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Abstract

Emergence of SARS‐CoV‐2 variants warrants sustainable efforts to upgrade both
the diagnostic and therapeutic protocols. Understanding the details of cellular and

molecular basis of the virus–host cell interaction is essential for developing

variant‐independent therapeutic options. The internalization of SARS‐CoV‐2, into
lung epithelial cells, is mediated by endocytosis, especially clathrin‐mediated
endocytosis (CME). Although vaccination is the gold standard strategy against

viral infection, selective inhibition of endocytic proteins, complexes, and associ-

ated adaptor proteins may present a variant‐independent therapeutic strategy.
Although clathrin and/or dynamins are the most important proteins involved in

CME, other endocytic mechanisms are clathrin and/or dynamin independent and

rely on other proteins. Moreover, endocytosis implicates some subcellular struc-

tures, like plasma membrane, actin and lysosomes. Also, physiological conditions,

such as pH and ion concentrations, represent an additional factor that mediates

these events. Accordingly, endocytosis related proteins are potential targets for

small molecules that inhibit endocytosis‐mediated viral entry. This review sum-
marizes the potential of using small molecules, targeting key proteins, partici-

pating in clathrin‐dependent and ‐independent endocytosis, as variant‐
independent antiviral drugs against SARS‐CoV‐2 infection. The review takes two
approaches. The first outlines the potential role of endocytic inhibitors in pre-

venting endocytosis‐mediated viral entry and its mechanism of action, whereas in
the second computational analysis was implemented to investigate the selectivity

of common inhibitors against endocytic proteins in SARS‐CoV‐2 endocytosis. The
analysis revealed that remdesivir, methyl‐β‐cyclodextrin, rottlerin, and Bis‐T can
effectively inhibit clathrin, HMG‐CoA reductase, actin, and dynamin I GTPase and
are more potent in inhibiting SARS‐CoV‐2 than chloroquine. CME inhibitors for
SARS‐CoV‐2 infection remain understudied.

Abbreviations: ACE2, angiotensin‐converting enzyme 2; AP2, adaptor protein complex; ARF1, ADP‐ribosylation factor 1; ARP2/3, actin nucleation factor; BAR, bin–amphiphysin–Rvs; CALM,
clathrin assembly lymphoid myeloid leukemia; CCP, clathrin‐coated pits; CCVs, clathrin‐coated vesicles; Cdc42, cell division control protein 42 homolog; CIE, clathrin‐independent
endocytosis; CLICs, clathrin‐independent carriers; CME, clathrin‐mediated endocytosis; CvME, caveolae‐mediated endocytosis; Drp‐1, dynamin‐related protein‐1; DynII, dynamin II; Eps15,
EGF‐receptor phosphorylation substrate; ENDOA2, endophilin A2; FCHo2, fer/Cip4 homology domain‐only proteins 1/2; FEME, fast endophilin‐mediated endocytosis; GEEC CLIC/GEEC,
glycophosphatidyl‐inositol anchored protein‐enriched endosomal compartments; GPCRs, G protein‐coupled receptors; GPI‐APs, glycosylphosphatidylinositol‐anchored proteins; GRAF1,
GTPase activating factor; GSK3β, serine/threonine protein kinase; Hsc70, heat shock protein 70; OCRL, oculocerebrorenal lowe syndrome protein; PI3KC2α, phosphatidylinositol 3‐kinase
C2α; SARS‐CoV‐2, coronavirus 2; TfR, transferrin receptor; TMPRSS2, transmembrane serine protease 2; N‐WASP, wiskott–aldrich syndrome protein.
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1 | INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)
entry into the host cell is crucial for viral infectivity. It is well‐
established that the SARS‐CoV‐2 spike (S) glycoprotein interacts
with the host cell surface receptors. Many previous studies have used

purified spike (S) glycoprotein and lentivirus pseudo‐typed with spike
glycoprotein and found that SARS‐CoV‐2 undergoes rapid clathrin‐
mediated endocytosis (CME) to gain entry into cells.1–4 This sce-

nario is quite similar to the paradigms of receptor‐mediated endo-
cytosis (RME), in which cells internalize their own liganded surface

receptors for signal management or to uptake nutrients, such as iron,

and cholesterol, from their microenvironment. Although CME is

regarded as the most common pathway for virus entry, some reports

suggested that different viruses may adopt other routes to infect

host cells, such as the transmembrane serine protease 2 (TMPRSS2)

pathways and caveolae‐mediated endocytosis (CvME).5 Organs,
especially the lung and intestines, for example, are highly susceptible

to viral infection owing to the large amounts of TMPRSS2 found in

their cell membranes.6,7 Moreover, the virus may utilize an endocytic

pathway when TMPRSS2 is absent.7 These mechanisms provide

efficient routes that enable the virus to evade host immune surveil-

lance, gain sustainable intracellular replication, and develop the

associated pathogenesis. The recent SARS‐CoV‐2 pandemic, with its
associated high mortality rate, elicited tremendous research efforts

to explore the biology, viral–host cell interactions, and screening

methods for the virus and to suggest therapeutic approaches via

either vaccination or the use of antiviral drugs. The rapid appearance

and transmission of new SARS‐CoV‐2 variants as well as the asso-
ciated high mortality rate have imposed more challenges on research

communities to modify existing detection methods and therapeutic

protocols.8–11 Although vaccination strategies have become the gold

standard for preventing SARS‐CoV‐2 infections, challenges have
emerged because of mutational variants gaining increased infectivity

potential and becoming less responsive to vaccines.12,13 Recent

studies compared the titer of neutralizing antibodies of natural

SARS‐CoV‐2 infection and Sinovac vaccination to evaluate the effi-
cacy of vaccination. People vaccinated with Sinovac were found to

have a lower titer of neutralizing antibodies than the naturally

infected patients,14 indicating that live SARS‐CoV‐2 virus may induce
a stronger immune response than the inactivated virus. Heteroge-

neous vaccination may be required to induce a strong immune

response against the virus. Several vaccines that are effective against

SARS‐CoV‐2 variants have been developed, such as molnupiravir.
Molnupiravir can inhibit the replication of SARS‐CoV‐2 by inducing
lethal mutagenesis.15 Its bioavailability and tolerability have been

confirmed in clinical trials. Although molnupiravir has been shown to

be effective against SARS‐ CoV‐2, its genotoxicity is concerning; thus,

longer‐term clinical trials are needed to complete the safety evalu-
ation.15 This increases the importance of developing variant‐
independent therapeutic strategies. Because of the close resem-

blance between ligand–receptor CME and the proposed SARS‐CoV‐2
entry route, endocytic proteins serve as potential anti‐SARS‐CoV‐2
targets. Even before the emergence of SARS‐CoV‐2, this infection
route was determined to be the preferred route for other viruses

such as human hepatitis C virus (HCV),16 enterovirus 71,17 Ebola

virus, Dengue‐3 virus,18 and many others. The clathrin‐independent
endocytosis (CIE) has also been proposed as an additional route of

SARS‐CoV‐2 cell entry.19 The SARS‐CoV‐2 outbreak accelerated the
use of endocytic proteins involved in CME, making endocytic proteins

and other cellular entry pathways antiviral targets for potentially

blocking SARS‐CoV‐2 entry into host cells.20 CME inhibitors have
been shown to inhibit spike (S) protein endocytosis and pseudo‐virus
infectability in recent studies. This is accomplished by preventing the

formation and disassembly of clathrin lattices on cytoplasmic sur-

faces and endosomes.5 In the same context, destruction of clathrin

heavy chains decreases the internalization of viral spike protein.20

Additionally, inhibitors targeting dynamins I and II and dynamin‐
related protein‐1 (Drp‐1) disrupted the endocytic pathway and pre-
vented viral entry through CME pathways.21 Other studies revealed

that inhibition of β‐arrestin blocked viral host cell entry.20,22

Accordingly, this review summarized endocytic protein inhibitors

that potentially block SARS‐CoV‐2 entry through endocytic path-
ways, with a focus on the most common CME‐related proteins.
Additionally, molecular docking analysis of these inhibitors was

conducted to provide a predictive model of their relative potential as

anti‐SARS‐CoV‐2 therapeutic drugs.

2 | ENDOCYTIC PATHWAYS AND TRAFFICKING

2.1 | Phagocytosis and pinocytosis

Phagocytosis is a mechanical processes that allows the ingestion of

particles larger than 0.5 μm, such as apoptotic cells, foreign sub-
stances, and microorganisms.23,24 Phagocytosis occurs via a series of

well‐studied steps, which include phagocyte detection, recognition of
foreign molecules, and movement toward the target cargo for elim-

ination. After physically binding to the targets, pseudopodia forma-

tion is initiated, and the pseudopodial membrane fuses to form a

vesicle with the targeted material inside, thus forming a phag-

osome.24 Finally, the phagosome is merged with a lysosome, where

its components are enzymatically hydrolyzed.

Conversely, pinocytosis is used to uptake small particles (less

than 0.1 μm) and to ingest fluid by modulating the cellular plasma
membrane without pseudopodia formation.25 Pinocytosis occurs
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through the formation of vesicles, followed by endocytosis into the

cell and fusion with lysosomes to achieve complete digestion

Figure 1. Based on particle size, pinocytosis is classified into micro-

pinocytosis and macropinocytosis. The former occurs via the forma-

tion of a vesicle bud from the cell to engulf a small particle with a

diameter of ≤0.1 μm, whereas the latter occurs indirectly without the
formation of vesicles and is commonly observed in white blood cells

that engulf larger particles (0.5–5 μm).

2.2 | CME involves a machinery of proteins,
adaptors, and modifiers

In response to extracellular stimuli, such as hormones and growth

factors, and to changes in the cellular microenvironment containing

nutrients and oxygen, the relative abundance of cell surface re-

ceptors is accommodated to perform a range of functions, such as

nutrient uptake and signaling. The relative abundance of these re-

ceptors is mainly controlled by their endogenous expression, traf-

ficking, and internalization via CME.26,27 The latter mechanisms

which include endogenous expression, trafficking, and internalization

regulates receptor internalization, recycling, and degradation. These

processes require several endocytic cellular proteins that sequen-

tially function to engulf liganded receptors into a fully formed en-

dosome containing ligand–receptor complexes.

CME occurs through two approaches, clathrin‐coated pits (CCPs)
and clathrin‐coated vesicles (CCVs).20,28 CME is primarily a clathrin‐
and dynamin‐dependent mechanism and includes several other

proteins, such as β‐arrestin, and adaptor proteins, such as adaptor
protein‐2 (AP2). The process involves a series of steps, including
initiation of CCPs, followed by their stabilization and maturation, and

finally, membrane fission. The AP2 heterotetramer, comprised of α,
β2, μ2, and σ2 subunits, plays a fundamental role in the initiation of
CCPs.29 Thereafter, scaffolding molecules, including FCHo and

eps15, are recruited to participate in either nucleating or stabilizing

nascent CCP. This process aids the newly formed CCP to develop

into a CCV.28 The second stage of CCP is maturation and fission and

is dependent on regulatory proteins such as amphiphysin, endophilin,

Wiskott–Aldrich Syndrome Protein (N‐WASP), cortactin, myosin 1E,
sorting nexin 9 (SNX9), synaptojanin, phosphatidylinositol 3‐kinase
C2α (PI3KC2α), and phosphatidylinositol phosphate (PIP5K).30,31

Dynamin, a large GTPase, is activated at low levels in nascent CCPs

and regulates CCP initiation and maturation.32 It then forms short

helical rings around the necks of deeply invaginated CCPs to catalyze

their membrane fission. In CCVs, dynamin is used by proteins with

Bin–Amphiphysin–Rvs (BAR) lipid specificity domains, including

amphiphysin, endophilin, and SNX9.33 Subsequently, GTP hydrolysis

occurs to drive membrane fusion. After the detachment of the vesicle

from the plasma membrane, both heat shock cognate 70 (HSC70) and

its cofactor auxilin disassemble the clathrin coat.28 This allows the

uncoated vesicle to progress to lysosomal fusion or be recycled to the

cell membrane. For lysosomal fusion, multiple homotypic fusion

events occur. This step involves cyclin G‐associated kinase (GAK),
HSC70, and oculocerebrorenal Lowe syndrome protein (OCRL).34

Lysosomal fusion transports the CCV cargo to early endosomes. The

internalization of low‐density lipoprotein (LDL) receptors and iron‐

F I GUR E 1 Pinocytosis pathway in which
the cell absorbs fluid by invagination and

formation of a separate tiny vacuole around
each droplet called a vesicle
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binding protein are the best examples of CME, which enable the

cellular uptake of LDL cholesterol and iron from the microenviron-

ment Figure 2.

2.3 | Caveolae‐mediated endocytosis (CvME)

Caveolae/glycolipid raft‐mediated endocytosis is the best‐
characterized clathrin‐independent but dynamin‐dependent endo-
cytic pathway.35 Caveolae are flask‐shaped plasma membrane
invaginations with a diameter of 50–80 nm. Caveolins, considered

the main structural proteins, are members of the caveolin gene

family and comprise caveolins 1, 2, and 3. Caveolar membranes are

enriched with sphingolipid, cholesterol, signaling proteins, and clus-

tered glycosylphosphatidylinositol‐anchored proteins (GPI‐APs).36

Caveolar‐mediated endocytosis occurs when foreign particles, such
as viruses, adhere to the membrane and are trapped in the caveolae.

This event initiates a signal transduction cascade in which certain

proteins are phosphorylated, resulting in the depolymerization of the

cortical actin cytoskeleton of the caveolae cargo, which is followed

by the recruitment of actin monomers, forming an actin patch.

Concurrently, dynamin is recruited to the caveolae cargo, causing it

to be detached from the cell membrane and translocated to the

cytosol.37 According to some reports, endocytic cargo can be inter-

nalized by various mechanisms in different cell types or it can switch

pathways in a single cell type under certain conditions. In human

skin fibroblasts and endothelial cells, for example, albumin is inter-

nalized by caveolae, whereas in Chinese hamster ovary cells, it is

internalized via a RhoA‐dependent mechanism.35,38

2.4 | CLIC/GEEC endocytic pathway

The involvement of crescent‐shaped tubular clathrin‐independent
carriers (CLICs) that evolve into glycosylphosphatidylinositol (GPI)‐
anchored protein‐enriched early endocytic compartments (GEECs) is
referred to as the CLIC/GEEC pathway, which is CIE. This pathway is

regulated by some proteins including small GTPases, such as Arf1 and

CDC42,39,40 GTPase activating factor GRAF1,41 actin nucleation

factor ARP2/3,42 and the BAR domain protein IRSp53. These regu-

lators are involved in the uptake of cargo such as hyaluronic acid

receptor/CD44, GPI‐anchored proteins (CD59 and Thy‐1), and
cholera toxin.43 Notably, CLIC/GEEC endocytosis is dynamin‐
independent for endogenous cargo and not strictly dynamin‐
dependent for exogenous cargo such as toxins.44,45 The CLIC/GEEC

pathway, unlike micropinocytosis, is a high‐capacity pathway in which
the internalized fluid phase is delivered to the cell. Furthermore, in

several cell types, the CLIC/GEEC pathway is responsible for the

rapid recycling of cell membranes. For instance, the entire cell

membrane of mouse embryonic fibroblasts is recycled in less than

F I GUR E 2 Clathrin‐dependent endocytosis pathways in which the metabolites, proteins and viruses transported into the cell through
binding to cell surface receptor. The molecule‐receptor complex enters the cell by in‐folding of the plasma membrane, which eventually gets
pinched off into a vesicle. During receptor‐mediated endocytosis (RME), endocytic proteins including, AP2, and clathrin triskelion coats the
budding vesicle give spherical form called clathrin‐coated pits (CCPs) and the dynamin recruited to the CCPS. Then the dynamin releases from
CCPS forming endosome and un‐coating the clathrin release and bind to the lysosome.
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15 min via the CLIC/GEEC pathway. In addition to nutrient and toxin

uptake, the CLIC/GEEC pathway is recognized as a portal for viral

infection.46

2.5 | Flotillin‐dependent endocytosis

Flotillin proteins are ubiquitous in cells and play several roles,

including cell adhesion, signal transduction through tyrosine kinases

receptors, and cellular trafficking via pathways involving flotillin‐1/
reggie‐2 and flotillin‐2/reggie‐1.47 Flotillins are acylated at the N‐
terminal stomatin/prohibitin/flotillin/HflK/C (SPFH) domain and oli-

gomerized at the C‐terminal (flotillin domain). Therefore, they
constitutively associate with cholesterol‐enriched lipid micro-

domains, which participate in endocytosis and other cellular traf-

ficking processes. Flotillin microdomains are dynamic, and upon

stimulation, specifically cluster cargo molecules, such as Alzheimer's

amyloid precursor protein, dopamine transporter, and epidermal

growth factor receptor, at the plasma membrane into flotillin rafts for

pre‐endocytic cluster formation before endocytosis. Notably,

following their clustering, cargo molecules are endocytosed without

any involvement of flotillin. Flotillins have been shown to be func-

tionally dependent on each other, where deletion of one perturbs the

stability of the other. Flotillin‐1 seems to be more dependent on
flotillin‐2.48 For instance, in neuroblastoma cells and primary hippo-
campal neurons, depletion of flotillin‐2 impairs amyloid precursor
protein endocytosis,49 whereas flotollin‐1 remains intact.

2.6 | Post‐endocytic events and factors controlling
endocytosis

Typically, after macromolecules are internalized by one of the above‐
described pathways, they are sorted by endosomes,50 where they

may either be recycled to the plasma membrane, degraded by lyso-

somes, or sent across the epithelium, endothelium, and blood–brain

barrier through endocytosis.50,51 Moreover, the endocytic process

is involved in cell signaling from surface receptors such as G protein‐
coupled receptors (GPCRs), neurotransmission, and viral infections.

Endocytic pathways are multistep mechanisms and are controlled at

several stages including scission mechanisms, coat‐associated protein
assembly, and in the integration of these steps.52 In such ordered

events, the cell membrane and the soluble endocytic machinery are

involved in endocytosis and endosome maturation and trafficking.

Endocytic trafficking relies on membrane structural heterogeneity,

including the presence of specific lipid and derived lipid components

as well as protein domains. This structural pattern plays a pivotal role

in defining a region of the membrane to initiate the endocytic

event.52 Endocytic pathways participate in the propagation of

membrane heterogeneity, which switches phosphoinositide species

throughout the endocytic trafficking process. These metabolic

changes are important for the regulation of each step of the intra-

cellular sorting process following endocytosis.53

3 | TYPES OF ENDOCYTIC PROTEIN INHIBITORS

Endocytic inhibitors include various low‐molecular‐weight com-
pounds and peptides. A standardized classification system is yet to be

established; however, these inhibitors may be subgrouped according

to their chemical nature, therapeutic use, sources, or mode of action

as follows: chemical, pharmacological, natural, and genetic in-

hibitors.54,55 This primitive categorization system is based on the

available literature in which various endocytic pathways were tar-

geted. Other classification approaches may consider their targeted

endocytic pathway or their selective cellular proteins. This may

include inhibitors known to interfere with CME, lipid rafts, CIE,

macropinocytosis, phagocytosis, and β‐arrestin.54 Additional sug-
gested classification approaches may differentiate between clathrin‐
and/or dynamin‐dependent pathways, in which case other inter-
vening factors should be considered, such as evidence‐based selec-
tivity (specific vs. non‐specific), sustainable effects (reversibility), and
the affected subcellular organelles.

3.1 | Chemical inhibitors

Chemical inhibitors include various molecules and peptides known to

inhibit CME, CvME, CIE, CLIC/GEEC, phagocytosis, and micro-

pinocytosis Table 1. Chemical inhibitors may alter the cellular phys-

iology (physiological modifiers) or directly interact with integral

endocytic proteins. Physiological modifiers non‐specifically inhibit
the endocytic pathway by altering the normal physiological condi-

tions of cells and/or subcellular organelles. For example, clathrin

lattices on the plasma membrane may be inhibited by chemical in-

hibitors such as hypertonic sucrose and 2‐deoxy‐d‐glucose/sodium
azide, which trap clathrin in microcages.56 Endocytosis may also be

inhibited by chemical inhibitors that reduce ATP and NADH levels by

inhibiting glycolysis.57 Another chemical inhibitor, monensin, inhibits

the endocytic pathway through disruption of the proton gradient.58

Other chemical inhibitors directly and specifically interact with spe-

cific endocytic proteins, including arrestin and dynamins. Barbadin,

for example, inhibits the molecular interaction between β‐arrestin
and AP2.59,60 Additionally, the GTPase activity of dynamins can be

targeted by several compounds including Rhodadyn‐D10, Naph-
thaladyn 29, Dynole, Dyngo, and Dynasor. These compounds act as

competitive inhibitors in the GTP domain and inhibit the GTPase

activity of Dyn 1.61 Similarly, bisphosphonates can inhibit the effect

of Dyn II by inhibiting GTPase activity.62 Disrupting cell membrane

structural integrity may be another mechanism for inhibiting endo-

cytosis via a different route, considering the critical role of

bisphosphonates in the plasma membrane in the endocytic pathway.

Other chemical inhibitors, such as methyl‐β‐cyclodextrin and

nystatin, remove cholesterol from the plasma membrane and inter-

fere with the fluid phase, thereby inhibiting CvME.63 Additionally, the

chemical inhibitors filipin, LG186, and 7‐keto‐cholesterol interact
with membrane cholesterol and prevent the close packing of acyl

chains, resulting in inhibition of the CLIC/GEEC pathway.
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TAB L E 1 Summary of chemical inhibitors with their mode of actions

No

Endocytosis of

inhibitors Mode of action

Target for

inhibition Summary References

Chemical inhibitor

1 Hypertonic sucrose Inhibition takes place by the dispersion

of clathrin lattices on the plasma

membrane. It also traps clathrin

in microcages.

CME Nonspecific inhibitor. affects non‐
clathrin‐mediated internalization
pathway and interferes with fluid

phase macropinocytosis.

57,160–162

2 Cytosol acidification Inhibits the scission of the clathrin pits

from the membrane.

CME Nonspecific inhibitor interferes with

macropinocytosis and the actin

cytoskeleton.

99,163,164

3 Potassium depletion Activates the aggregation of clathrin. CME Nonspecific inhibitor and affects the

actin cytoskeleton.

164,165

3 2‐Deoxy‐d‐glucose/
Sodium azide

Decreases ATP and NADH by inhibiting

glycolysis.

CME ‐ 57,166

4 Barbadin Inhibits β‐arrestin/AP2. CME Blocks agonist‐promoted endocytosis
of the prototypical β2‐adrenergic
(β2AR), V2‐vasopressin (V2R) and
angiotensin‐II type‐1 (AT1R)
receptors.

60,61,168

5 Monodansylcadaverin Stabilizes clathrin‐coated vesicles. CME Causes changes in actin dynamics. 168‐170

6 Phenylarsine oxide Inhibits O2 consumption and decreases

cellular ATP content overlap with those

used to inhibit protein internalization.

CME Inhibits macropinocytosis and

phagocytosis.

172–174

7 Bolinaquinone Affects the function of clathrin‐coated
vesicles.

CME − 175,176

8 Peptide inhibitors

Wbox 2

Wbox2 is non‐specific and inhibits clathrin‐
independent endocytosis; proposed to

be due to either upregulation of

clathrin‐independent endocytosis (CIE)
during clathrin terminal domain

overexpression or that SNX9 is

required for CIE, and inhibition by

Wbox2 sequesters it from CIE.

CME − 176

9 Bis‐Ts Most potent of the dimeric tyrphostins

(tyrosine phosphorylation inhibitors

and inhibits dynamin).

CME − 178–180

10 Iminodyns Interacts with and inhibits dynamin. CME − 181,182

11 Rhodadyn D10 Inhibits dynamin 1 by blocking GTPase

activity.

CME − 183,184

12 Pthaladyn 23 Inhibits dynamin 1 by blocking GTPase

activity.

CME − 185,186

13 Naphthaladyn 29 Competitive inhibitor in GTP domain and

blocks GTPase activity of dynamin 1.

CME − 61

14 Pyrimidyn 6–7 Most potent dynamin 1 inhibitors. CME − 186

15 Bisphosphonates Blocks dynamin 2. CME Inhibits the uptake of transferrin as

well as adenovirus and simian

virus 40.

63

16 Monensin Affects proton gradient. CME Inhibits SARS‐COV‐2 infection. 59,188

17 ES9‐17 It is a potent and selective CME that

binds to N‐terminal domain of
clathrin heavy chain.

CME Acts as an inhibitor of the CHC

function; cytosol acidification

33
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In another context, although the principles governing the acti-

vation and organization of the actin cytoskeleton during CME are not

fully understood, there is a spatiotemporal relationship between the

generation of actin platform and the formation of CCVs. Accordingly,

a few studies investigated the inhibition of CME by disrupting actin

formation, where amiloride derivatives (EIPA and HOE‐694), cyto-
chalasin D, and latrunculin were found to inhibit Na+/H+ exchange

and disrupt actin formation.65,66

3.2 | Pharmacological inhibitors

Pharmacological inhibitors include U.S. Food and Drug Administra-

tion (FDA)‐approved medications used for therapeutic purposes that
simultaneously affect endocytic pathways as shown in Table 2.

Chlorpromazine (CPZ), for example, is used to treat psychotic dis-

orders, such as schizophrenia or manic‐depression, in adults.66 Some
studies reported that phenothiazine derivatives, including CPZ, may

affect the formation of CCVs and then inhibit CME.67,68 Similarly,

during viral infection, chloroquine inhibits the formation and func-

tioning of CCVs and its analogs inhibit the acidification of endo-

somes.69,70 Other pharmacological inhibitors, including itraconazole,

vinblastine, imipramine, auranofin, terfenadine, and flubendazole,

inhibit plasma membrane ruffle formation, which is an early step in

macropinocytosis.27,65 Furthermore, the PI3K inhibitors wortmannin

and LY294002 inhibit the activity of protein kinase C delta, thereby

inhibiting phagocytosis and macropinocytosis.71 Lipid rafts are rich in

glycosphingolipids, cholesterol, and signaling proteins, all of which

play a vital role in the internalization and disruption of parasitic,

bacterial, and viral infectious particles.72 Statins, which are commonly

used to treat hyperlipidemia, block cholesterol synthesis by inhibiting

the activity of 3‐hydroxy‐3‐methylglutaryl CoA (HMG‐CoA) reduc-
tase, which is used for the therapeutic reduction of cholesterol‐
containing plasma lipoproteins, and then affect the CvME

pathway.73 Another pharmacological inhibitor, genistein, interferes

with dynamin and may affect endocytic pathways such as CME.74

3.3 | Natural products as anti‐endocytic factors

Some natural inhibitors can interact with lipid raft components,

reducing cholesterol and glycosphingolipids in the cell membrane and

thus inhibiting viral endocytosis.73,76,77 Phytosterols, for example,

interact with the components of lipid rafts, thereby reducing

cholesterol content in the cell membrane76,78 Table 3. Flavonoids

also play a role in endocytic inhibition as they can fluidize the cell

T A B L E 1 (Continued)

No

Endocytosis of

inhibitors Mode of action

Target for

inhibition Summary References

18 Methyl‐β‐
cyclodextrin

Removes cholesterol from plasma

membrane.

Caveolae‐mediated
endocytosis/lipid

rafts

Interferes with fluid‐phase
endocytosis and clathrin‐
mediated endocytosis.

63,188,189

19 Filipin Binds to cholesterol in the membrane. CIE Toxic at higher concentrations.

Inhibits clathrin‐mediated
endocytosis.

190‐192

20 Nystatin Binds to cholesterol. Lipid rafts/cholesterol‐
enriched

microdomains/

caveolae

Interferes with other uptake

mechanisms because of changes in

membrane fluidity.

194,195

21 7‐keto‐cholesterol Prevents the close packing of acyl chains. CLIC/GEEC − 141

22 LG186 Reversible inhibitor of Arf‐GEF function. CLIC/GEEC − 140,196

23 Cytochalasin D,

latrunculin

Depolymerizes F‐actin. Phagocytosis

macropinocytosis

Affects most endocytic pathways. 197–199

24 Amiloride derivatives

(EIPA and HOE‐
694)

Inhibits Na+/H+ exchange Macropinocytosis May affect actin. 65,66,200

25 Dynasore Inhibits dynamin by blocking GTPase

activity.

CME Interferes with actin. 27,62,138,201

26 Dynole, Dyngo Inhibits dynamin by blocking the GTPase

activity of dynamin I.

CME Interferes with actin. 202,203

27 Pitstop 2 Interferes with binding of proteins to the

N‐terminal domain of clathrin.
CME Affects most forms of clathrin‐

independent endocytosis and

causes decreasing in PM mobility.

204,205
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membrane (raft‐breaking effect), which leads to inhibition of both
membrane fusion and CvME Table 3. Other reports demonstrated

that oleuropein and hydroxytyrosol, which are phenolic compounds

with antioxidant properties found in the leaves and fruits of olive

plants, can inhibit the fusion of viruses with host cell membranes76,79

Table 3. Furthermore, ikarugamycin, isolated from Streptomyces

phaeochromogenes, affects CME,80 whereas brefeldin A, TENin1,

and auxin inhibit the formation of clathrin coats pits and ion trans-

port.81–83

3.4 | Genetic inhibitors

Although chemical inhibitors are the most commonly identified in-

hibitors, the absolute selectivity of their actions remain a major

concern. Selective CME inhibitors that target specific molecular

targets may either directly or indirectly interfere with other mole-

cules Table 4. Barbadin, for example, is a selective inhibitor of β‐
arrestin/AP2 interaction,83 ERK1/2, and cAMP accumulation in hu-

man embryonic kidney cells.59 Barbadin also affects cellular viability

and induces both apoptosis and autophagy in breast cancer cells.84‐88

This may give genetic inhibitors more leverage to avoid the antici-

pated adverse effects of chemical inhibitors. Genetic inhibitors are

used to inhibit CME by suppressing the expression of specific

endocytic proteins.75 The expression of mutant forms of critical

proteins involved in endocytosis and siRNA‐mediated depletion of
these proteins are the most commonly used methods.89 The mutant

dynamin, K44A, is an example of a genetic inhibitor of CME.90

Dyn2K44A was also used to inhibit CME under conditions of

increased clathrin‐independent fluid endocytosis.91 Clathrin adaptor
proteins including AP180 and Epidermal growth factor receptor

substrate 15 (Eps15) target regulatory proteins of the CME pathway

TAB L E 2 Summary of pharmacological inhibitors with mode of action

No

Endocytosis

inhibitors Mode of action Target of inhibition Summary References

Pharmacological inhibitors

1 Chlorpromazine Translocates clathrin and AP2 adaptor

protein from the cell surface to

intracellular endosomes.

CME Inhibits clathrin‐independent
endocytosis in some cells.

64,189,206

2 Phenothiazines Affects formation of

clathrin‐coated vesicles.
Phagocytosis CME Inhibits dynamin II (dynII)

at similar concentrations.

68,69,207

3 Chloroquine Affects the function of

clathrin‐coated vesicles.
CME Chloroquine and its analogs inhibit

SARS‐COV‐2 acidification of
endosomes during the events

of viral replication and infection.

70,71,208

3 Itraconazole Inhibits plasma membrane

ruffle formation, a critical

early step in macropinocytosis.

Macropinocytosis − 66,209

4 Vinblastine Macropinocytosis − 66,153,209

5 Imipramine Macropinocytosis Inhibits phagocytosis. 66,209,210

6 Auranofin Macropinocytosis − 65,210

7 Terfenadine Macropinocytosis − 66,212

8 Flubendazole Macropinocytosis − 66,212

9 Genistein Interferes with dynamin

and may affect other

endocytic processes.

CME Inhibits several tyrosine kinases. Genistein

interferes with caveolae/raft‐mediated
endocytosis by blocking the Src kinase‐
dependent phosphorylation of caveolin‐1
and preventing vesicle fusion.

64,75,193,213

10 Statins Affects most endocytic mechanisms. Caveolae‐mediated
endocytosis/lipid

rafts

Blocks cholesterol synthesis. Inhibitors of 3‐
hydroxy‐3‐methylglutaryl CoA (HMG‐CoA)
reductase used for the therapeutic reduction

of cholesterol‐containing plasma
lipoproteins.

213‐215

11 Wortmannin

and

LY294002

Affects most endocytic mechanisms Phagocytosis,

macropinocytosis

Inhibits the activity of

phosphatidylinositol 3‐kinase.

72,217,218

12 Rottlerin Inhibits the activity of protein

kinase C delta.

218,219
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and thus inhibit endocytosis. The C‐terminal clathrin‐binding domain
of AP180 or the truncated form of Eps15 inhibits the initial step

(formation of CCPs) of CME.92,93 Furthermore, the C‐terminal (Hub)
region of clathrin expression effectively inhibits CME.94 Endophilin

A2 (ENDOA2) depletion prevents the reshaping of the membrane

before scission of the vesicle and inhibits fast endophilin‐mediated
endocytosis (FEME).95 The same approach was used to inhibit

other endocytic pathways. Caveolin‐1 (CAV1) and caveolae‐
associated protein 1 (CAVIN1), for example, prevented caveola for-

mation.96,97 Similarly, CtBP1 and Rabankyrin‐5 (ANKFY1) inhibited
macropinosome fission from the plasma membrane and blocked

macropinocytosis.98,99

4 | ENDOCYTOSIS AND TRANSCYTOSIS OF SARS‐
CoV‐2

Viral entry into host cells occurs through two distinct pathways: vi-

ruses deliver their nucleic acid material into the cytosol after their

envelopes fuse with the plasma membrane (pH‐independent en-
try),101 or they use the host cell's endocytic machinery (pH‐depen-
dent entry), such as CME and CvME, in addition to poorly

characterized routes such as clathrin‐ and caveolae‐independent
endocytic pathways Figure 3. A previous study reported that SARS‐
CoV‐2 is similar to SARS‐CoV, which can fuse with host cell

membranes and internalize into the host cell. Following endocytosis‐
mediated entry at an acidic pH, viral and endosomal membranes fuse,

and subsequently, the viral genome is released into the cytosol.102

Initially, the viral spike (S) protein binds to the host cell receptor

angiotensin‐converting enzyme 2 (ACE2).19 This binding triggers
endocytic infection similar to the GPCR internalization process.

During the entry process, CCPs are formed by AP2 complexes,2

following which virus‐containing CCVs are released. During recycling,
structural proteins, including the viral protein capsid, are moved to

late endosomes containing lysosomes for degradation; however, viral

nucleic acid RNA initiates the formation of a new virus that egresses

from lysosomes.2

In contrast to CME‐mediated entry, macropinocytosis‐mediated
entry follows a non‐specific internalization pathway that does not
require a receptor.102,103 Although macropinocytosis is not the key

entry pathway of SARS‐CoV‐2,103,104 the virus may activate the
signaling pathways that trigger macropinocytosis and enter the cell

by promoting actin‐mediated membrane formation and lamellipodia
formation at membrane perturbation sites to close them and form

large, irregular vesicles.105,106 Other pathways, such as CIE, could be

used by SARS‐CoV‐2 to infect host cells. This pathway is regarded as
a cholesterol‐sensitive mechanism. CIE is divided into dynamin‐
dependent CvME and dynamin‐dependent or ‐independent non‐
clathrin non‐CvME.105,107,108 Wang et al. clarified that the corona-
virus can infect host cells through various mechanisms, including

TAB L E 3 Summary of natural products with mode of action

No

Endocytosis

inhibitors Mode of action Target of inhibition Summary References

Natural products

1 Phytosterols Interact with lipid raft components of the cell

membrane resulting in lowering of cell

membrane cholesterol or the

destabilization of lipid raft structure.

Caveolae‐mediated
endocytosis/lipid

rafts

The phytosterol‐lipid raft interaction can
affect biochemical signaling taking place

downstream of the lipid rafts.

76,78

2 Flavonoids It can initiate raft‐like domain formation,
called the raft‐making effect, whereas
flavonoids located at the polar interface

of the lipid bilayer tend to fluidize the

membrane, called the raft‐breaking
effect, or initiate the formation of

micellar or interdigitated structures.

Caveolae‐mediated
endocytosis/lipid

rafts

Induce prevention of membrane fusion is one

way in which flavonoids protect an

organism against viral infection.

76,221,222

3 Hydroxytyrosol Phenolic compound with antioxidant

properties found in the leaves and fruits

of the olive (Olea europaea).

Caveolae‐mediated
endocytosis/lipid

rafts

Oleuropein and hydroxytyrosol inhibit the

fusion of viruses with cell membranes.

76,79

4 Ikarugamycin Affects clathrin‐mediated endocytosis. CME Isolated from Streptomyces phaeochromogenes
and has antiprotozoal activity.

80,146

5 Brefeldin A Inhibits the formation of clathrin coats and

ion transport.

CME Inhibitor of vesicle trafficking, on internodal

cells of Chara australis.

82,83

6 TENin1 Inhibits endocytosis, causes endomembrane

protein accumulation at the pre‐vacuolar
compartment, and impairs gravitropic

response in Arabidopsis thaliana.

CME − 223,224

7 Auxin Promotes efflux from cells by a vesicle‐
trafficking‐dependent mechanism.

CME − 81,225
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RME, CIE, caveolae‐independent endocytosis, and lipid raft forma-
tion.19,105 The plasma membrane contains sphingolipids and choles-

terol (lipid rafts), which are domains enriched with signaling and

transport proteins.105 Entry of SARS‐CoV‐2 by endocytic pathways
involving lipid rafts provides new insight into the pathogenesis of

acute respiratory distress syndrome and the elevated levels of

proinflammatory cytokines associated with it.105,106 Wang et al.

demonstrated that coronaviruses, including SARS‐CoV‐2, can infect
host cells deficient in CME.19

On the other hand, Cholesterol‐mediated, dynamin‐dependent,
and receptor‐mediated pathways include CvME. CvME pathway
forms a specific type of flask‐shaped structure called caveola existing
on the cell membrane enriched in cholesterol and sphingolipid as

shown in Figure 3. Bastiani, Parton, Cheng, and Nichols clarified that

caveolae are microdomains of membrane rafts that can bud into cells

as caveosomes, which fuse to form early endosomes for de-

livery.109,110 The caveolar coat consists of an inner layer containing

caveolins and an outer membrane containing cavins, which help to

support the caveolin scaffold, promote membrane curvature, and

caveolae budding.111,112 SARS‐CoV‐2 is internalized via the ACE‐2
receptor into the host cell by CvME, forming caveosomes and un-

dergoing degradation after accumulation of overexpressed Cav1.113

The endocytic vesicles, which are formed in lipid rafts, can be sta-

bilized by flotillin (flotillin‐dependent endocytosis).105 Many studies
do not support viral entry by the flotillin‐dependent endocytic
pathway because the mechanisms remain unclear.114,115 Glebov

showed that SARS‐CoV‐2 can infect host cells via the flotillin‐
dependent endocytic pathway, which should be supported with an

in vivo clinical study.106 Furthermore, viruses such as adenoviruses

can enter via non‐clathrin non‐CvME in lipid rafts. These viruses can

TAB L E 4 Summary of genetic approaches with mode of action

No Endocytosis inhibitors Mode of action Target of inhibition Summary References

Genetic approachs

1 Dynamin mutant, Dyn

K44A

Causes defects in GTP hydrolysis. CME Enhances fluid‐phase uptake. 90,91,226

2 AP180C Causes clathrin sequestration. CME May cause changes in

gene expression.

94,226

3 Eps15 mutant Inhibits clathrin pit assembly. CME − 228–230

4 Clathrin Hub mutant Acts as a dominant‐negative mutant
of clathrin.

CME − 231,232

5 siRNA of clathrin Blocks the formation of clathrin pits. CME − 233,234

6 siRNA of AP2 Blocks formation of AP2‐dependent
clathrin pits.

CME − 232,234

7 Clathrin (CLTC) Clathrin depletion prevents the

formation of clathrin‐coated pits.
CME Changes in gene expression are

observed due to overexpression

and knocking down.

236,237

8 Endophilin A2 (ENDOA2) Endophilin A2 depletion prevents the

reshaping of the membrane before

scission of the vesicle.

(FEME) Changes in gene expression are

observed due to overexpression

and knocking down.

45,95

9 Caveolin‐1 (CAV1) Caveolin‐1 depletion prevents caveola
formation.

CAV Changes in gene expression are

observed due to overexpression

and knocking down.

97,98

10 Caveolae associated

protein 1 (CAVIN1)

Cavin‐1 depletion prevents caveola
formation.

CAV Changes in gene expression are

observed due to overexpression

and knocking down.

238,239

11 IRSp53 IRSp53 depletion interferes with actin

dynamics.

CLIC/GEEC Changes in gene expression are

observed due to overexpression

and knocking down.

240,241

12 PICK1 PICK1 depletion interferes with actin

dynamics, specifically the Arp2/3

complex.

CLIC/GEEC Changes in gene expression are

observed due to overexpression

and knocking down.

242,243

13 CtBP1 (CTBP1) CtBP1 depletion inhibits macropinosome

fission from the cell surface.

Macropinocytosis Changes in gene expression are

observed due to overexpression

and knocking down.

100,244

14 Rabankyrin‐5 (ANKFY1) Depletion of rabankyrin‐5 inhibits the
formation of macropinosomes.

Macropinocytosis Changes in gene expression are

observed due to overexpression

and knocking down.

245,246
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infect host cells through GRAF1‐dependent endocytosis, which is
also named as the CLIC/GEEC pathway.116 The CLIC/GEEC pathway

is sensitive to cholesterol depletion and may decrease viral entry

when it is cholesterol‐dependent but raft‐independent.105,117 Glebov
showed that SARS‐CoV‐2 can infect host cells via the CLIC/GEEC
pathway by forming GEECs, which are free of clathrin, caveolae,

dynamin, and Rac1.106 SARS‐CoV‐2 is internalized with ACE‐2 into
host cells by forming GEECs from the fusion of smaller CLICs.105

CLICs and GEECs are formed after actin polymerization, which is

regulated by Cdc42, Arf1, and GRAF1.

Transcytosis is the transport of macromolecules, supramolecular

complexes, and microorganisms through the cell via membrane‐
bound carriers. It is mediated by two major transportation mecha-

nisms. The first mechanism employs CCVs to internalize transported

molecules, which enter cell compartments and are then released

into the cell via exocytosis. The second mechanism employs cav-

eolae, without their entry into cell compartments.118,119 Notably,

the former mechanism is used in intestinal cells and the latter in

endothelial cells. SARS‐CoV‐2 enters the intestinal epithelial and
M cells by binding to ACE‐2. Thereafter, ACE‐2 is split by cellular
proteases such as TMPRSS2.120 Following entry into the cell with

common recycling endosomes, SARS‐CoV‐2 is translocated into the
multivesicular bodies/late endosomes. In these endosomes, the viral

envelope fuses with endolysosomal membranes, which is trig-

gered by cathepsins, and ultimately releases the genetic material in

the cell.121

5 | ENDOCYTIC PROTEINS AS ANTIVIRAL
TARGETS AGAINST SARS‐CoV‐2 ENTRY

Since the emergence of SARS‐CoV‐2, various efforts have been made
to present new medications for inhibiting its infection with minimal

adverse effects.122,123 To achieve this goal, two strategies were

adopted. The first was to target the biology of the virus, such as

inhibiting its replication in host cells, whereas the second involved

targeting the biology of host cells.106 In both strategies, complete

elimination or minimizing the associated undesirable effects remains

the primary challenge. Although both approaches have some limita-

tions, drugs targeting the host cell might be advantageous owing to

the relative structural and physiological stability of the host cells

compared with drugs targeting the virus, which is constantly

mutating, resulting in new variants and escalating drug resis-

tance.124,125 A study showed that disruption of the Na+/K+‐ATPase
of the host cell's plasma membrane by cationic steroid inhibitors,

including ouabain and bufalin, led to the inhibition of the CME

pathway and inhibited coronavirus entry.126 Similarly, ouabain and

bufalin inhibited SARS‐CoV‐2's entry by the same mechanism.127,128

Other studies targeted endosomes to inhibit coronavirus‐2 infec-
tion.129 It has also been discovered that endosomal acidification

factors, such as bafilomycin A1, inhibit endosomal SARS‐CoV‐2 via
the CLIC/GEEC endocytic pathway, which is pH dependent3 Figure 5.

Additionally, Prabhakara et al. showed that niclosamide is considered

as a probable SARS‐CoV‐2 entry inhibitor.93

F I GUR E 3 Mechanisms of SARS‐CoV‐2 entrance through binding to the surface receptor (1) and enter to the cell by clathrin‐mediated
endocytosis (CME) (2), or caveolae‐mediated endocytosis (3), macropinocytosis (4), and phagocytosis (5) depending on the types of endocytic
proteins forming endosome (6) and then viral uncoating (7) releasing viral RNA and then viral translation (8) and eventually virus assembly (9)

and maturation (10) then viral release (11).
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6 | SARS‐CoV‐2 ENTRY INHIBITION

SARS‐CoV‐2 uses endocytic pathways to deliver its virion compo-
nents into the cytoplasm. The virus infects lung cells through CME in

addition to clathrin‐independent processes.19,104 To achieve this, the
viral spike protein binds to human ACE2 through its receptor‐binding
domain. This binding is activated by human proteases. Previous

studies have shown that other receptors and cellular proteases, such

as CD147, neuropilin‐1, dipeptidyl peptidase 4, alanyl amino pepti-
dase,129 and transferrin receptor,130 also facilitate viral entry and

transmission into host cells. During tRNA‐derived RNA fragment
(tRF)‐mediated infection, the viral membrane fuses with the lumen of
the endosomal membrane, allowing viral RNA to enter the cytosol to

infect the host cell.2,100 The viral components undergo the tRF

recycling pathway, which exposes SARS‐CoV‐2 capsid proteins to
degradation by lysosomes in late endosomes. During this process,

SARS‐CoV‐2 RNA drives the formation of a new virus that egresses
from lysosomes.2 These scenarios predict the direct involvement of

endocytic machinery in SARS‐CoV‐2 infection. Accordingly, because
of their potential as promising broad‐spectrum antiviral targets,

endocytic pathway inhibitors have been proposed as a potential

treatment Figure 4 and 5. Although the endocytic machinery includes

more than 50 proteins and adaptor proteins, some of these proteins

serve as key factors; clathrin, for example, is an integral member of

the CME and other clathrin‐dependent endocytic pathways. This
makes clathrin useful as a primary target. Additionally, clathrin is

involved in cell signaling and other activities that may affect viral

replication before the stage of nucleocapsid assembly. Chlorproma-

zine, 2‐deoxy‐d‐glucose/sodium azide, bolinaquinone, and Pitstop 2
inhibit the scission of CCVs from the plasma membrane and affect

their subsequent functioning21,67,131,132 Figure 5 as well as block

entry of SARS‐CoV‐2 via the CME pathway.133 Unfortunately, clinical
trials have shown that these drugs have harmful adverse effects,

including retinal damage when used in the long term, photosensi-

tivity, liver damage, seizures, headaches, stomach pain, and muscle or

nerve damage.134,135 Inhibitor‐mediated complete inhibition of CME
is not fully effective, where many studies demonstrated a partial

decrease in the number of endosomes Figure 5. Nevertheless, ac-

cording to clinical trials, even partial virus blockade is of significance,

as viral load is related to severity of disease progression.105 This

increases the importance of using multiple endocytic protein in-

hibitors, such as combinations of dynasore and Pitstop 2, which can

result in a substantial reduction in virus titers without affecting early

to late viral gene expression136 Figure 5.

Membrane rafts, which are enriched with cholesterol and

sphingolipids, are considered portals for viral entry.104 Cholesterol

chelating agents, including methyl‐β‐cyclodextrin, phytosterols, and
flavonoids, can block the entry of SARS‐CoV‐2 through CvME/lipid
rafts.63,74 They reduce the cholesterol content of the host cell

membrane and destabilize the lipid raft structure by interacting with

lipid raft components. Additionally, many agents, such as dynasore,

Dynoles, and dyngoes, can inhibit the CME pathway and CvME/lipid

rafts by inhibiting dynamin GTPase activity.137 Furthermore, there

are two types of macropinocytosis inhibitors. The first type, which

includes flubendazole, terfenadine, itraconazole, vinblastine, and

imipraminecan, inhibits plasma membrane ruffle formation, a crucial

early step in macropinocytosis, thereby inhibiting viral entry into host

cells.65 The other type, which includes amiloride and its derivatives

(EIPA and HOE‐694), inhibits Na+/H+ exchange, thus affecting mac-

ropinocytotic pathways.65 SARS‐CoV‐2 can use FEME for entry and
infection.138 ENDOA2 has been identified as a FEME inhibitor whose

depletion prevents the remodeling and reshaping of the plasma

membrane before vesicle scission, thereby preventing viral entry.138

Furthermore, viral entry can occur via the CLIC/GEEC pathway,

which can be inhibited by LG186 and 7‐keto‐cholesterol, thereby
preventing the close packing of acyl chains and affecting the struc-

ture of the cell membrane.139,140 Some pharmacological inhibitors

including chlorpromazine, nystatin, amiloride, methyl‐β‐cyclodextrin,
vinblastine, and itraconazole approved by FDA for human use,

although others are still being evaluated.105 In addition to improving

the efficacy of endosomal inhibitors, scientists are investigating

natural products for use as potential endosomal inhibitors in an effort

to reduce the adverse effects caused by chemical and pharmaceutical

endosomal inhibitors.

7 | COMPUTATIONAL AND PRECLINICAL
STUDIES OF ENDOCYTIC INHIBITORS

We conducted a molecular docking analysis of some of the endocytic

protein inhibitors discussed in this review to provide more insight

into their potential inhibitory effect against SARS‐CoV‐2. These
computational analysis‐based investigations were performed to

F I GUR E 4 Classification of endocytic pathways according to
dynamin and clathrin involvement
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F I GUR E 5 Inhibition of SARS‐CoV‐2 entrance by the large scale of endocytic proteins inhibitors including Remdesivir, Bis‐T inhibits
clathrin‐mediated endocytosis (CME), β‐methyl cyclodextrin inhibits caveolae‐mediated endocytosis, CME, and macropinocytosis. Rottlerin
and Amilorides inhibit the macropinocytosis pathway. LY294002 inhibits the phagocytosis process, and dynasore inhibits oligomerized

dynamin2. And chloroquine inhibits the entrance of viral endosomes.

F I GUR E 6 2D diagram (Distances in Å) of remdesivir (Group 1 inhibitor) showing its interaction with the Clathrin domain active site
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compare the inhibitory activity of the tested substances to that of the

standard drug chloroquine by determining the plausible modes of

binding between these substances and their target binding sites. The

interactions of the substances with the protein hot spots (key amino

acids) were also recorded. Docking studies were performed using the

Molecular Operating Environment (MOE 2010) software141 accord-

ing to a previously reported procedure142 and are described in the

Supporting Information. X‐ray crystallographic structures of target
proteins were obtained from the Protein Data Bank (PDB).143

For clathrin inhibitors (Group 1), the clathrin terminal domain co‐
crystallized with Pitstop 1 (IC50 = 1.80 � 104 nM)145 as an inhibitor
(PDB ID: 2XZG)146 was used for the docking studies. Remdesivir

(docking score; S = −14.46 kcal/mol) was found to have the highest
inhibitory activity within the group (Figure 6, Supporting Information

Figure S1, and Table 5), which was also higher than those of the co‐
crystalized ligand Pitstop 1 (S = −11.23 kcal/mol) and the reference
drug chloroquine (S = −11.09 kcal/mol). Remdesivir interacted with
the clathrin domain active site via three hydrogen bonding in-

teractions: two with the key amino acid Arg64 backbone using its

phosphoryl group's oxygen atom and one with the key amino acid

Ile93 through its amino group. It also formed three arene–H bonds

with these two key amino acids. Remdesivir interacted with the

active site through hydrophobic interactions with the hydrophobic

side chains of Arg64, Phe91, and Ile66.

For 3‐hydroxy‐3‐methylglutaryl CoA inhibitors (Group 2), the
catalytic portion of human HMG‐CoA reductase co‐crystallized with
simvastatin (IC50 = 4.3 nM)147 as an inhibitor (PDB ID: 1HW9)148 was
used for the docking studies. The results (Figure 7, Supporting Infor-

mation Figure S2, and Table 6) revealed that methyl‐β‐cyclodextrin

(S = −13.07 kcal/mol) had the highest inhibitory activity within the
group, which was also higher than those of simvastatin (S =
−10.55 kcal/mol) and chloroquine (S = −8.38 kcal/mol). Methyl‐β‐
cyclodextrin interacted with the catalytic portion of the human HMG‐
CoA reductase active site via two hydrogen bonding interactions with

the key amino acidGlu559 backbone using twohydroxyl groups. It also

interacted with the active site through hydrophobic interactions with

the hydrophobic side chains of Gly860, Ala856, Leu857, and Leu853.

For actin protein inhibitors (Group 3), a monomer of actin

cytoskeleton from the dimer complexed with swinholide A (IC50 =
0.04 μg/ml)149 (PDB ID: 1YXQ chain A)150 was used for the docking
studies. The results (Figure 8, Supporting Information Figure S3, and

Table 7) revealed that rottlerin (S = −13.89 kcal/mol) was the most
potent inhibitor within the group and had a higher inhibitory activity

than those of swinholide A (S = −12.35 kcal/mol) and chloroquine
(S = −10.79 kcal/mol). Rottlerin interacted with the actin cytoskel-
eton active site via one arene–H bond with the key amino acid

Tyr133 backbone using the phenyl ring. It also interacted with the

active site through hydrophobic interactions with the hydrophobic

side chains of Met355, Thr148, Tyr169, and Tyr143.

For dynamin I GTPase inhibitors (Group 4), molecular docking was

performed using the crystal structure of dynamin I GTPase domain

complexed with phosphomethylphosphonic acid guanylate ester

(GMPPCP) ligand (PDB ID: 3ZYC).151 The results (Figure 9, Supporting

Information Figure S4, and Table 8) showed that Bis‐T (S =
−25.73 kcal/mol) had the highest inhibitory activity within the group,
which was also higher than those of GMPPCP (S = −23.73 kcal/mol)
and chloroquine (S = −14.12 kcal/mol). Bis‐T interacted with the
dynamin I GTPase active site through hydrogen bonding with Asp208,

TAB L E 5 Docking energy scores and
amino acids involved in binding for
pitstop 1, chloroquine, and Group 1

inhibitors docked with clathrin terminal
domain

Compound Docking score (kcal/mol) Amino acids involved in binding

Pitstop 1 −11.23 Phe91, Arg64, Gln89, and Lys96

Chloroquine −11.09 Phe91

Sucrose −11.75 Phe91, Arg64, and Ile93

Chlorpromazine −10.73 Arg64 and Ile93

Lopinavir −14.42 Arg64 and Lys96

Remdesivir −14.46 Arg64 and Ile93

Monodansylcadaverine −12.11 Arg64, Ile93, and Lys96

Phenylarsine oxide −6.45 Phe91

Bolinaquinone −11.61 Phe91 and Arg64

ES9‐17 −9.47 Phe91, Arg64, Ile93, and Ile62

Pitstop 2 −12.48 Phe91, Ile93, and Ile62

Ikarugamycin −11.29 Lys98

Brefeldin A −9.62 Ile93 and Lys96

TENin1 −11.17 Arg64 and Ile93

Clathrin A −11.03 Ser67

Clathrin B −10.42 Ser67

Clathrin C −10.06 Phe91
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Ser46, Arg59, Leu137, and Gly62 amino acids in addition to that with

the Mg2+ ion. It also formed hydrophobic interactions with the allo-

steric hydrophobic back pocket of the hydrophobic side chains of

Gln239, Ser41, Lys206, Leu209, Ser238, and Asn236, thereby maxi-

mizing the binding interaction with the active site.

Overall, it was concluded from the docking simulations that

remdesivir, methyl‐β‐cyclodextrin, rottlerin, and Bis‐T can effectively
inhibit clathrin, HMG‐CoA reductase, actin, and dynamin I GTPase,
respectively, and therefore, considered potent inhibitors of SARS‐
CoV‐2.

8 | CYTOTOXIC EFFECT OF ENDOCYTIC
PROTEINS INHIBITORS

Not all drugs have been proven to have an antiviral effect against

SARS‐CoV‐2, but some can block various endocytic pathways in cell
culture and potentially inhibit SARS‐CoV‐2 endocytosis.151 However,

F I GUR E 7 2D diagram (Distances in Å) of methyl‐β‐cyclodextrin (Group 2 inhibitor) showing its interaction with the catalytic portion of
the human HMG‐CoA reductase active site

TAB L E 6 Docking energy scores and amino acids involved in

binding for simvastatin, chloroquine, and Group 2 inhibitors
docked with the catalytic portion of human HMG‐CoA reductase

Compound

Docking score

(kcal/mol)

Amino acids

involved in binding

Simvastatin −10.55 Glu559, Lys735,

and Asn755

Chloroquine −8.38 Cys561

Methyl‐β‐cyclodextrin −13.07 Glu559

Filipin −11.23 Glu559 and Asn755

Nystatin −12.72 Glu559

2‐Deoxy‐d‐glucose −7.91 Glu559 and Ser565

Chlorpromazine −7.40 His752

Betulinic acid −7.63 Lys735, Asn750, and Asn755

Kaempferol −9.42 Cys561

Hydroxytyrosol −7.90 Gly560
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there are many issues associated with the use of these drugs/in-

hibitors, such as non‐specificity, affecting normal cellular processes,
and cytotoxicity.152 Although various FDA‐approved drugs, such as
chlorpromazine, amiloride, nystatin vinblastine, and itraconazole, are

currently available, there use is restricted. Chlorpromazine may have

adverse effects in patients, such as allergic reactions, agranulocytosis,

severe hypotension, and blockade action of the receptor of chlor-

promazine (D2 receptor), which may reduce the efficacy of other

medications such as levodopa or cabergoline. Patients with cerebro-

vascular and cardiovascular diseases should take chlorpromazine with

caution.153 Nystatin also has adverse effects, such as those affecting

the gastrointestinal tract including nausea, vomiting, diarrhea, stom-

ach upset and stomach pain, as well as rare adverse effects such as

mouth irritation, skin redness, and breathing difficulties. Amiloride has

adverse effects such as nausea, vomiting, diarrhea, headache,

increased reabsorption of uric acid in the proximal tubule, and po-

tassium retention, which can be critical in patients with compromised

renal function. Moreover, amiloride affects the central nervous

system, gastrointestinal tract, endocrine system, musculoskeletal

system, dermatological system, and hematological systems.154‐156

Vinblastine, a chemotherapeutic agent, can cause hematological

adverse effects, such as leukopenia, anemia, and thrombocytopenia,

which can lead to intestinal bleeding; gastrointestinal symptoms, such

as nausea, vomiting, and abdominal pain; and neurological adverse

effects, such as peripheral neuritis, mental depression, headache, and

convulsions. Itraconazole is used to treat dermatomycosis and ony-

chomycosis using continuous therapy and may have serious adverse

effects, including hepatotoxicity, liver failure and death, gran-

ulocytopenia, leukopenia, cardiac failure, congestive heart failure,

neutropenia, thrombocytopenia, and immune system disorders.157

Itraconazole may also cause vertigo, gastrointestinal symptoms,

vomiting, pyrosis, constipation, fatigue, fever, allergic reaction, and

skin rash.

Vercauteren et al. found that chlorpromazine and methyl‐β‐
cyclodextrin, which are supposed to be SARS‐CoV‐2 endocytic in-
hibitors, exhibited cytotoxic effects on different cell types.64

F I GUR E 8 2D diagram of rottlerin (Group 3 inhibitor) showing its interaction with the actin cytoskeleton active site
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TAB L E 7 Docking energy scores and
amino acids involved in binding for
swinholide A, chloroquine, and Group 3

inhibitors docked with actin
cytoskeleton

Compound Docking score (kcal/mol) Amino acids involved in binding

Swinholide A −12.35 Ser145, Arg147, and Ala331

Chloroquine −10.79 Tyr133

2‐Deoxy‐d‐glucose −9.76 Tyr133, Ile136, and Gly168

Cytochalasin D −12.38 Gly168

Latrunculin A −9.83 Met355

Latrunculin B −12.14 Tyr169

Flubendazole −10.00 Ile136

Terfenadine −11.13 Met355 and Ile136

Itraconazole −12.25 Ile136

Vinblastine −8.73 Met355

Wortmannin −10.31 Thr351

LY294002 −10.59 Tyr133 and Tyr143

Rottlerin −13.89 Tyr133

Imipramine −9.81 Tyr133

F I GUR E 9 2D diagram (Distances in Å) of Bis‐T (Group 4 inhibitor) showing its interaction with the dynI GTPase domain active site
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Therefore, continuous efforts are being made to develop endocytic

protein inhibitors with less cytotoxicity that are safer for human use.

FDA approved chlorpromazine, nystatin, amiloride, vinblastine, and

itraconazole as safe drugs for human use worldwide, whereas others

are under evaluation.106 Table 1 summarizes different types of in-

hibitors and their cellular targets, with the underlying mechanisms.

Understanding the membrane‐trafficking mechanisms of the cell can
aid in the development of new promising drugs against SARS‐CoV‐2
and other viruses.159

9 | SUMMARY AND FUTURE PERSPECTIVES

The coronavirus disease 2019 pandemic is still a global health

threat. Despite the rapid spread of the virus and the viral‐related
morbidity decreased, research community still struggling in the

detection and treatment of SARS‐CoVs variants. The endocytic
pathways are possible mechanisms involved in the entry of many

viruses like SARS‐CoVs, MERS‐CoVs, and possibly SARS‐CoV‐2 into
the host cell. In this review, we summarized the efficacy of different

endocytic inhibitors, such as Dyngo 4a, Dyngo 6a, dynasore, Imi-

nodyn 21, Iminodyn 22, Rhodadyn D10, remdesivir, and rottlerin, in

combating SARS‐CoV‐2 by inhibiting the CME pathway and CME/
lipid rafts. This could be achieved by inhibiting the GTPase activity

of dynamin such as dynasore, dynoles, and dyngoes. The virus can

also invade the cells via the CLIC/GEEC pathway, which can be

blocked by LG186 and 7‐keto‐cholesterol that prevent the close
packing of acyl chains and affect the structure of the cell mem-

brane. The molecular docking simulations we carried out, revealed

that remdesivir (S = −14.46 kcal/mol), methyl‐β‐cyclodextrin
(S = −13.07 kcal/mol), rottlerin (S = −13.89 kcal/mol), and Bis‐T
(S = −25.73 kcal/mol) are more potent inhibitors of SARS‐CoV‐2
than chloroquine and act by inhibiting clathrin, HMG‐CoA reduc-
tase, actin, and dynamin I GTPase, respectively. Although endocytic

inhibitors can potentially inhibit endocytosis‐mediated viral entry,
they still have some limitations, such as the lack of information

about their specificity and cytotoxicity on the non‐endocytic targets
in host cells. Therefore, additional computational analyses along

with basic and clinical studies are required to achieve maximum

drug‐based variant independent antiviral effects associated with
less side complications. Finally, there are a huge number of in-

vestigations are still running to investigate the potential antiviral

activity of small molecules including endocytic inhibitors against

COVID‐19.
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TAB L E 8 Docking energy scores and amino acids involved in

binding for GMPPCP, chloroquine, and Group 4 inhibitors docked
with dynI GTPase domain

Compound

Docking score

(kcal/mol)

Amino acids involved

in binding

GMPPCP −23.73 Gly60, Ser41, Arg237,

Lys206, Asn236,

and Asp208

Chloroquine −14.12 Lys206

Dynole 25 −14.67 Lys206

Dyngo 4a −18.16 Gln239

Dyngo 6a −18.70 Gly60, Ser46, Lys206,

and Lys44

Dynasore −18.52 Gly60

Iminodyn 21 −22.23 Lys206 and Asp208

Iminodyn 22 −24.16 Gly60, Arg237, Lys206,

Leu137, Asn236,

and Asp208

Iminodyn 23 −21.93 Thr65, Gly139, Asn236,

and Lys206

Rhodadyn D10 −17.42 Gly139, Asn236,

and Lys206

Bis‐T −25.73 Gly62, Leu137, Arg59,

Gln239, Ser46,

and Asp208

Pyrimidyn 6 −16.88 Gly60, Gly139, and Thr65

Pyrimidyn 7 −14.18 Ser41, Val64, and Thr65

Chlorpromazine −12.3 Ser46 and Lys206

Genistein −16.95 Gly60 and Lys206

7‐Keto‐cholesterol −17.2 Ser45 and Ser46

LG186 −18.68 Gly60, Gln239, and Lys206
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