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Replication-incompetent adenovirus (Ad) vector and mRNA-lipid nanoparticle (LNP) con-
structs represent two modular vaccine platforms that have attracted substantial interest
over the past two decades. Due to the COVID-19 pandemic and the rapid development of
multiple successful vaccines based on these technologies, there is now clear real-world
evidence of the utility and efficacy of these platforms. Considerable optimization and
refinement efforts underpin the successful application of these technologies. Despite this,
our understanding of the specific pathways and processes engaged by these vaccines to
stimulate the immune response remains incomplete. This review will synthesize our cur-
rent knowledge of the specific mechanisms by which CD8+ T cell and antibody responses
are induced by each of these vaccine platforms, and how this can be impacted by specific
vaccine construction techniques. Key gaps in our knowledge are also highlighted, which
can hopefully focus future studies.
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Introduction

The COVID-19 pandemic has seen the first widespread usage
of two new vaccine technologies: replication-incompetent ade-
novirus (Ad) vectors and mRNA vaccines. This pandemic has
brought to market, in record time, four separate Ad vector-based
vaccines (Janssen’s Ad26.COV2.S, Oxford-AstraZeneca’s ChA-
dOx1 nCoV-19, CanSino’s Ad5-nCOV, and The Gamaleya Research
Institute’s Gam-COVID-Vac) and two mRNA vaccines (Moderna’s
mRNA-1273 and Pfizer-BioNTech’s BNT162b2) [1]. An addi-
tional Ad vector-based vaccine against Ebola virus (Janssen’s
Ad26.ZEBOV) was licensed in 2020 [2], but has not needed
widespread use. While these two technologies have only recently
emerged as clinical products, they have been under develop-
ment for some time. The first animal testing of a replication-
incompetent Ad vector as a vaccine platform was reported in
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1996 [3] and the first mRNA vaccine in 1993 [4]. Considerable
effort has gone into the development and refinement of these vac-
cine platforms. However, despite these efforts, and their recently
proven clinical utility, there remains a major gap in our under-
standing how these vaccines interact with the immune system
to induce robust cellular and humoral immune responses. This
review will discuss our current understanding of the fundamen-
tal immunology of these technologies and highlight gaps in our
knowledge.

Substantial heterogeneity in vaccine construction
technique complicates generalizability of findings

As Ad vectors and mRNA vaccines have been under development
for several decades, this has led to considerable diversity in the
specific construction techniques of these vaccines.

Although there is some variation in construction technique,
the standard approach to convert adenovirus into replication-
incompetent vector involves the deletion of the E1 and E3
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genes [5]. These deletions render the vector replication-
incompetent (E1 deletion) and removes the E3 genes, which have
immunomodulatory capacity [6–8]. These deletions also provide
spare coding capacity within the viral genome for insertion of
the transgene product of interest. Human adenovirus serotype 5
(Ad5) was the most widely used Ad vector for many early studies
including human gene therapy trials and phase II HIV vaccine tri-
als [9–11]. However, concerns about the safety profile of Ad5 vec-
tors in populations with high HIV seroprevalence have dampened
enthusiasm in some circles for vaccines based on this specific viral
backbone [12]. This, combined with high seroprevalence of Ad5,
led to the development of a number of alternative vaccine vec-
tors based on either low seroprevalence human adenoviruses (e.g.
adenovirus serotype 26) or non-human primate-derived viruses
(e.g. ChAdOx1) [13–15]. Given this history, most studies have
used Ad5 for investigating the fundamental immunology of Ad
vectors. However, emerging data suggest that distinct serotypes
of Ad vectors have very different biology (reviewed in [16]). We
will highlight areas where differences in the immunology of the
distinct vector serotypes is known.

mRNA vaccines display an even wider variation in construc-
tion techniques, as both the nature of the RNA molecule itself and
the encapsulating lipid can be specifically engineered (reviewed
in [17]). While both currently licensed mRNA vaccines are in the
class of nucleoside-modified mRNA vaccines, they have consider-
able differences in the nature of their encapsulating lipid nano-
particles (LNPs) [18]. Self-amplifying RNA (saRNA) and unmod-
ified mRNA vaccines have also progressed to human testing [19,
20], and have long development histories. Given this diversity, it
is even more difficult with mRNA vaccines to determine how the
immunology of one construct might inform the biology of another.
Platform-specific findings will be discussed.

Adenovirus Vectors

Regulation of adenovirus vector-induced CD8+ T cell
responses

Antigen localization and CD8+ T cell responses

The first step in priming of a T cell response is processing and
presentation of an antigen by professional antigen-presenting
cells (APCs) within the draining lymph node (LN). As would
be expected, CD11c+ dendritic cells (DCs) are the primary APC
following Ad vector immunization [21]. However, several studies
have shown that following intramuscular immunization, most
antigen is present in the muscle and that the amount of antigen
directly detectable in the draining LN is markedly lower (Fig. 1)
[22–24]. This is especially true for studies examining vectors
other than Ad5, where trafficking to the LN appears particularly
inefficient [22, 25]. Reconciling these points, it appears that CD8+

DCs are the critical APC population for the priming of CD8+ T cell
responses to all serotypes of Ad vectors tested (Fig. 1) [25–27].

This DC subset has the unique capacity to endocytose exogenous
material and through a retrograde transport process load this
material into the MHC class I antigen presentation pathway, in
a process termed “cross presentation” [28]. Cross presentation
allows for the priming of naïve CD8+ T cells even if DCs are not
directly infected by a pathogen. Development of this population
is dependent on the transcription factor Batf3 [29], so Batf3−/−

mice, as used in the mentioned studies, lack the capacity for cross
presentation.

Provision of Signal 2 from DCs to naïve T cells during priming
is the second critical step [30], which usually takes the form of
DC-expressed CD80 and CD86 interacting with CD28 on T cells.
Consistent with this, Cd80−/−Cd86−/− mice have impaired CD8+

T cell responses after Ad5 immunization, but for reasons that
remain to be elucidated Cd28−/− mice have a different phenotype:
delayed but not fully impaired CD8+ T cell responses (Fig. 1) [27,
31]. TNF receptor super-family (TNFRSF) members have a broad
role in regulating the functionality of CD8+ T cells [32]. Two
TNFRSF genes, OX-40 and 4-1BB, have opposite roles in modulat-
ing the primary CD8+ T cell responses to Ad5 [33]. The absence
of OX-40 impaired the expansion and effector functionality of the
CD8+ T cell response, and this corresponded with an increased
expression of memory-associated markers (CD27 and CD62L). By
contrast, absence of 4-1BB resulted in a hyper effector response
of greater magnitude and functionality.

Persistent antigen and memory inflation

The typical kinetics of a T cell response can be divided into three
phases: (1) the rapid expansion of the primary effector response,
(2) followed by contraction of the responding population upon
resolution of infection, and (3) ultimately stable maintenance
of a long-lived memory population [34]. By contrast, “memory
inflation” is a phenomenon where the T cell response does not
contract after the initial acute effector response and instead an
expanded T cell population is maintained long-term (recently
reviewed in [35]). While many of the details of the molecular
processes driving memory inflation are outside the scope of this
review, the key prerequisite for memory inflation is low-level
persistence of antigen [35], as first described in the context of
T cell responses to herpes viruses [36]. While direct transduc-
tion of the draining LN appears inefficient following Ad vector
immunization, antigen production has been reported for weeks
following intramuscular and intravenous immunization with Ad5,
Ad26, and ChAdOx1 vectors (Fig. 1) [22, 23, 37–39]. An elegant
study using an Ad5 vector where transgene expression could
be silenced by administration of doxycycline [40] found that
persistent antigen expression was required for the maintenance of
OVA-specific CD8+ T cells at a high frequency. Intravenous admin-
istration of an Ad5 vector expressing a β-galactosidase transgene
is now well-established as a model of memory inflation [38].

It is unclear to what extent the memory inflation effector pro-
gram reflects the standard phenotype and function of T cells
induced by Ad vector immunization, as the phenomenon has not
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Figure 1. Pathways known to promote or inhibit the induction of cellular and humoral immune responses following adenovirus vector immuniza-
tion. Key pathways and immune processes identified by mouse studies are shown in solid lines. Black arrows denote processes shown to promote
immune responses, while red lines denote inhibition. Dashed lines indicate where correlative data in humans or non-human primates suggests
an interaction between cell types. Where cells have been shown to interact, but molecular mechanisms have not been determined, this is noted.
Not all pathways have been examined for all different major serotypes of Ad vectors, so the presented model is a synthesis of studies using the
different vectors. Known cases of vector-specific differences are noted in the model. See text for references for indicated pathways.

been systematically studied outside of Ad5-derived constructs.
However, comparison of Ad5-induced responses in mice and Ad6-
induced (another species C vector) responses in humans found
notable similarities in the profiles of the induced CD8+ T cell
responses [41]. Furthermore, several studies examining the kinet-
ics of Ad5-induced CD8+ T cell responses against a variety of
model antigens observed responses that remained stable over the
study period [40, 42–44], suggesting that induction of ‘inflating’
responses may be a default trait of Ad5-derived vectors. Using
bone marrow chimeras, non-hematopoietic cells were shown to
have a role in Ad5-induced CD8+ T cell responses [45]. A recent
study has mechanistically explained this observation, as Cupovic
et al. identified CCL19-expressing fibroblasts as necessary for Ad5-
induced memory inflation in a process dependent on the produc-
tion of IL-33 (Fig. 1) [26]. In this study, a ChAdOx1 vector was
shown to be as efficient as an Ad5 vector at transducing fibrob-
lasts opening the possibility that other vectors are equally capable

of inducing memory inflation, although examination of ChAdOx1-
induced T cell responses was not performed.

In addition to maintenance of antigen-specific CD8+ T cells at
high frequencies, another defining trait of inflationary responses
is the long-term persistence of “effector-like” phenotype and func-
tionality. Following acutely resolved viral infection, such as the
prototypic LCMV Armstrong, quiescent memory CD8+ T cells
rapidly upregulate CD127 and CD62L and acquire expression of
IL-2 [46, 47]. In contrast, Ad5-induced CD8+ T cell responses
are characterized by the slow acquisition of markers of memory
CD8+ T cells such as CD127 and CD62L and IL-2 expression, as
well as persistent expression of KLRG1 [23, 38, 42, 43, 48–50].
This phenotype is partially dependent on persistent antigen, as
evidenced using the doxycycline-sensitive vector [40], and con-
sistent with the inflationary nature of the response. However, it
may be restricted to specific epitopes – dependent at least in part
on inter-epitope competition [51].
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In contrast to Ad5, CD8+ T cell responses induced by Ad26,
Ad35, and Ad48 vectors have accelerated conversion to a mem-
ory phenotype [42, 43, 49]. One study found that antigen levels
and persistence were lower following intramuscular ChAdOx1
immunization as compared to Ad5 [22], but another study using
Ad26 found this vector persisted at higher levels than Ad5 [37].
A recent study found that following intramuscular immunization
of mice with the ChAdOx1 nCoV-19 vaccine, soluble S1 spike
was strongly detectable in the serum after 72 hours, but nearly
undetectable by seven days [52], suggesting only transient sys-
temic antigen availability. However, another biodistribution study
of the same vaccine found detectable vector DNA at the injection
site and draining LNs for four weeks following immunization
[53], suggesting the possibility of persistent low levels of local
antigen. Persistent viral DNA exists in an extrachromosomal form
as adenoviruses have no encoded capacity for integration and
experimental estimates of integration rates of Ad5 put it at a
median frequency of ∼0.01% per transduced cell [54, 55]. None
of these studies directly tested the impact of antigen persistence
on the T cell responses induced by ChAdOx1 or Ad26. As dis-
cussed in later sections, it appears that differences in transgene
persistence may be only one reason for the different phenotype
and kinetics of the response induced by Ad5 versus alternative
vectors. Clearly, further investigation is required to determine if
memory inflation is a standard phenotype induced by Ad vector
vaccination, or a specific phenomenon induced by Ad5 in the
context of certain CD8+ T cell epitopes.

Regulation of CD8+ T cell responses by innate cytokines

After recognizing cognate antigen via the TCR (signal 1) and
receiving co-stimulatory signals via CD28 (signal 2), the third sig-
nal required for T cell priming is provided by cytokines [56]. The
two prototypic “signal 3” cytokines are IL-12 and type I interferon.
Somewhat surprisingly, the role of IL-12 in Ad vector-induced
immune responses has only been analyzed in a limited way. One
study found IV delivery of Ad5 induced IL-12 production which
activated NK cells and thereby drove CD8+ T cell expansion [57].
Interestingly, this response was much stronger in BALB/c mice as
compared to C57Bl/6. Consistent with a possible lesser role in
C57Bl/6 mice, another study specifically examining CD4+ T cell
responses in C57Bl/6 mice, found no impact of IL-12 deficiency
on this population following Ad5 immunization [37].

The role of type I interferon has been more extensively exam-
ined, and appears to have a vector strain-specific effect (Fig. 1).
Several studies have reported unaltered CD8+ T cell responses in
either Ifnar1−/− mice or mice receiving anti-IFNɑR1 antibodies
and immunized with Ad5 vectors [25, 49, 58]. Minimal induc-
tion of type I interferons in vitro and in vivo by Ad5, especially
compared to vectors derived from alternate serotypes, has been
reported [49, 59–62], which likely explains this observation. At
least in vitro, poor induction of type I interferon by Ad5 is mecha-
nistically linked with inefficient transduction of plasmacytoid den-
dritic cells [59, 62, 63]. Another study suggests that direct bind-

ing of Ad5 fiber to the cellular protein Gas6 also contributes to
dampened IFN signals [64].

By contrast, alternate serotype vectors (i.e. not Ad5; derived
from clades B, D, and E) efficiently transduce pDCs, strongly
induce type I interferon production, and this can impair
transgene-specific CD8+ T cell response depending on the
exact vector and dose [25, 49, 59]. Mechanistically the sensors
responsible for detection of non-Ad5 vectors remain unclear. In
vitro, absence of TLR9 signaling inhibits type I interferon produc-
tion [63, 65]. Multiple studies report that while Myd88−/− mice
(the signaling adaptor for TLR9) have impaired vaccine-induced
CD8+ T cell responses [21, 66]; this same defect is not seen in
Tlr9−/− mice [21, 65, 66]. Instead, Sting−/− mice had enhanced
CD8+ T cell responses, phenocopying the Ifnar1−/− mice [25].
Thus, further work is required to fully determine in vivo the
which aspects of each viral vector’s biology are driving type I
interferon production.

The other main family of cytokines that has been investi-
gated for a role in priming of CD8+ T cell responses are the
inflammasome-derived cytokines IL-1 and IL-18. One of the early
seminal studies describing how the NLRP3 inflammasome func-
tions identified Ad5 as a potent stimulator in vitro [67]. Encapsu-
lation of viral DNA was necessary to induce maturation and secre-
tion of IL-1β, as neither empty capsids nor helper-dependent vec-
tors (which do not incorporate viral DNA [68]) were stimulatory.
Subsequent studies refined our mechanistic understanding of the
process by demonstrating that endosomal escape of the virion via
rupture of the endolysosome was necessary to induce IL-1β matu-
ration as a temperature-sensitive mutant that failed to escape the
endosome also failed to trigger IL-1β maturation [69–71]. Rup-
ture of the endosome releases Cathepsin B into the cytoplasm,
which is a potent inflammasome trigger [72]. A caveat of these
early in vitro studies is that they were performed at very high
multiplicities of infection (MOI) ranging from 104 to 5×105 viral
particles (vp) per cell.

Alternate serotype vectors appear more efficient than Ad5 at
triggering maturation of IL-1β and IL-18, especially at lower MOIs
[59, 61]. Mechanistically, the process appears the same as seen
with the higher doses of Ad5: Cathepsin B-mediated activation of
the NLRP3 inflammasome, as inhibitors of this pathway efficiently
block this process [59, 60]. The increased stimulatory nature of
Ad26 and Ad35 was linked with preferentially trafficking of these
vectors to the late endosome, which is enriched for Cathepsin
B [73], while Ad5 escaped from the endolysosomal pathway at
an earlier stage of trafficking [60]. Thus, the lysis of late endo-
somes, enriched for Cathepsin B, would provide a stronger trigger
of inflammasome activation.

The relative difference in efficiency of Ad5 versus other Ad
vectors for triggering inflammasome activation and thus IL-1β and
IL-18 release may explain why no major role for these proteins has
been described in vivo. One study found no alteration in the fre-
quency or functionality of antigen-specific CD8+ or CD4+ T cells
following Ad5 immunization of Nlrp3−/− or Asc−/− mice (lacking
the inflammasome signaling adaptor) [21]. A second study found
similar results following Ad5, Ad26, or Ad35 immunization of
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Il1r1−/− mice, but the kinetics of the response appeared delayed
following Ad26 or Ad35 immunization of Il18ra−/− mice [66].
However, there are limits to interpretation of these studies given
the group sizes are small and the responses have not been studied
in much detail. Thus, a more systematic investigation of the role
of IL-1β and IL-18 in the regulation of Ad vector-induced (both
Ad5 and otherwise) CD8+ T cell responses is required to fully
determine the importance of these cytokines, although these
early data would suggest the individual impact is minor.

Regulation of CD8+ T cell responses by CD4+ T cells

The role of several different lymphocyte populations in promoting
Ad vector-induced immunity has been analyzed (Fig. 1). CD4+ T
cells are commonly termed “T helper cells” due to their ability
to enhance (“help”) CD8+ T cell and antibody responses. With
regards to CD8+ T cell responses, CD4+ T cell help can be pro-
vided at multiple stages of the immune response. CD4+ T cell
help to CD8+ T cells was first described as the process of impart-
ing CD8+ T cell responses with enhanced anamnestic potential
[74–76]. This process involves DCs acting as a bridge between
CD4+ T cells and CD8+ T cells, and signaling via CD40 is criti-
cal for transmission of this help signal. Absence of CD40 signaling
impairs the anamnestic potential of Ad vector-induced CD8+ T
cell responses (Fig. 1) [77]. Subsequent work has also demon-
strated a role for CD4+ T cells in maintaining memory CD8+ T
cell populations [78–81], and also in promoting expansion of pri-
mary CD8+ T cell responses [82–85]. Although the role for CD4+

T cell help is dependent on the specific pathogen/vaccine under
investigation, as in some of these experimental systems the pri-
mary CD8+ T cell responses are unimpaired [81, 86].

In the context of Ad vector vaccination, CD4+ T cell help
appears to be critical in all three of these settings. The absence
of CD4+ T cells dramatically impaired the expansion of a pri-
mary CD8+ T cell response and accelerated its contraction fol-
lowing Ad5 and Ad26 immunization [38, 77, 87, 88]. CD4+ T
cell help is also required for proper acquisition of effector func-
tions and differentiation of responding CD8+ T cells [44]. These
responses primed in the absence of CD4+ T cells had reduced
cytokine production and cytotoxic functionality, increased expres-
sion of inhibitory receptors, and a transcriptional program sim-
ilar to T cell exhaustion. One study found provision of exoge-
nous IL-2 could partially reverse these defects in unhelped CD8+

T cells, but it was not formally proven that a lack of CD4+ T
cell-derived IL-2 explained the impaired responses (Fig. 1) [44].
This phenotype has also been described in the context of cancer
[89], suggesting this phenotype may be a general characteristic
of “unhelped” CD8+ T cells, as opposed to a unique property of
Ad vector-induced responses. CD4+ T cells are producers of IL-21,
and absence of IL-21 impairs the primary Ad vector-induced CD8+

T cell response [90, 91], suggesting another possible mechanism
of CD4+ T cell help (Fig. 1).

While CD4+ T cells have a clear role in promoting Ad vector-
induced CD8+ T cell responses, the signals they generate do not

always enhance responses. Ad5 vectors are particularly immuno-
genic in mice with T cell responses plateauing or declining at high
doses [37, 48, 92–95]. IL-27-induced production of IL-10 by CD4+

T cells is a major driver of these impaired CD8+ T cell responses
following immunization with high doses of Ad5 (Fig. 1) [37]. That
this phenotype is not observed in mice at equivalent doses of Ad26
vector likely contributes to the differences in phenotype between
Ad5- and Ad26-induced responses. Thus, CD4+ T cells critically
positively and negatively regulate Ad vector-induced CD8+ T cell
responses.

Regulation of CD8+ T cell responses by other lymphocyte
populations

Beyond CD4+ T cells, the role of several other lymphocyte sub-
sets in regulating Ad vector-induced responses has been exam-
ined. Mucosal-associated invariant T (MAIT) cells are a popula-
tion of T cells that express a semi-invariant T cell receptor that
recognizes non-peptide antigens derived from vitamin B biosyn-
thesis pathways (reviewed in [96]). These cells can be activated
by cytokines, akin to an NK cell or ILC. We recently demonstrated
that this mode of activation is relevant in the context of ChAdOx1
vector immunization, as vector-induced type I interferon, TNF,
and IL-18 worked in concert to drive MAIT cell activation (Fig. 1)
[59]. Activation was observed in response to an array of vec-
tors, excluding species C-derived vectors (including Ad5), which
were poorly stimulatory. Ad vector-induced MAIT cell activation
was associated with increased vaccine immunogenicity in human
volunteers, and Mr1−/− mice, which lack MAIT cells [97], had
impaired conventional CD8+ T cell responses [59]. CD4+ T cell
responses were not examined in detail, but appeared to be unim-
paired in mice lacking MAIT cells. Mechanistically how MAIT cells
enhance CD8+ T cell responses remains to be determined, but
transcriptional analysis of MAIT cells identified elevated expres-
sion of the CXCR3-binding chemokines (CXCL9/10/11), which
suggests a possible role for MAIT cells in recruiting CD8+ T cells
into the response. Vδ2+ γδT cells are a functionally related pop-
ulation of unconventional T cells [98–100], which are present in
humans but not mice [101]. Ad vector immunization activates
Vδ2+ γδT cells by similar pathways as it does MAIT cells [102],
but the lack of a relevant mouse model to study these cells makes
it difficult to assess their functional role.

NK cells represent the other highly abundant population of
cytokine-responsive lymphocytes, which can respond to the same
stimuli as MAIT cells [99]. One study found that CD8+ and CD4+

T cell responses induced by Ad5 vaccination were unimpaired in
magnitude and phenotype in mice depleted of NK cells [103]. A
caveat to interpreting these data is that Ad5 poorly induces the
cytokines associated with activation of the innate(-like) lympho-
cyte populations [25, 59, 61]. So, the lack of a reported role
for NK cells in modulating vaccine-induced immunity may par-
tially reflect the choice of vector used in this study. An earlier
study found that NK cells regulated Ad vector-induced CD8+ T
cell responses in BALB/c, but not C57BL/6, mice due to increased
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production of IL-12 by this strain in response to Ad vector stimu-
lation [57]. Further work will be required to fully understand the
role of NK cells in Ad vector-induced immune responses.

Regulation of adenovirus vector-induced antibody
responses

Despite a recent surge in interest in the ability of Ad vectors to
induce protective antibody responses (particularly in the context
of SARS-CoV-2), these vectors have primarily historically been
used with the aim of inducing T cell responses. Thus, the path-
ways and processes which regulate the induction of antibody
responses remain poorly studied.

Memory B cell inflation?

As discussed above, Ad5 vectors can induce inflationary CD8+ T
cell responses. The prototypic inflationary viral infection (murine
cytomegalovirus; MCMV) has also been shown to induce inflation-
ary B cell responses, which are characterized by gradually increas-
ing IgG antibody titers that do not wane [104]. Whether such an
inflationary antibody response is induced in mice following Ad
vector immunization is unknown. One study, using an Ad26 vec-
tor, found antibody titers were stable for at least 90 days after a
single immunization [105]. Long-term follow-up of clinical trials
of Ad5-, Ad26-, and ChAdOx1-based vaccines show relatively sta-
ble antibody titers for at least 6 months after a single Ad vector
dose [106–108], suggesting such inflationary antibody responses
may be relevant in humans as well. This area requires further
investigation.

Regulation of antibody responses by CD4+ T cells

CD4+ T cell help is also required for the induction of antibody
responses to the Ad vector-encoded transgene product (Fig. 1)
[105]. An earlier study found that the induction of vector-specific
neutralizing antibodies also requires the presence of CD4+ T cells
[109, 110], consistent with the general need for CD4+ T cell
help in the induction of antibody responses against protein anti-
gens [111]. Consistent with this general model, CD40 signaling
was identified as a critical pathway in the induction of an anti-
body response (Fig. 1) [31, 105]. Signaling via CD80/CD86 was
also necessary for the induction of anti-vector antibody responses
[31], likely due to a need for this pathway in priming CD4+ T
cells. Depletion of macrophages impaired induction of anti-vector
and anti-transgene antibody responses, as well as T cell responses
[112]. Whether this reflects a direct role for macrophages in B
cell priming, CD4+ T cell priming, or both, remains to be deter-
mined. Surprisingly, if the CD4+ T cell population was only tran-
siently depleted at the time of vaccination, then a delayed, but
fully functional antibody response was induced, which coincided
temporally with the repopulation of the CD4+ T cell compartment

[105]. As CD4+ T cell depletion facilitates transgene persistence
[44, 113, 114], it is unclear if these data reflect de novo priming
of a naïve B cell population, or a delayed induction of a germinal
center (GC) response in previously primed B cells.

Regulation of antibody responses by cytokines

In contrast to Ad vector-induced CD8+ T cell responses (discussed
above), absence of type I interferon signaling was found to impair
GC B cell responses, IgM titers, and IgG titers following vacci-
nation through B cell intrinsic and extrinsic processes (Fig. 1)
[115]. Through a series of adoptive transfer experiments, the
authors identified type I interferon signaling to DCs to be critical
for promoting secretion of IgM, but dispensable for GC responses
and antibody class switching. In contrast, interferon signaling to
both B cells and CD4+ T cells was required for optimal produc-
tion of IgG. Another study examining the impact of TLR4 defi-
ciency on Ad5-induced humoral immune responses also identi-
fied impaired GC responses, lower transgene-specific IgG titers,
and impaired CD4+ T cell responses [116]. Whether this shared
phenotype reflects a common pathway around impaired induc-
tion of type I interferon in the absence of TLR4 signaling was not
explored. These results are striking given other studies have not
identified strong production of type I interferon following immu-
nization with Ad5 [49, 117]. Thus, further work is required to
reconcile these potentially conflicting results.

Regulation of antibody responses by other lymphocyte
populations

A recent study found that volunteers who produced stronger neu-
tralizing antibody responses following vaccination with the ChA-
dOx1 nCoV-19 vaccine had increased activation of NK cells on
day 3 post-vaccination, as opposed to volunteers who generated
weaker antibody responses [118]. Transcriptomic analysis of rhe-
sus macaques immunized with a single dose of Ad26.COV2.S
showed a positive association between NK cell activation and
plasma cell responses [119]. Whether this reflects a direct role
for NK cells in promoting antibody responses following Ad vec-
tor immunization, or simply reflects a useful biomarker for vac-
cine immunogenicity, remains to be determined. MAIT cell acti-
vation (assessed by transcriptomics) and type I interferon sig-
natures were also associated with increased memory B cell and
antibody responses following Ad26 immunization (Fig. 1) [119].
However, as discussed above, type I interferons appear to have a
direct role in promoting B cell responses following vaccination,
so this may reflect two distinct phenomena. In a rhesus macaque
SIV vaccine model, Ad5 vaccination was found to increase fre-
quencies of MAIT cells in the circulation and BAL (bronchoalveo-
lar lavage fluid), and the frequency of MAIT cells following vac-
cination correlated with some, but not all, tested measures of
transgene antigen-specific B cell and antibody responses [120].
Several studies have demonstrated some capacity for MAIT cells
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to promote B cell responses upon TCR-driven activation [120–
122]. However, being a virus Ad vectors fundamentally cannot
provide the cognate TCR ligand for MAIT cells, and Ad5 poorly
activates MAIT cells via cytokines [59]. Thus, while it is an intrigu-
ing possibility that MAIT cells may promote Ad vector-induced
antibody responses, it is unclear mechanistically how this might
occur. Further work is required to provide clear functional links
between these lymphocyte populations and modulation of anti-
body responses.

Regulation of immune responses by anti-vector
immunity

In addition to inducing immune responses towards the encoded
transgene, Ad vector immunization elicits immunity against the
viral particle itself. This immunity includes both anti-vector anti-
bodies and cellular immune responses [109, 123, 124], and both
of these responses can independently impair vaccine immuno-
genicity. Impaired immunogenicity in patients with high levels of
anti-Ad5 antibody responses has been reported in several clinical
trials [9, 125]. This is of particular concern in the context of Ad5
as pre-existing antibody responses against this virus are preva-
lent in a large fraction of the population from an early age in
some parts of the world [126]. In contrast, pre-existing antibody
responses to Ad26 and ChAdOx1 are rare and generally of lower
titer in unvaccinated individuals [13, 14, 126, 127]. Mechanisti-
cally, pre-existing anti-vector immunity impairs vaccine responses
by blocking transduction and expression of vaccine products
[109]. As most of the antibody response is directed against the
hypervariable regions of the hexon capsid subunit, swapping these
regions to vector serotypes with low seroprevalence can be an
effective strategy to evade pre-existing immunity [128].

mRNA vaccines

Unlike the adenovirus vector field, where antibody and T cell
responses have historically been studied separately, the investiga-
tion of mRNA vaccine cellular and humoral immunogenicity has
been performed in a more integrated manner. Thus, the following
sections are not divided specifically into regulation of antibody
and T cell responses, but instead focus on what is known about
how certain processes regulate both arms of adaptive immunity.

Antigen localization and induction of cellular and
humoral immunity

With mRNA vaccines both the lipid nanoparticle (LNP) encapsu-
lating the mRNA and the mRNA itself play a role in regulating the
priming of adaptive immune responses. Engineering of the mRNA
molecule to be a self-amplifying (saRNA) construct – where the
vaccine encodes an RNA-dependent RNA-polymerase (RdRp)
[129] – results in increased antigen production compared to

non-replicating RNA [130]. This in turn drives stronger priming
of CD8+ T cell responses [130]. Nucleoside modification of
the mRNA construct—where uracil bases are modified to avoid
triggering pattern recognition receptors (reviewed in [17])—also
results in increased protein production [131–133], presumably
due to increased persistence of the mRNA molecule. Thus, the
mRNA molecule can be engineered to directly regulate antigen
levels.

Unlike Ad vectors, which primarily transduce local tissues fol-
lowing intramuscular immunization, mRNA vaccines can display
broad biodistribution [134]. Altering the chemical and physical
properties of the LNP (e.g. size, charge, and acidity) through
manipulating the lipids used can promote specific targeting of tis-
sues and cell types, and thereby alter immunogenicity based on
route of delivery [134, 135]. One study examining BNT162b2-
vaccinated humans found spike protein-containing exosomes in
the plasma for several weeks following immunization [136]. Fol-
lowing intramuscular immunization of mice with BNT162b2, anti-
gen was readily detected for several days in the serum and could
be found at low levels in the spleen [137]. Interestingly negligible
antigen was detected within the muscle, which stands in strong
contrast to the major depot of antigen at the injection site follow-
ing Ad vector immunization (Fig. 2) [22–24]. However, the sys-
temic spread of the vaccine and/or antigen following immuniza-
tion has an unclear role in the immunogenicity of these vaccines.

Despite detectable antigen in circulation and in tissues far from
the site of injection, the draining LN was the primary site of anti-
gen production and non-draining lymph nodes did not appear to
contribute [137]. A series of elegant studies examined axillary LN
responses in humans following BNT162b2 or mRNA-1273 vacci-
nation using fine needle aspiration or core biopsies clearly iden-
tified the local draining LN as the primary site of germinal cen-
ter B cell responses and an accumulation of spike-specific CD4+

TFH cells [138–142]. Although sampling of non-draining LNs was
limited, there was a clear focus of immune induction within the
draining LN as compared to other sites. Interestingly, despite read-
ily available antigen within the LN, direct transduction of DCs
does not appear sufficient for priming of T cell responses as
cross-presenting CD8+ DCs were still found to be critical (Fig. 2)
[137]. Following intradermal immunization, a redundant role for
Langerhans cells and CD8+ DCs was identified for the induction
of antibody and TFH cell responses [143]. CD8+ T cell responses
were not measured. However, even in the absence of these two DC
populations, vaccinated mice were still protected from influenza
or SARS-CoV-2 infection, suggesting these populations play only
a minor role in induction of humoral immunity.

Type I interferons and regulation of cellular and
humoral immunity

The in vitro transcribed RNA used for mRNA-LNP vaccines
has potent capacity to induce type I interferon production
[144–146]. This is due to both TLR7-mediated sensing of the
mRNA molecules [147, 148] and detection of dsRNA that is
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Figure 2. Pathways known to promote or inhibit the induction of cellular and humoral immune responses followingmRNA vaccine immunization.
Key pathways and immune processes identified by mouse studies are shown in solid lines. Black arrows denote processes shown to promote
immune responses, while red lines denote inhibition. Dashed lines indicate where correlative data in humans or non-human primates suggests
an interaction between cell types or the mouse studies have identified a cytokine as important but the exact producer and target cell are unknown.
Where cells have been shown to interact, butmolecularmechanisms have not been determined, this is noted.Not all pathways have been examined
for all different types of mRNA vaccines. The presentedmodel is focused on data specifically in the context of nucleoside-modifiedmRNA vaccines,
except where specifically noted. See text for references for indicated pathways.

produced as a byproduct of in vitro transcription [149]. For both
unmodified mRNA vaccines and saRNA vaccines, several studies
found that the induction of type I interferon dampens the priming
of both antibody and T cell responses (Fig. 2) [144–146]. This
impairment is likely due to IFN-mediated clearance of the mRNA
molecules, thereby attenuating duration of antigen expression
(as discussed above). In contrast, one study found control of
tumor growth by repeated therapeutic immunization with an
unmodified mRNA vaccine required type I interferon signaling,
which was associated with T cell functionality [135].

Given the apparent detrimental effect of interferon induction
on protein production, considerable efforts have been made to
engineer mRNA molecules to avoid TLR sensing and thereby pre-
vent induction of type I interferon, particularly in the context of
the gene therapy field [17]. Nucleoside modification by replacing
uracil bases with either pseudouridine (�) or 5-methyl uridine
(m5U) dampens TLR sensing [150]. Furthermore, altering in vitro
synthesis production methods to remove dsRNA contaminants
further dampens TLR sensing and induction of interferons [151].
Despite nucleoside modification being initially targeted toward
generating non-stimulatory mRNA, this approach has been sur-
prisingly effective in the context of vaccination (as evidenced by
the BNT162b2 and mRNA-1273 vaccines).

As nucleoside modification effectively dampens induction of
type I interferon in vitro and in vivo [151, 152], it was reasonably
assumed that nucleoside-modified mRNA vaccines functioned in
a manner independent of type I interferon signaling. However,

transcriptomic analysis at early timepoints following vaccination
with BNT162b2 did identify clear signatures of type I interferon
following immunization of both humans [153] and mice [137].
Using Ifnar1−/− mice, the authors went on to demonstrate that
absence of type I interferon resulted in a substantially impaired
CD8+ T cell response with modest reductions in antibody titers
(Fig. 2). The authors identified the cGAS-STING pathway as the
mechanism of type I interferon induction. Thus, suggesting that
possibly tissue damage associated with the vaccines instead of
direct sensing of vaccine RNA was responsible for the interferon.
The cells responsible for production of type I interferon in this
context remains to be determined.

It remains unclear how important nucleoside-modification is
for a successful human mRNA vaccine. Preclinical comparison
of unmodified versus m1�-modified mRNA vaccines have gen-
erated conflicting results on relative immunogenicity of the two
approaches [133, 154]. One study found significantly enhanced
antibody, B cell, CD4+ T cell, and CD8+ T cell responses when
using an m1�-modified mRNA vaccine [133]. While the other
study, which only examined CD8+ T cell responses, found the
opposite [154]. The candidate COVID-19 unmodified mRNA vac-
cine trialed by CureVac had promising Phase 1 immunogenicity
data [155], and Phase 2/3 trial data suggested efficacy of 70%
against moderate-to-severe COVID-19 [19]. However, the candi-
date was not pursued further in part due to logistical considera-
tions, which complicates comparison to the licensed nucleoside-
modified vaccines. BioNTech’s candidate mRNA vaccine platform
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for cancer, which uses unmodified mRNA, has shown promising
immunogenicity in a Phase 1 trial [156], but a compari-
son to a similar nucleoside-modified construct has not been
made.

An early saRNA COVID-19 vaccine candidate had disappoint-
ing immunogenicity in a Phase 1 trial [20], despite promising
mouse data [157]. However, a recent press release from Arcturus
Therapeutics on a Phase III efficacy trial of their saRNA vaccine
against COVID-19 reported 95.3% (95% CI: 80.4% to 98.9%) effi-
cacy against severe disease (including death) [158]. These results
are similar to both the phase III trial results and real-world effi-
cacy numbers (during the contemporaneous waves of the Delta
and Omicron variants) reported with the BNT162b2 and mRNA-
1273 vaccines at a similar time post-immunization [159–161]. It
should be noted, we await release of the peer-reviewed results of
Arcturus Therapeutic’s trial. Regardless, these data suggest that
saRNA vaccines may also be effective in humans.

Regulation of immunogenicity by inflammatory
cytokines

The lipid portion of an mRNA-LNP vaccine also plays a role
in stimulating the innate immune response. IL-6 produced by
the LNP promotes the differentiation of TFH cells and thereby
enhances B cell and antibody responses (Fig. 2) [143, 162]. Inter-
estingly, the LNP could enhance antibody responses even when
co-delivered with recombinant protein (without encapsulation)
[162]. One study found that mice lacking TFH cells (Bcl6fl/fl x
CD4Cre) had only partially impaired antibody responses as mea-
sured by titer, neutralization capacity, and somatic hypermutation
following immunization with BNT162b2 or mRNA-1273 [163],
raising the prospect that T cell-independent antibody responses
might be raised by these vaccines (Fig. 2). This needs to be inves-
tigated in greater detail.

In addition to IL-6, the LNP strongly induces production of
IL-1β (Fig. 2) [164, 165]. The presence of RNA and sensing of it
(ie. no nucleoside modification) is necessary for induction of IL-1β

[165], likely through priming the inflammasome [166]. IL-1β was
also found to be a key upstream cytokine for several LNP-induced
cytokines, including IL-6 and IFN-ɑ (Fig. 2). This study was per-
formed primarily using unmodified mRNA-based vaccine formula-
tions, likely contributing to the strong IFN-ɑ induction. Intranasal
immunization of mice with an experimental mRNA-LNP vaccine
using the LNP produced by Acuitas Therapeutics – the lipid used
in the BNT162b2 vaccine – resulted in fatal inflammation in a
dose-dependent manner [164]. This appears to be a specific char-
acteristic of this lipid formulation, as other mRNA-LNP constructs
have been successfully administered to the lungs of mice [167,
168].

An interesting study found that MAIT cell frequencies at base-
line or two weeks after the second dose of the BNT162b2 vaccine
were positively correlated with vaccine-induced CD4+ T cell and
antibody responses [169]. However, despite the vaccine not alter-
ing levels of ex vivo MAIT activation at the timepoints sampled,

the degree of MAIT cell activation was inversely associated with
vaccine-induced CD4+ T cell and antibody responses. Whether
this reflects a direct role for MAIT cells in dampening mRNA vac-
cine immunogenicity, as seen with adenovirus vectors (discussed
above), remains to be determined (Fig. 2).

Several studies have reported increased innate inflammatory
cytokine responses following the second dose of BNT162b2 as
compared to the first in both humans and mice [137, 153, 170].
This coincides with the increased adverse events reported follow-
ing second vaccine dose [160]. Interferon-γ was the most strongly
induced cytokine following the second vaccine dose. In the mouse
model, T cells (both CD8+ and CD4+) and NK cells were the
major source of IFN-γ [137]. In vaccinated humans, post-boost
IFN-γ was correlated with increased activation of myeloid cells
(Fig. 2) [153], and a mechanistic association between post-boost
IFN-γ and activation of innate activation was confirmed by block-
ing experiments in mice [137]. Another study found a corre-
lation between IFN-γ levels and post-boost antibody titers in a
human cohort (Fig. 2) [170]. However, a causal relationship was
not demonstrated in the mouse model, nor were CD8+ T cell
responses significantly altered [137]. Thus, the exact impact this
enhanced inflammatory cytokine response has on the rest of the
immune response remains to be resolved.

Conclusions

As a result of the COVID-19 pandemic, adenovirus vectors and
mRNA vaccines have recently fulfilled their promise as highly
manipulable, immunogenic, and efficacious vaccine platforms.
For most of their development history, research using these plat-
forms has, understandably, focused on improving and refining
the immunogenicity of these constructs, often in a very empiri-
cal manner. This has necessarily led to an abundance of candi-
date vaccine platforms all with slightly differing biology, which
has complicated efforts to understand the fundamental immuno-
logic mechanisms governing the immunogenicity (or lack thereof)
of these vaccine constructs. With the licensure and widespread
use of multiple Ad vector-based vaccines and two nucleoside-
modified mRNA-LNP vaccines, there is a clear incentive to bet-
ter understand the biology underpinning these technologies. The
years ahead should be filled with major advances as we elucidate
mechanistically how these vaccines interact with the immune sys-
tem.
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