trial evidence for 

any effect of a KD on CRC initiation or treatment. Nonetheless, a recent meta-analysis in 

preclinical cancer models found that KD supplementation significantly prolonged survival 

by an average of 76% and reduced tumor volume (103).

Our research group recently studied the effects of ketone bodies on intestinal epithelial 

cells in mice (104). We found that ketone bodies produced from LGR5+ ISCs 

enhanced NOTCH activity, ISC self-renewal, and postinjury regeneration, while decreasing 

secretory cell differentiation (104). This effect was achieved, at least in part, through β-

hydroxybutyrate inhibiting histone deacetylase. A recent study found that a KD suppressed 

intestinal tumor growth in an AOM/dextran sodium sulfate mouse model of CRC 

and that these effects were reproduced by administering β-hydroxybutyrate (105). The 

mechanism of β-hydroxybutyrate suppressing intestinal tumorigenesis in this study was 

believed to be downstream of β-hydroxybutyrate binding to the surface receptor HCAR2 

(hydroxycarboxylic acid receptor 2) and altering transcriptional regulation through HOPX 

(homeodomain-only protein). Nonetheless, the mechanisms of how a KD may impair tumor 

growth are not well understood and may depend on the fatty acid composition of the KD 

and fatty acid desaturation activity of the tumor. In an allograft mouse model of pancreatic 

adenocarcinoma and lung adenocarcinoma, CR, but not a KD, decreased tumor volume 

(60). While CR and a KD lowered blood glucose, CR reduced while a KD increased 

circulating and intratumoral lipid levels. The authors found that stearyl coreductase (SCD), 

which synthesizes monounsaturated fatty acids, is required for cancer cells to proliferate in 

a lipid-depleted environment. CR reduces circulating and intratumoral lipid levels and SCD 

expression, thereby creating an imbalance in the ratio of unsaturated to saturated lipids to 

tumors, slowing cancer growth. A KD reduces SCD expression, but the monounsaturated 

fatty acids in the KD maintain the ratio of unsaturated to saturated lipids that are important 

for tumor growth. However, substituting monounsaturated fatty acids in the KD with 

saturated fatty acids by switching from a lard-based to palm-oil-based KD slows tumor 

growth. In summary, a KD, and specifically the ketone body β-hydroxybutyrate, enhances 

ISC self-renewal and function while also potentially inhibiting CRC growth through distinct 

mechanisms in animal models.

3.7. Weight Loss

Obesity increases the risk of type 2 diabetes, cardiovascular disease, most types of cancer, 

early-onset CRC, and other comorbidities (44, 86). Weight loss after bariatric surgery 

appears to reduce the risk of these comorbidities, though there have been mixed findings 

in retrospective studies for CRC risk reduction after gastric bypass (106). There are 

several variations of bariatric surgery, with gastric bypass but not gastric banding or 

sleeve gastrectomy, associated with an increase in CRC risk in one national study in the 

United Kingdom (107). However, a large, multicenter cohort of severely obese patients who 

received bariatric surgery—mostly gastric bypass—demonstrated a 33% and 41% reduced 

risk of developing any cancer and CRC, respectively (108). Additionally, a nationwide study 

in a French population found that the risk of CRC in obese patients after bariatric surgery 

(with gastric bypass as the second-most common procedure) went down 34%, matching 

the risk of the general population (109). A recent meta-analysis reported that patients who 
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underwent any bariatric surgery had more than a 35% reduction in their risk of developing 

CRC (110).

How bariatric surgery reduces the risk of CRC is not well understood. Whether the reduction 

in CRC risk is due to a decrease in precancerous adenomas was explored in a retrospective 

study at a large academic medical center. Patients who received their index colonoscopy 

at least one year after bariatric surgery were compared with patients who received their 

bariatric surgery after index colonoscopy (111). Adenomatous polyps were found in 16.8% 

of patients who received their bariatric surgery before index colonoscopy, compared with 

35.5% of patients who received bariatric surgery after index colonoscopy (111). Thus, there 

is evidence bariatric surgery reduces CRC initiation and risk, but more research is needed to 

find a biological mechanism linking bariatric surgery and CRC risk.

4. COLORECTAL CANCER GENETICS AND METABOLISM

The metabolism of ISCs shifts toward a protumorigenic program beginning with the earliest 

initiating genetic events in the adenoma-carcinoma sequence (112). In this section, we 

discuss the effects of the activation of oncogenes and inactivation of tumor suppressor genes 

on the metabolism of CRC.

4.1. Metabolic Pathways Altered in Colorectal Cancer

The Warburg effect, or aerobic glycolysis, is one of many metabolic programs shared 

between healthy proliferating cells and cancer to meet the energy and biosynthesis demands 

of proliferation (10). ISCs are highly glycolytic, like CRC cells, compared with their 

differentiated counterparts higher up the crypt/villus axis (26). ISCs require the same 

building blocks for cell divisions and therefore share many other similarities with CRC. 

For example, the regenerative response after injury of ISCs is enhanced by TIGAR (TP53-

inducible glycolysis and apoptosis regulator), increasing the flux of glucose carbons toward 

the pentose phosphate pathway (113). TIGAR also promotes CRC tumorigenesis and is 

more highly expressed after APC loss (114). Many of the biological pathways required for 

ISC proliferation and regeneration are upregulated by perturbations in oncogenes and tumor 

suppressor genes accrued during the adenoma-carcinoma sequence.

Genetic perturbations in oncogenes and tumor suppressor genes alter metabolism to support 

CRC tumorigenesis, starting at the adenoma stage of the adenoma-carcinoma sequence 

(112). The most common CRC oncogenic drivers include KRAS (30%), PIK3CA (19%), 

and BRAF (14%); common tumor suppressors include APC (56%), TP53 (53%), FAT4 
(22%), LRP1B (21%), KMT2D (14%), ACVR2A (14%), FBXW7 (13%), SMAD4 (13%), 

and PTEN (6.7%) (115). Activation of the WNT signaling pathway is present in more 

than 90% of CRCs, achieved through the loss of function of APC, activating mutations in 

β-catenin, or overexpression of frizzled receptors (116). Somatic mutations in KRAS (117), 

TP53 (118), WNT pathway genes (114, 119), and PTEN (120) promote tumorigenesis, in 

part, by driving metabolic changes. KRAS mutations trigger a major shift in metabolism 

to promote cellular proliferation, activating MYC and downstream glucose uptake (e.g., 

upregulating GLUT1 receptors), glutamine uptake, micropinocytosis, and autophagy and 

mitophagy (117, 121). Loss of TP53 also contributes myriad effects on the cancer cell’s 

Sedlak et al. Page 13

Annu Rev Pathol. Author manuscript; available in PMC 2023 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metabolism, including increased lipid synthesis and glucose influx into the cell (118). 

Likewise, loss of APC can lead to downstream activation of TIGAR, MYC target genes, 

glycolysis, and angiogenesis (114, 119). PTEN mutations and the PI3K signaling pathway 

promote CRC proliferation through the activation of glycolysis and other metabolic 

pathways (120). Thus, the proliferation of CRC cells is fueled by metabolic changes that 

occur from genetic perturbations in common oncogenes and tumor suppressors.

Mutations found in noncanonical tumor suppressors and oncogenes may also alter 

metabolism to promote CRC tumorigenesis. Somatic mutations in mitochondrial DNA 

acquired from aging may cause OXPHOS defects, leading to protumorigenic metabolic 

remodeling through the upregulation of the de novo serine synthesis pathway (122). 

Additional serine fuels CRC proliferation through serine’s conversion to pyruvate via 

the enzyme serine racemase (123). Inhibition of serine racemase decreases the size 

and proliferation of CRC cells in vitro and in vivo, indicating that serine racemase 

may be a novel and promising therapeutic target (123). Other defects of mitochondria 

function, such as the inactivation of MPC, which transfers pyruvate into the mitochondria, 

also promote CRC tumorigenesis (124). Inactivation of MPC in mice and flies is 

sufficient to promote intestinal tumorigenesis, while overexpression of MPC within the 

fly is sufficient to suppress tumorigenesis. CRCs also metabolically adapt under nutrient 

stress. One adaptation co-opted by CRCs in the context of glucose withdrawal is the 

inactivation of protein kinase C zeta (PKCϛ). PKCϛ deficiency promotes a shift in 

metabolism toward the utilization of glutamine through the serine biosynthetic pathway, 

thereby enhancing intestinal tumorigenesis in Apcmin/+ mice (125). Other lesser-known 

pathways similarly contribute to CRC tumorigenesis, including the transsulfuration enzyme 

cystathionine-beta-synthase (CBS) that produces hydrogen sulfide. Upregulation of CBS in 

precancerous lesions and CRC was found to contribute to tumorigenesis through increased 

glycolysis, nucleotide synthesis, pentose-phosphate pathway, and lipogenesis (126). Thus, 

there are many noncanonical metabolic alterations, potentially susceptible to therapeutic 

interventions, that promote the progression of CRC.

4.2. Colorectal Cancer Metastasis

Almost all CRC mortality is caused by metastases, with the most common sites being 

the liver and lungs. Metastasizing tumor cells must adapt to new metabolic conditions 

throughout invasion, intravasation, circulation, extravasation, and growth within different 

microenvironments. A subpopulation of CRC cells, called cancer stem cells (CSCs), are 

believed to have the greatest metastatic potential. Unlike other CSCs, CRC CSCs appear to 

retain their epithelial characteristics, rather than adopting a quasi-mesenchymal phenotype 

through the epithelial-to-mesenchymal transition program (127). These CSCs have been 

characterized by several markers, including the thrombopoietin (TPO) receptor, CD110, 

which functionally boosts CRC metastasis (128). TPO promoted CRC liver metastasis by 

CD110+ CSC through activating lysine degradation, inducing a shift in redox status and 

activation of WNT signaling (129). Given the dynamic metabolic dependencies of CRC 

throughout the metastatic cascade, metabolism has been a major focus of ongoing research 

to understand mechanisms of CRC metastasis (130).
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Increased FAO, glutathione production, and prostaglandin E2 (PGE2) boost the ability of 

CRC cells to metastasize. Increased FAO by an HFD was found to expand CSCs and 

promote liver metastases through the expression of NANOG, a transcription factor important 

for stem cell self-renewal (131). A recent study found that FAO upregulation can also 

help CRC cells become resistant to anoikis, a specialized form of apoptosis caused by 

detachment from the extracellular matrix (132). Small-molecule inhibition of CPT1A, the 

rate-limiting step of FAO, leads to fewer liver and lung metastases in mouse models of 

CRC. Glutathione production appears to similarly increase the metastatic ability of CRC 

cells. Increased glutaminase 1 (GLS1), an enzyme that hydrolyzes glutamine to glutamate, is 

associated with worse clinical outcomes, and GLS1 deficiency suppresses CRC growth and 

metastasis in a mouse model (133). The mechanism underlying increased CRC metastasis 

from GLS1 upregulation is not fully understood but may relate to an increase in glutathione 

production from the greater availability of glutamate, one of the three amino acid building 

blocks of glutathione (134). Increased glutathione may promote a CSC phenotype through 

upregulation of NANOG (135). Others have found that the induction of glutathione is 

critical for CRC liver metastasis, though downstream of liver and red blood cell pyruvate 

kinase L/R (136). Additionally, PGE2 treatment of immunocompromised mice transplanted 

with a human CRC cell line with intact TP53 increases CRC cell invasiveness and ability to 

form liver and lung metastases (137). The mechanism of increased CRC metastasis by PGE2 

occurred downstream of TP53 inhibition and is believed to also be due to an expansion of 

CSCs (137, 138). Thus, metabolic alterations in FAO, glutathione production, and PGE2 

production have distinct roles in driving CRC metastasis.

The liver poses a harsh, hypoxic environment for arriving CRC cells, requiring complex 

metabolic adaptations for survival. To provide energy for proliferation in a low-oxygen 

environment, CRC cells release creatine kinase, brain-type (CKB). CKB converts 

extracellular creatine into phosphocreatine that could be transferred back into the CRC 

cells through the phosphocreatine transporter, SLC6A8, to generate ATP (139). Importantly, 

CKB inhibition is effective at reducing CRC liver metastases in mouse models and is 

upregulated along with SLC6A8 in human liver metastases (139). Blocking phosphocreatine 

import by CRC cells using a small-molecule SLC6A8 transport inhibitor reduces CRC 

progression and metastasis in vitro and in mouse models, especially in combination with 

other anticancer drugs (140). Treating metastatic CRC patients in a phase 1 clinical trial 

with this small-molecule inhibitor of SLC6A8 resulted in an increase in serum and urine 

creatinine, mirroring the pharmacodynamics observed in mouse models. An additional 

source of energy and biomass comes from the utilization of high levels of fructose found 

in the liver. CRC liver metastases take advantage of the high concentration of fructose 

through the upregulation of aldolase B, the rate-limiting enzyme of fructose metabolism 

(82). Notably, reducing dietary fructose diminishes liver metastatic growth (82). Another 

metabolic adaptation that may help CRC cells to survive in the liver is the ability to 

synthesize nucleotides under hypoxia, via the upregulation of the gluconeogenic enzyme, 

phosphoenolpyruvate carboxykinase 1 (PCK1) (141). Inhibiting nucleotide synthesis with 

leflunomide, an inhibitor of dihydroorotate dehydrogenase (DHODH), decreases CRC liver 

metastases in a CRC mouse model. As such, PCK1 and DHODH have been proposed 

as potential therapeutic targets of CRC metastatic progression. There are currently more 
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than a dozen inhibitors of metabolic targets that have shown promise for cancer metastasis 

prevention and treatment in preclinical models (130). Thus, CRCs establish metastases 

using unique metabolic adaptations that may be therapeutically targeted. A summary of the 

metabolic pathways adapted for CRC initiation, progression, and metastasis is detailed in 

Figure 4.

5. MICROBIOME

The healthy human colon harbors hundreds to thousands of different microbial species 

that collectively make up the approximately 38 trillion microbes in the microbiome (15, 

142). These microbes largely reside within the outer mucus layer coating the crypts, 

though certain strains may access the inner mucus layer and epithelium (142). A few 

dominant bacterial phyla—Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria—

compose most of the microbiome. The functions of the gut microbiome include digesting 

nutrients from food, synthesizing vitamins and other nutrients, detoxifying metabolites, 

and secreting antimicrobial products, among an expanding repertoire of appreciated 

functions (143). Evidence for the microbiome’s functional role in health and disease has 

rapidly accumulated, with studies now showing that the composition and diversity of the 

microbiome regulate ISC biology and influence CRC tumorigenesis (143–145). Numerous 

factors, from diet to medications, impact the microbiome. Interestingly, several risk factors 

for CRC development impact the composition of the gut microbiome: low dietary fiber, 

obesity, physical inactivity, and red and processed meats (143). Whether these CRC risk 

factors induce changes in the microbiome that then mediate CRC tumorigenesis is currently 

unknown. Intestinal microbes secrete an estimated three million metabolites and compounds, 

yet little is known about how these metabolites and compounds impact human health (146). 

A recent study in mice identified a mechanistic link between lactate-producing bacteria and 

enhanced ISC proliferation (144). While ISCs directly use lactate to fuel proliferation, the 

microbe-secreted lactate activates GPR81 on the surface of Paneth and stromal cells, thereby 

increasing WNT3 secretion, which promotes ISC stemness and proliferation. Thus, the gut 

microbiome likely has a major impact on ISC function and CRC tumorigenesis, although 

mechanisms by which specific microbial metabolites regulate intestinal homeostasis and 

cancer initiation remain poorly understood.

Microbes commonly found in the human microbiome can promote or protect against CRC. 

Genotoxic pks+ E. coli, Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and 

other microbes are associated with CRC (145). For example, pks+ E. coli are found in the 

colon of 55% of patients with CRC versus 19% of control patients (147). The pks operon 

enables the production of the colibactin genotoxin. Colibactin directly causes DNA damage, 

promoting CRC tumorigenesis, through alkylating adenosines (148). Interestingly, a shift in 

the microbiome toward harboring pathogenic bacteria—Alistipes sp. Marseille-P5997 and 

Alistipes sp. 5CPEGH6—is associated with enhanced CRC tumorigenesis on an HFD (98). 

While pks+ E. coli and other microbes contribute to CRC tumorigenesis, certain microbes 

can also protect against CRC development. The absence of gut microbes (i.e., germ-free 

mice) is associated with enhanced CRC tumorigenesis—potentially from decreased MHC-II 

expression—which supports the concept that commensal microbes protect against CRC (34, 

149, 150). Microbes can also protect against CRC tumorigenesis by the effects of several 
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diverse microbially secreted compounds. Many microbial species metabolize tryptophan 

into metabolites that serve as ligands of the AhR receptor transcription factor, thereby 

enhancing DNA repair and slowing cellular proliferation by inhibiting the WNT pathway 

(146). Additionally, reuterin, a microbial metabolite from Lactobacillus reuteri, was found to 

protect against CRC through increasing protein oxidation, decreasing ribosome biogenesis, 

and decreasing protein translation in nascent CRC tumors (150). A growing body of 

knowledge suggests an important role for commensal microbes and their metabolic products 

in CRC pathogenesis, with the potential for future clinical therapeutic applications.

6. THERAPY

Targeting metabolic processes to treat CRC requires the identification of an adequate 

therapeutic index to avoid or limit toxicity in normal tissues. CRC treatment is currently 

driven by disease stage; stage I cancer (i.e., limited to the colonic mucosa) can be cured 

with surgical or endoscopic resection, while stage IIIA to stage IV disease (i.e., invasion 

into the local lymphatics or distant metastasis) is typically treated with chemotherapy 

(151). 5-Fluorouracil (5-FU) is the most common therapeutic agent, typically as part of 

FOLFOX (5-FU, leucovorin, and oxaliplatin) or FOLFIRI (5-FU, leucovorin, and irinotecan) 

regimens. While 5-FU acts on cancer cells through many mechanisms, including activation 

of cancer cell apoptosis and autophagy, its main mechanism of action is to inhibit cellular 

thymidylate synthase, which prevents DNA replication (152). Therefore, although 5-FU 

was developed in the 1950s before dysregulated metabolism was accepted as a hallmark of 

cancer, it should be seen as a therapeutic that targets an essential metabolic pathway.

Several novel approaches have been developed to target metabolic vulnerabilities in KRAS 
mutant CRC. Alternatively, other small-molecule compounds have been found to also 

target KRAS-dependent metabolic processes. For instance, the dual RAS/MEK inhibitor 

RO5126766 decreases FDG uptake and cell proliferation in KRAS and BRAF mutant CRC 

cell line xenograft models (153). Glutamine metabolism has been studied as a strategy 

to treat KRAS mutant CRC. KRAS mutant CRC cells adapt to glutamine deprivation 

by upregulating asparagine synthetase expression and producing more asparagine; L-

asparaginase plus rapamycin inhibits the growth of KRAS mutant tumors in vivo (154). As 

discussed in prior sections, vitamin C has been studied in preclinical models as a treatment 

for highly glycolytic KRAS and BRAF mutant CRC by inducing oxidative stress from 

depleted glutathione. Increased ROS levels lead to inactivation of the glycolytic enzyme 

GAPDH and subsequent cell death (76).

Several studies have examined KRAS-independent metabolic targets in CRC. 2-Deoxy-D-

glucose (2-DG) is a glucose molecule in which the 2-hydroxyl group is replaced with 

hydrogen, such that it cannot undergo further glycolysis, and thus competitively inhibits the 

production of glucose-6-phosphate from glucose. 2-DG preferentially kills CRC cells both 

by inhibiting glycolysis and by upregulating death receptor 5, which increases sensitivity to 

TRAIL-induced apoptosis (155). The use of the antidiabetic drug metformin is associated 

with reduced risk for CRC and has therefore been proposed as a therapeutic agent for CRC 

(156). Metformin reduces adenoma formation and aberrant crypt foci formation in mouse 

models by inhibiting the mitochondrial electron transport chain complex 1 and by activating 
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AMP-activated protein kinase signaling (157, 158). Another study reported that metformin 

inhibits CRC formation in a rat model by suppressing PKM2-dependent glycolysis (159). 

Finally, metformin inhibits the proliferation of chemotherapy-resistant breast cancer stem 

cells, suggesting a possible approach for treating CRC patients who have failed standard 

chemotherapy (160). Potential future approaches for targeting metabolism in CRC include 

identifying metabolic vulnerabilities in immune cells in the tumor microenvironment, 

tailoring therapies to patients on the basis of genetically defined metabolic targets, targeting 

metabolic reprogramming during cancer progression and/or metastasis, and administering 

specific metabolites such as β-hydroxybutyrate.

7. CONCLUSIONS AND FUTURE DIRECTION

Dysregulated nutrient consumption and cellular metabolism are key mechanisms of 

colorectal carcinogenesis. The cell of origin for most CRCs, the LGR5+ ISC, is 

highly proliferative and shares similar metabolic features with CRC. Perturbations in 

canonical oncogenes and tumor suppressor genes drive metabolic adaptations to maintain 

the biomass and energy needs of proliferating CRC cells without homeostatic growth 

factor signaling. The metabolic adaptations of CRC also extend into perturbations of 

noncanonical genes, providing additional avenues to acquire a selective advantage for 

nutrient challenges encountered throughout CRC initiation and progression. These recent 

basic science discoveries are beginning to translate into potential therapies for patients. 

New clinical targets of CRC metabolism, such as the phosphocreatine transporter, SLC6A8, 

are already in clinical trials. Other metabolic adaptations of CRC are prime targets for 

chemoprevention and treatment, with potential for combination therapies. Additionally, 

novel classes of therapies may arise from the rapidly maturing microbiome field, where 

associations of specific microbes with CRC are becoming reinforced with mechanistic data 

to support causation by microbe-produced metabolites. Further research on the microbiome 

holds promise for CRC and disease prevention by finding strategies to achieve and 

maintain an optimal microbiome—replacing pathogenic microbial strains with those known 

to be protective or administering microbiome-derived metabolites. A pro-obesity HFD 

significantly contributes to CRC tumorigenesis in animal models, originating from effects 

on the intestinal stem and progenitor cells and microbiome; further research is required to 

translate these discoveries into specific therapies for patients with obesity-associated CRC. 

More research is also needed to understand the impact of specific modifiable risk factors, 

such as consumption of alcohol and red meat, on CRC development. In addition, metabolic 

responses to modifiable risk factors may underlie the growing incidence of CRC in younger 

individuals under the age of 50. As such, a growing body of preclinical and clinical research 

suggests that metabolic adaptations are important drivers of ISC function, CRC initiation, 

and CRC metastasis.
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Figure 1. 
Schematic of the colonic crypt and associated epithelial and mesenchymal cell types. Figure 

adapted from images created with BioRender.com. Abbreviations: ISC, intestinal stem cell; 

Lgr5+, leucine-rich repeat–containing G protein–coupled receptor 5 positive.
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Figure 2. 
Effect of pro-obesity diets on intestinal epithelium and CRC tumorigenesis. (a) A high-

fructose diet increases villi length, fatty acid synthesis, and aerobic glycolysis and reduces 

M2 pyruvate kinase expression, promoting CRC tumorigenesis and liver metastasis. 

Arriving CRC cells adapt to the liver by using readily available fructose as a carbon 

source by upregulating aldolase B. (b) A high-fat diet induces increases in ISC self-

renewal, stemness, FAO via PPAR, and genotoxic bile acids, a decrease in MHC-II 

expression on intestinal epithelial cells, dysbiosis, and a reduction in CD8+ T cells, thereby 

promoting CRC tumorigenesis. Figure adapted from images created with BioRender.com. 

Abbreviations: CRC, colorectal cancer; FAO, fatty-acid oxidation; ISC, intestinal stem 

cell; MHC-II, major histocompatibility complex class II; PPAR, peroxisome proliferator-

activated receptor.
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Figure 3. 
An HFD promotes CRC tumorigenesis through intestinal dysbiosis and decreased tumor 

immune surveillance. Beyaz et al. (32) found that an HFD reduces microbial diversity, 

particularly Helicobacter sp. and Odoribacter sp., leading to a decrease in MHC-II 

expression on intestinal epithelial cells and a reduction in antitumor immunity. Yang 

et al. (98) reported that an HFD promotes tumorigenesis through a shift in protective 

Parabacteroides distasonis to Alistipes sp. and an increase in the concentration of the 

protumorigenic fatty acid, lysophosphatidic acid. Figure adapted from images created with 

BioRender.com. Abbreviations: CRC, colorectal cancer; HFD, high-fat diet; IFN, interferon; 

MHC-II, major histocompatibility complex class II.
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Figure 4. 
Metabolic pathways exploited in CRC initiation and progression. At homeostasis, ISCs 

sustain high proliferation through upregulated glycolysis, FAO, cholesterol metabolism, 

shuttling lactate toward biosynthetic pathways through downregulation of MPC, and 

lactate secretion from adjacent Paneth cells. Adenomas exploit these pathways and sustain 

high proliferation through perturbations in oncogenes and tumor suppressors, enhancing 

glycolysis, nucleotide synthesis, and FAO. CRC further manipulates these same pathways 

and others, including the serine synthesis pathway, angiogenesis, and lipogenesis. Additional 
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metabolic adaptations are required for metastasis, including increased FAO to resist anoikis, 

glutathione production, PGE2, and lysine degradation. CRC cells arriving at the liver 

adapt to the harsh microenvironment through upregulating CKB for extracellular sources 

of energy, aldolase B for fructose metabolism, and gluconeogenesis. Figure adapted from 

images created with BioRender.com. Abbreviations: CKB, creatine kinase, brain-type; CRC, 

colorectal cancer; FAO, fatty-acid oxidation; ISC, intestinal stem cell; MPC, mitochondrial 

pyruvate carrier; PGE2, prostaglandin E2.
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Table 1

Impact of diverse diets on CRC risk and ISC biology

Diet CRC risk Effects on ISCs

Calorie restriction Decreased in humans and animal models (45–47, 52, 53) Increased ISC number allows outcompeting of mutant 
ISCs (59)

Fasting Fasting phase: decreased (54, 62)
Refeeding: unknown, potentially increased (66)

Fasting phase: lower cellular proliferation (61)
Refeeding phase: increased proliferation (54, 56–58)

Vitamin D Decreased in humans and animal models (67–72) Enhances expression of stemness genes and reduces 
proliferation (74)

Vitamin C Unknown (75–77) Unknown

Fructose Increased in animal models and some epidemiological 
associations (79, 81, 82)

Fuels aerobic glycolysis and increases de novo fatty 
acid synthesis (80)

HFD-induced obesity Increased in animal models (32, 33, 92, 93)
Obesity increases CRC risk in humans (44, 86)
No effect was observed for HFD, without overeating, on 
CRC risk in humans (28)

Increased proliferation and tumorigenicity (32, 33, 
92, 93)
Decreased MHC-II expression (34)

Carbohydrate-rich diet Unknown Unknown

Ketone bodies Unknown in humans
Decreased in animal models (103, 105)

Enhanced NOTCH activity, ISC self-renewal, 
postinjury regeneration, and decreased secretory cell 
differentiation (104)
Decreased proliferation (105)

Weight loss Decreased (106–111) Unknown

Abbreviations: CRC, colorectal cancer; HFD, high-fat diet; ISC, intestinal stem cell; MHC-II, major histocompatibility complex class II.
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