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Abstract

The majority of deep learning (DL) based deformable image registration methods use 

convolutional neural networks (CNNs) to estimate displacement fields from pairs of moving and 

fixed images. This, however, requires the convolutional kernels in the CNN to not only extract 

intensity features from the inputs but also understand image coordinate systems. We argue that 

the latter task is challenging for traditional CNNs, limiting their performance in registration tasks. 

To tackle this problem, we first introduce Coordinate Translator, a differentiable module that 

identifies matched features between the fixed and moving image and outputs their coordinate 

correspondences without the need for training. It unloads the burden of understanding image 

coordinate systems for CNNs, allowing them to focus on feature extraction. We then propose a 

novel deformable registration network, im2grid, that uses multiple Coordinate Translator’s with 

the hierarchical features extracted from a CNN encoder and outputs a deformation field in a 

coarse-to-fine fashion. We compared im2grid with the state-of-the-art DL and non-DL methods 

for unsupervised 3D magnetic resonance image registration. Our experiments show that im2grid 

outperforms these methods both qualitatively and quantitatively.
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1 Introduction

Deformable registration is of fundamental importance in medical image analysis. Given 

a pair of images, one fixed and one moving, deformable registration warps the moving 

image by optimizing the parameters of a nonlinear transformation so that the underlying 

anatomies of the two images are aligned according to an image dissimilarity function 

[11,16,32,34,37]. Recent deep learning (DL) methods use convolutional neural networks 
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(CNNs) whose parameters are optimized during training; at test time, a dense displacement 

field that represents the deformable transformation is generated in a single forward pass.

Although CNN-based methods for segmentation and classification are better than traditional 

methods in both speed and accuracy, DL-based deformable registration methods are faster 

but usually not more accurate [4,8,13,15,39]. Using a CNN for registration requires 

learning coordinate correspondences between image pairs, which has been thought to be 

fundamentally different from other CNN applications because it involves both extracting and 

matching features [14,25]. However, the majority of existing works simply rely on CNNs to 

implicitly learn the displacement between the fixed and moving images [4,13,15].

Registration involves both feature extraction and feature matching, but to produce a 

displacement field, matched features need to be translated to coordinate correspondences. 

We argue that using convolutional kernels for the latter two tasks is not optimal. To 

tackle this problem, we introduce Coordinate Translator, a differentiable module that 

matches features between the fixed and moving images and identifies feature matches as 

precise coordinate correspondences without the need for training. The proposed registration 

network, named im2grid, uses multiple Coordinate Translator’s with multi-scale feature 

maps. These produce multi-scale sampling grids representing coordinate correspondences, 

which are then composed in a coarse-to-fine manner to warp the moving image. im2grid 

explicitly handles the task of matching features and establishing coordinate correspondence 

using Coordinate Translator’s, leaving only feature extraction to our CNN encoder.

Throughout this paper, we use unsupervised 3D magnetic resonance (MR) image 

registration as our example task and demonstrate that the proposed method outperforms 

the state-of-the-art methods in terms of registration accuracy. We think it is important to note 

that because producing a coordinate location is such a common task in both medical image 

analysis and computer vision, the proposed method can be impactful on a board range of 

applications.

2 Related Works

Traditional registration methods solve an optimization problem for every pair of fixed, If, 

and moving, Im, images. Let ϕ denote a transformation and let the best transformation ϕ be 

found from

ϕ = arg min
ϕ

Lsim If, Im ∘ ϕ + λLsmooth(ϕ), (1)

where Im ○ ϕ yields the warped image Iw. The first term focuses on the similarity between If 

and Im ○ ϕ whereas the second term—weighted by the hyper-parameter λ—regularizes 

ϕ. The choice of Lsim is application-specific. Popular methods using this framework 

include spline-based free-form deformable models [32], elastic warping methods [11,27], 

biomechanical models [16], and Demons [34,37]. Alternatively, learning-based methods 

have also been used to estimate the transformation parameters [9,19].
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Recently, deep learning (DL) methods, especially CNNs, have been used for solving 

deformable registration problems. In these methods, ϕ is typically represented as a map of 

displacement vectors that specify the voxel-level spatial offsets between If and Im; the CNN 

is trained to output ϕ with or without supervision [4,6,13,15,20]. In the unsupervised setting, 

the displacement field is converted to a sampling grid and the warped image is produced 

by using a grid sampler [26] with the moving image and the sampling grid as input. The 

grid sampler performs differentiable sampling of an image (or a multi-channel feature map) 

using a sampling grid; it allows the dissimilarity loss computed between the warped and 

fixed images to be back-propagated so the CNN can be trained end-to-end. In past work, 

[4] used a U-shaped network to output the dense displacement; [12,13] used an encoder 

network to produce a sparse map of control points and generated the dense displacement 

field by interpolation; and [8] replaced the bottleneck of a U-Net [31] with a transformer 

structure [36]. Several deep learning methods also demonstrate the possibility of using a 

velocity-based transformation representation to enforce a diffeomorphism [10,39].

Our method represents the transformation using a sampling grid G, which can be directly 

used by the grid sampler. For N-dimensional images (N = 3 in this paper), G is represented 

by an N-channel map. Specifically, for a voxel coordinate x ∈ DN (where DN contains 

all the voxel coordinates in If), G(x) should ideally hold a coordinate such that the two 

values If(x) and Im(G(x)) represent the same anatomy. Note that the displacement field 

representation commonly used by other methods can be found as G − GI, where GI is the 

identity grid GI(x) = x.

3 Method

For the image pair If and Im, the proposed method produces a sampling grid G0 that can 

be used by the grid sampler to warp Im to match If. Similar to previous DL methods, we 

use a CNN encoder to extract multi-level feature maps from If and Im. Instead of directly 

producing a single displacement field from the CNN, G0 is the composition of multi-level 

sampling grids, generated from the multi-level feature maps with the proposed Coordinate 

Translator’s.

3.1 Coordinate Translator

Let F and M denote the multi-channel feature maps that are individually extracted from If 

and Im, respectively. The goal of a Coordinate Translator is to take as input both F and M, 

and produce a sampling grid G that aligns M interpolated at coordinate G(x) with F(x) for all 

x ∈ DN.

As the first step, for every x, cross-correlation is calculated between F(x) and M(ci) along 

the feature dimension, where ci ∈ DN for i ∈ [1,K] are a set of candidate coordinates. The 

results are a K-element vector of matching scores between F(x) and every M(ci): >

Matching Score x = F (x)TM c1 , … , F (x)TM cK . (2)
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The choice of ci’s determines the search region for the match. For example, defining ci to be 

every coordinates in DN will compare F(x) against every location in M; these matches can 

also be restricted within the 3 × 3 × 3 neighborhood of x. We outline our choices of ci’s in 

Sect. 4. The matching scores are normalized using a softmax function to produce a matching 

probability pi,

pi =
exp F (x)TM ci

∑jexp F (x)TM cj
for every ci . (3)

We interpret the matching probabilities as the strength of attraction between F(x) and the 

M(ci)’s. Importantly, we can calculate a weighted sum of ci’s to produce a coordinate 

x′ ∈ ℝN, i.e., x′ = ∑i = 1
K pi ⋅ ci, which represents the correspondence of x in the moving 

image Im. This is conceptually similar to the combined force in the Demons algorithm [34]. 

For every x ∈ DN the corresponding x′ forms the Coordinate Translator output, G.

Coordinate Translator can be efficiently implemented as the Scaled Dot-Product Attention 

introduced in the Transformer [36] using matrix operations. For 3D images with spatial 

dimension H × W × S and C feature channels, we reshape F and M to ℝ(H × W × S) × C and 

the identity grid GI to ℝ(H × W × S) × 3. Thus Coordinate Translator with c1, …cK = DN can 

be readily computed from,

Coordinate Translator F , M = Softmax FMT GI, (4)

with the softmax operating on the rows of FMT.

Positional Encoding Layer.—In learning transformations, it is a common practice to 

initialize from (or close to) an identity transformation [4,8,26]. As shown in Fig. 1, we 

propose a positional encoding layer that combines position information with F and M 
such that the initial output of Coordinate Translator is an identity grid. Inside a positional 

encoding layer, for every x = (x1,… ,xN) with xi’s on an integer grid (xi ∈ {0,…,di−1}), we 

add a positional embedding (PE),

PE(x) = cos
x1π

d1 − 1, sin
x1π

d1 − 1, ⋯ , cos
xNπ

dN − 1, sin
xNπ

dN − 1 ,

to the input feature map, where di is the pixel dimension along the ith axis. Trigonometric 

identities give the cross-correlation of PEs at x1 and x2 as

PE x1 TPE x2 = ∑
i = 1

N
cos

Δxiπ
di − 1 ,

where Δxi is the difference in the i th components of x1 and x2. This has maximum value 

when x1 = x2 and decreases with the L1 distance between the two coordinates. We initialize 
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the convolutional layer to have zero weights and bias and the learnable parameter α = 1 

(see Fig. 1) such that only the PEs are considered by Coordinate Translator at the beginning 

of training. As a result, among all ci ∈ DN, M(x) will have the highest matching score 

with F(x), thus producing GI as the initial output. Coordinate Translator also benefits from 

incorporating the position information as it allows the relative distance between ci and x to 

contribute to the matching scores, similar as the positional embedding in the Transformer 

[36].

3.2 im2grid Network Architecture—The proposed im2grid network is shown in Fig. 

2. Similar to previous methods, im2grid produces a sampling grid to warp Im to Iw. Our 

CNN encoder uses multiple pooling layers to extract hierarchical features from the intensity 

images. In the context of intra-modal registration, it is used as a Siamese network that 

processes If and Im separately. For clarity, Fig. 2 only shows a three level im2grid model 

with three level feature maps F1/F2/F3 and M1/M2/M3 for If and Im, respectively. In our 

experiment, we used a five level structure. Our grid decoder uses the common coarse-to-fine 

strategy in registration. Firstly, coarse features F3 and M3 are matched and translated to 

a coarse sampling grid G3 using a Coordinate Translator. Because of the pooling layers, 

this can be interpreted as matching downsampled versions of If and Im, producing a coarse 

displacement field. G3 is then used to warp M2, resolving the coarse deformation between 

M2 and F2 so that the Coordinate Translator at the second level can capture more detailed 

displacements with a smaller search region. Similarly, M1 is warped by the composed 

transformation of G3 and G2 and finally the moving image is warped by the composition of 

the transformations from all levels. A visualization of a five-level version of our multi-scale 

sampling grids is provided in Fig. 3. In contrast to previous methods that use CNNs to 

directly output displacements, our CNN encoder only needs to extract similar features for 

corresponding anatomies in If and Im and the exact coordinate correspondences are obtained 

by Coordinate Translator’s. Because our CNN encoder processes If and Im separately, it is 

guaranteed that our CNN encoder only performs feature extraction.

The proposed network is trained using the mean squared difference between If and Iw(= Im 

○ϕ) and a smoothness loss that regularizes the spatial variations of the G’s at every level,

ℒ = 1
DN ∑

x ∈ DN
If(x) − Iw(x) 2 + λ∑

i
∑

x ∈ DN
∇ Gi(x) − GI(x) 2, (5)

where DN  is the cardinality of DN and all Gi’s and GI are normalized to [−1, 1].

4 Experiments

Datasets.

We used the publicly available OASIS3 [28] and IXI [1] datasets in our experiments. 200, 

40, and 100 T1-weighted (T1w) MR images of the human brain from the OASIS3 dataset 

were used for training, validation, and testing, respectively. During training, two scans were 

randomly selected as If and Im, while validation and testing used 20 and 50 pre-assigned 

image pairs, respectively. For the IXI dataset, we used 200 scans for training, 20 and 
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40 pairs for validation and testing, respectively. All scans underwent N4 inhomogeneity 

correction [35], and were rigidly registered to MNI space [18] with 1 mm3 (for IXI) or 0.8 

mm3 (for OASIS3) isotropic resolution. A white matter peak normalization [30] was applied 

to standardize the MR intensity scale.

Evaluation Metrics.

First, we calculated the Dice similarity coefficient (DSC) between segmentation labels of 

If and the warped labels of Im. An accurate transformation should align the structures 

of the fixed and moving images and produces a high DSC. We obtained a whole brain 

segmentation for the fixed and moving images using SLANT [24] and combined the SLANT 

labels (133 labels) to TOADS labels (9 labels) [5]. The warped labels were produced by 

applying each methods deformation field to the moving image labels. Second, we measured 

the regularity of the transformations by computing the determinant of the Jacobian matrix, 

which should be globally positive for a diffeomorphic transformation.

Implementation Details.

Our method was implemented using PyTorch and trained using the Adam optimizer with 

a learning rate of 3 ×10−4, a weight decay of 1 × 10−9, and a batch size of 1. Random 

flipping of the input volumes along the three axes were used as data augmentation. We used 

a five-level structure and tested different choices of ci’s for each Coordinate Translator. We 

found that given the hierarchical structure, a small search region at each level is sufficient to 

capture displacements presented in our data. Therefore, we implemented two versions of our 

method: 1) im2grid which used a 3 × 3 search window in the axial plane for producing G1 

and a 3 × 3 ×3 search window at other levels; and 2) im2grid-Lite which is identical to 

im2grid except that the finest grid G1 is not used.

Baseline Methods:

We compared our method with several state-of-the-art DL and non-DL registration methods: 

1) SyN: Symmetric image normalization method [2], implemented in the Advanced 

Normalization Tools (ANTs) [3]; 2) voxelmorph: A deep learning based unsupervised 

method trained with the mean squared error loss [4]; 3) ViT-V-Net: A transformer [36] 

based network structure proposed in [8].

For SyN, a wide range of hyper-parameters were tested on the OASIS3 validation set and 

the best performing parameters were used for generating the final results. For voxelmorph 

and ViT-V-Net, we adopted the same training strategies as the proposed method, including 

the loss function and data augmentation. We optimize the parameters of each method for 

performance on the OASIS3 validation set and then used those parameters in testing on both 

datasets.

Results.

For both OASIS3 and IXI test datasets, we registered the moving to the fixed image 

and report the averaged DSC for all labels in Table 1. In both datasets, the proposed 

methods outperform the comparison methods for DSC. For each individual anatomic label, 
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we also conducted a paired, two-sided Wilcoxon signed rank test (null hypothesis: the 

difference between paired values comes from a distribution with zero median, α = 10−3) 

between our methods and the comparison methods. Both proposed methods show significant 

DSC improvements for seven of nine labels and comparable DSC performance to the best 

comparison method for the remaining two labels (thalamus and putamen). Visual examples 

on OASIS3 data are shown in Fig. 4. It can be seen, especially from the highlighted regions, 

that the warped image produced by the proposed methods have a better agreement with the 

fixed image.

Evaluation on Learn2Reg Validation Dataset.

We also test the proposed method on the inter-subject brain MRI registration task from 

the Learn2Reg challenge [22] (L2R 2021 Task 3). All scans from the challenge have been 

pre-processed following [23], and for evaluation purpose segmentation maps of 35 labels 

were generated using FreeSurfer [17]. We choose the im2grid-Lite version for this task 

because the challenge evaluation is done on the ×2 downsampled images. During training, 

two scans were randomly selected from the training set and used as input to the proposed 

method. The performance is evaluated by comparing the warped segmentation of the moving 

image and the segmentation of the fixed image. The results are summarized in Table 2, 

where the DSC represents the average Dice coefficient of all segmented labels; DSC30 

is the lowest 30% DSC among all cases, which measures the robustness of the methods; 

SDlogJ is the standard deviation of the log of the Jacobian determinant of the deformation 

field; and HD95 represents the 95% percentile of Hausdorff distance of segmentations. The 

results of several state-of-the-art methods from the challenge leaderboard are also included. 

The proposed method shows better accuracy as well as robustness among the comparison 

methods. Although adopting the instance-specific optimization as described in [4] can 

potential boost the performance on the validation set, our method only used the training 

set because we assume that such fine tuning process is not available during deployment.

5 Discussion

In this paper, we proposed Coordinate Translator for producing coordinate correspondences 

from two feature maps. Additionally, we proposed the im2grid network that uses 

Coordinate Translator’s for deformable image registration. For unsupervised 3D magnetic 

resonance registration, im2grid outperforms the state-of-the-art methods in accuracy with 

a similar training and testing speed as other deep learning based registration methods. 

Although im2grid has no explicit guarantee of being diffeomorphic, the deformation fields 

it generated contains fewer voxels with negative determinant of Jacobian compared with 

other deep learning methods that output deformation fields directly from feature maps. We 

believe this comes from our design decision to restrict the candidate voxels to the immediate 

neighborhood of a voxel, which yields a locally smooth deformation field at each scale. We 

note that even a diffeomorphic algorithm with theoretical guarantees (e.g., SyN) can produce 

non-diffeomorphic transformations because of errors introduced during interpolation [38].

For registration, we demonstrated that using Coordinate Translator for matching features 

and establishing coordinate correspondences together with the convolutional networks for 
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feature extraction can significantly boost the performance. Coordinate Translator is a general 

module that can be incorporated in many existing network structures and therefore is not 

limited to the registration task. We believe that many tasks that involve image input and 

coordinate output can benefit from the use of the Coordinate Translator module.
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Fig. 1. 
Structure of the proposed positional encoding layer and Coordinate Translator.
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Fig. 2. 
Example of the proposed im2grid network structure with a 3-level CNN encoder. The grid 

composition operation can be implemented using the grid sampler with two grids as input.
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Fig. 3. 
Visualization of the multi-scale sampling grids by sequentially applying finer grids to the 

moving image. Here we used a five-level CNN encoder and G5,…,G1 are coarse to fine 

sampling grids produced from the five-level feature maps.
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Fig. 4. 
Examples of registering the moving image (the first column) to the fixed image (the last 

column) using SyN, voxelmorph, ViT-V-Net, and our proposed methods.
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Table 1.

The Dice coefficient (DSC), the average number of voxels with negative determinant of Jacobian (# of 

|Jϕ| < 0) and the percentage of voxels with negative determinant of Jacobian (%) for affine transformation, 

SyN, Voxelmorph, ViT-V-Net, and the proposed methods. The results of the initial alignment by the 

preprocessing steps are also included. Bold numbers indicate the best DSC for each dataset.

OASIS3 IXI

DSC # of |Jϕ| < 0 % DSC # of |Jϕ| < 0 %

Initial 0.651 ± 0.094 – 0% 0.668 ± 0.107 – 0%

Affine 0.725 ± 0.068 – 0% 0.748 ± 0.052 – 0%

SyN [2] 0.866 ± 0.029 223 <0.002% 0.845 ± 0.035 613 0.008%

Voxelmorph [4] 0.883 ± 0.040 85892 <0.7% 0.842 ± 0.068 21574 <0.3%

ViT-V-Net [8] 0.872 ± 0.042 110128 <0.9% 0.845 ± 0.068 21298 <0.2%

im2grid-Lite 0.909 ± 0.021 38915 <0.4% 0.870 ± 0.043 14917 <0.2%

im2grid 0.908 ± 0.023 11880 <0.1% 0.865 ± 0.050 3235 <0.04%
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Table 2.

Results of the proposed method and several state-of-the-art methods on the Learn2Reg 2021 Task 3 validation 

dataset.

DSC DSC30 SDlogJ HD95

im2grid-Lite 0.8729 ± 0.0142 0.8714 0.1983 1.3786

TransMorph [7] 0.8691 ± 0.0145 0.8663 0.0945 1.3969

ConvexAdam [33] 0.8464 ± 0.0159 0.8460 0.0668 1.5003

Han et al. [21] 0.8410 ± 0.0139 0.8355 0.0796 1.6595

Lv et al. [29] 0.8271 ± 0.0131 0.8199 0.1206 1.7220
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