Abstract
目的
探讨丹参酮IIA在防治脓毒血症急性肾损伤(AKI)方面的作用及潜在机制。
方法
将30只C57BL/6小鼠随机分为对照组(10 mg/kg LPS等体积无菌生理盐水)、LPS组(10 mg/kg LPS作用24 h)、LPS+丹参酮IIA组(10 mg/kg丹参酮IIA预处理15 min再给予10 mg/kg LPS作用24 h)(10只/组)。给药后检测小鼠血肌酐(Scr)、血尿素氮水平(BUN),PAS染色观察小鼠肾组织病理变化,Western blot检测小鼠肾组织RIP3、Cleaved-caspase3、p18-FUNDC1表达水平。将体外培养正常的人肾小管上皮细胞(HK-2)分为空白对照组、LPS刺激组(LPS,10 μg/mL)、LPS+siNC组(LPS 10 μg/mL+50 nmol/L siNC)、LPS+siRIP3组(LPS 10 μg/mL+50 nmol/L siRIP3)、丹参酮IIA干预组(LPS 10 μg/mL+ 丹参酮IIA 10 mg/L),分别给予以上干预措施。采用TUNEL方法检测各组HK-2细胞的凋亡情况,Western blot检测各组RIP3、Cleaved-caspase3、p18-FUNDC1表达水平,qT-PCR检测RIP3基因表达水平。
结果
与对照组相比,LPS作用小鼠24 h后,小鼠Scr及血BUN水平升高,PAS染色提示近段肾小管损伤,肾组织中RIP3、Cleaved-caspase3、p18-FUNDC1蛋白表达上调(P<0.001)。与LPS组相比,丹参酮IIA预处理后,小鼠Scr及BUN水平下降,PAS染色显示近段肾小管损伤减轻,肾组织中RIP3、Cleaved-caspase3、p18-FUNDC1蛋白表达下降(P<0.001)。体外研究显示,与对照组相比,LPS刺激的HK-2细胞后,TUNEL染色显示细胞凋亡水平明显增加,Cleaved-caspase3、RIP3、p18-FUNDC1表达上调(P<0.05)。应用丹参酮IIA预处理或体外沉默RIP3表达后再次予以LPS刺激细胞,TUNEL染色显示细胞凋亡水平较LPS组明显减少,Cleaved-caspase3、RIP3、p18-FUNDC1表达水平较LPS组下降(P<0.05)。
结论
丹参酮IIA可能通过抑制RIP3/FUNDC1信号通路来改善LPS诱导的肾小管上皮细胞凋亡。
Keywords: 丹参酮IIA, 急性肾损伤, 受体相关蛋白-3, 细胞凋亡, FUN14结构域蛋白1
Abstract
Objective
To investigate the effect of tanshinone IIA pretreatment on acute renal injury in lipopolysaccharide (LPS)-induced septic mice and explore the possible mechanism.
Methods
Thirty C57BL/6 mice were randomized for treatment with saline (control), 10 mg/kg LPS for 24 h, or 10 mg/kg tanshinone IIA 15 min before LPS treatment. After the treatments, serum creatinine and blood urea nitrogen levels of the mice were detected, renal pathologies were observed with PAS staining, and renal expressions of RIP3, cleaved caspase-3 and p18-FUNDC1 were detected with Western blotting. In the cell experiment, cultured normal human renal tubular epithelial cells (HK-2) were treated with LPS (10 mg/mL), LPS+ siNC, LPS+ siRIP3, or LPS+tanshinone IIA (10 mg/L), and the changes in cell apoptosis were examined with TUNEL staining; Western blotting was performed to detect the expression levels of RIP3, cleaved caspase-3 and p18-FUNDC1, and qRT-PCR was used to detect the expression of RIP3 mRNA.
Results
LPS challenge for 24 h significantly increased serum creatinine and blood urea nitrogen levels in the mice, caused obviously damages in the proximal renal tubules, and increased renal expressions of RIP3, cleaved caspase-3 and p18-FUNDC1 proteins. Tanshinone IIA pretreatment significantly improved LPS-induced renal injury in the mice, alleviated apoptosis of the renal cells, and inhibited the expressions of RIP3, cleaved caspase-3 and p18-FUNDC1 proteins. In HK-2 cells, LPS stimulation significantly increased the protein expressions of RIP3, cleaved caspase-3 and p18-FUNDC1 and induced obvious cell apoptosis. Pretreatment with tanshinone IIA strongly inhibited the expression of RIP3 and p18-FUNDC1 and reduced LPS-induced apoptosis of HK-2 cells.
Conclusion
Tanshinone IIA can reduce LPS-induced apoptosis of renal tubular epithelial cells by inhibiting RIP3/FUNDC1 signal pathway.
Keywords: tanshinone IIA, acute renal injury, receptor-interacting protein kinase 3, apoptosis, FUN14 domain-containing protein 1
脓毒血症是危重患者发生AKI的主要病因之一,尽管目前诊疗水平不断提高,但脓毒血症AKI在危重患者中的患病率及死亡率仍较高[1]。因此积极探索脓毒血症AKI的发病机制,对寻找有效的诊治方案具有重要的临床意义。
肾小管上皮细胞(RTECs)损伤是AKI发病的重要原因[2, 3],内毒素通过受体相互作用蛋白激酶(RIP)3导致RTECs死亡是AKI的重要机制。一方面,RIP3可介导RTEC发生凋亡性坏死[4-6];另一方面,它可以通过介导FUN14结构域蛋白1(FUNDC 1)诱导细胞凋亡[7]。FUNDC1是一种线粒体受体蛋白,参与线粒体自噬、细胞凋亡及线粒体Ca2+稳态的调控,近年来研究发现FUNDC1在肾脏疾病中发挥重要作用[7-9]。然而RIP3/FUNDC1信号通路在脓毒血症AKI中的作用,目前尚无报道。
丹参作为临床常用中药,具有活血祛瘀、通经止痛、清心除烦等功效,丹参酮IIA是从丹参中提取的脂溶性化合物,具有广泛的生理活性,包括抗氧化、抗凋亡、抗炎等[10, 11]。近年来研究表明,丹参酮IIA对脂多糖所致的AKI动物具有防治作用[12, 13],但其机制尚不清楚。
本研究分别建立LPS诱导的脓毒血症AKI小鼠模型以及LPS刺激的HK-2细胞凋亡细胞模型,观察丹参酮IIA对脓毒血症AKI的保护作用以及其对RIP3/FUNDC1通路的影响。
1. 材料和方法
1.1. 材料
1.1.1. 药物与试剂
丹参酮IIA,分子式C19H18O3,相对分子质量:294.34(成都植标化纯生物技术有限公司),用DSMO配制为1g/L的原液,用时根据需要应用培养基进行稀释。DMEM/F12培养基(CORNING)、二甲基亚砜(DMSO)(Sigma)、脂多糖(L-2880)(Sigma)、RIP3 siRNA(广州锐博生物有限公司)、胎牛血清(FBS)(Hyclone)、Anti-RIP3(Cat No. 17563-1-AP)(Proteintech)、Anti-cleaved-caspase3抗体(ab2302)(Abcam)、Anti-p-FUNDC 1(Tyr18)(Abgent)、TUNEL试剂盒(瑞士罗氏公司)、Scr、BUN试剂盒(美国博世生物技术有限公司)、糖原PAS染色试剂盒(Solarbio Life Sciences)。
1.1.2. 细胞
人源性肾小管上皮细胞株HK-2细胞(广州永诺生物科技有限公司)。
1.1.3. 仪器
超净工作台(Thermo Fisher);CO2培养箱(Thermo Fisher);电泳仪(Bio-Rad);垂直电泳槽和Trans-Blot转印槽(Bio-Rad);研究级正置荧光显微镜Eclipse Ni-E(Nikon)。
1.2. 实验方法
1.2.1. 动物建模
动物实验通过广州永诺生物动物中心伦理审查(编号IACUC-AEWC-F2109012)。30只雄性C57BL/6小鼠饲养于广州永诺生物科技有限公司,10只/组,饲养于SPF级的动物房,小鼠自由进水及进食。造模前全部小鼠均禁食12 h,造模条件如下:对照组予以腹腔注射与LPS等体积的生理盐水;LPS组小鼠腹腔注射10 mg/kg LPS,刺激24 h;LPS+丹参酮IIA组预先腹腔注射10 mg/kg丹参酮IIA处理15 min再给予10 mg/kg LPS作用24 h。
1.2.2. 细胞培养
HK-2细胞置于有10%胎牛血清的培养基(DMEM/F12)、5% CO2 37 ℃条件下进行培养,每1~2 d换液,细胞生长至密度约90%时即可传代。实验分为5组:空白对照组、LPS组(LPS 10 μg/mL,24 h)、LPS+丹参酮IIA组(丹参酮IIA 10 mg/L预处理1 h后,再给予LPS 10 μg/mL刺激24 h)、LPS+siNC组(LPS 10 μg/mL+50 nmol/L siNC)、LPS+siRIP3组(LPS 10 μg/mL+50 nmol/L siRIP3)。
1.2.3. TUNEL染色
将约1×104细胞接种于无菌盖玻片上,培养24~48 h,进行相应刺激后,PBS清洗细胞1次,4%多聚甲醛固定细胞30 min,用0.1%Triton X-100透化2 min。按说明书配置TUNEL检测液,将TUNEL检测液滴加至各待检测样本中,37 ℃避光孵育60 min。PBS清洗3次后,荧光显微镜下观察。
1.2.4. siRNA干扰
去除细胞培养基,PBS清洗细胞,加入适量无血清DMEM/F12培养基。将已混匀的siRNA-Lipo2000混合液培养基中,使含有siRNA的混合液均匀分布于细胞表面,并将培养皿放入5% CO2 37 ℃培养箱中。6~8 h后观察细胞转染情况及细胞状态,细胞表面出现透亮的圆孔,提示转染成功,即可更换10%FBS完全培养基。
1.2.5. Western blot检测
去除细胞培养基,PBS清洗细胞后,加入细胞裂解液充分裂解细胞,收集上清液,离心后取上清液,根据BCA法检测蛋白浓度,各组样本根据相同质量配齐蛋白,加入Loading buffer后煮沸后加样,进行SDS-PAGE电泳实验。应用湿转法将蛋白转移至PVDF膜上,脱脂奶粉封闭,一抗孵育过夜,二抗孵育后显影。
1.3. 统计学处理
采用SPSS 20.0统计软件进行统计分析。所有数据进行正态性检验及方差齐性检验,符合正态分布的计量资料,采用均数±标准差表示,多组比较采用单因素方差分析,各组间的两两比较采用Bonferroni多重比较法。当P<0.05认为差异有统计学意义。所有实验均独立重复3次。
2. 结果
2.1. 丹参酮IIA改善小鼠脓毒血症肾损伤
应用LPS刺激小鼠建立脓毒血症AKI小鼠模型,LPS刺激小鼠24 h后,Scr及BUN明显高于对照组(P<0.001,图 1C),肾组织PAS染色显示,LPS组小鼠近段RTEC出现空泡变性,管腔狭窄,上皮细胞脱落,基底膜裸露,而对照组没有这些改变(图 1A、B)。这些结果表明LPS刺激成功建立了脓毒血症AKI模型,损伤部位主要为近段RTEC。应用丹参酮IIA预处理后(LPS+丹参酮IIA组),小鼠Scr及BUN水平较LPS组下降(P<0.001),肾组织病理显示,和LPS组比较,近段RTEC空泡变性、上皮细胞脱落、基底膜裸露等损伤改变显著减轻。
1.

各组小鼠肾组织肾脏病理情况(PAS染色)及肾功能水平(Scr、BUN)
Renal pathology and serum creatinine and blood urea nitrogen levels in the mice in different groups. A: Representative acid-Schiff-stained kidney sections in the three groups (PAS staining, original magnification: × 200). B: Quantification of tubular injury (10 fields for each kidney section). C: Serum creatinine and blood urea nitrogen levels in the 3 groups. *P<0.001 vs control, #P<0.001 vs LPS.
2.2. 丹参酮IIA可抑制小鼠RIP3/FUNDC1信号通路及肾脏凋亡水平
应用Western blot检测肾组织中Cleaved-caspase3的表达水平,结果显示,与对照组相比,LPS组肾组织中Cleaved-caspase3表达上调,丹参酮IIA预处理后(LPS+ 丹参酮IIA组),再给予LPS刺激,小鼠肾组织中Cleaved-caspase3表达水平较LPS组明显下降(图 2A、B)。
2.

各组小鼠肾组织中p18-FUNDC1、C-caspase3、RIPK3表达水平
Expression levels of p18-FUNDC1, cleaved caspase-3 and RIP3 in the kidney of the mice detected by Western blotting. A: Western blots of p18-FUNDC1, C-caspase-3 and RIP3. B: Quantification of p18-FUNDC1, C-caspase-3 and RIP3 protein expressions. *P<0.001 vs control, #P<0.001 vs LPS.
检测肾组织中RIP3及p18-FUNDC1的表达水平,结果显示LPS刺激后,肾组织中RIP3、p18-FUNDC表达上调,而LPS+丹参酮IIA组,RIP3、p18-FUNDC表达水平较LPS组下降(图 2A、B)。
2.3. 丹参酮IIA可减轻LPS诱导的HK-2细胞凋亡水平
与对照组相比,LPS刺激HK-2细胞24 h后(LPS组),细胞凋亡水平明显增加,差异有统计学意义(P<0.05)。丹参酮IIA预处理后,LPS诱导的HK-2细胞(LPS+丹参酮IIA组)凋亡水平明显减少,差异有统计学意义(P<0.05)(图 3A、B)。
3.

LPS刺激下不同处理组细胞凋亡水平
Apoptosis of HK-2 cells with LPS exposure in different treatment groups. A: TUNEL staining of the cells with different treatments (×200). B: Quantification of TUNEL-positive cells in each group. *P<0.05 vs control, #P<0.05 vs LPS. *P<0.001 vs control, #P<0.001 vs LPS.
通过Western blot检测各组凋亡蛋白Cleavedcaspase3表达水平发现,与对照组相比,LPS刺激后,HK-2细胞Cleaved-caspase3表达增加,丹参酮IIA预处理后,LPS刺激下的HK-2细胞表达Cleaved-caspase3表达较LPS组下降(图 4A、B)。
4.

LPS刺激下不同处理组细胞RIP3、c-caspase3、p18-FUNDC1表达水平
Expression of RIP3 and cleaved caspase-3 in HK-2 cells in different groups. A: Western blot of p18-FUNDC1, C-caspase-3 and RIP3 in HK-2 cells with different treatments. B: Quantification of p18-FUNDC1, C-caspase3 and RIP3 protein expressions. C: RIP3 mRNA expression detected using qRT-PCR in HK-2 cells following different treatments. *P<0.05 vs control, #P<0.05 vs LPS.
2.4. 抑制RIP3/FUNDC1信号通路可减轻HK-2细胞凋亡水平
通过TUNEL检测发现,转染siRIP3后给予LPS刺激(LPS+siRIP3组),细胞凋亡水平明显较LPS组减少(图 3A、B)。Western blot检测各组细胞Cleaved-caspase-3的表达水平发现,LPS+siRIP3组细胞蛋白Cleavedcaspase-3表达较LPS组明显下调(图 4A、B,P<0.05)。
通过Western blot各组细胞p18-FUNDC1表达水平发现,转染siRIP3后给予LPS刺激(LPS+siRIP3组),而p18-FUNDC1的表达水平下降(P<0.05)。
2.5. 丹参酮IIA可抑制HK-2细胞RIP3/p18-FUNDC1信号通路
通过Western blot检测各组RIP3及p18-FUNDC1的表达水平发现,与对照组相比,LPS组RIP3、p18-FUNDC1表达水平增加。丹参酮IIA预处理下,LPS刺激的HK-2细胞,RIP3、p18-FUNDC1表达水平下调(图 4A~C,P<0.05)。
3. 讨论
AKI是脓毒血症最常见并发症之一,脓毒血症AKI在危重患者中具有较高的死亡率,其高死亡率与其发病机制尚不完全明确有关。RTEC损伤是脓毒血症AKI主要的发病基础[14-16],研究显示,RTEC凋亡在脓毒血症AKI的发病中起重要作用[17-20]。本研究分别用LPS注射小鼠和体外刺激RTEC构建了体内及体外脓毒血症AKI模型。在这些模型中,丹参酮IIA能抑制RIP3/FUNDC1信号通路,减少细胞凋亡,并改善LPS刺激小鼠的肾功能。
RIP3是受体相互作用蛋白家族成员,由N端激酶结构域及C端RIP同型相互作用基序组成,具有磷酸化酶活性,在体内广泛分布,主要表达于肾脏、心脏、脑、脾脏等部位[21-26]。RIP3是凋亡性坏死通路中的关键因子,此外RIP3还可以通过介导FUNDC1参与细胞凋亡的发生。有研究显示脓毒血症AKI患者血、尿中RIP3水平增加,进一步动物研究也发现LPS诱导脓毒血症AKI小鼠,肾组织中RIP3表达增加,并参与脓毒血症AKI中RTEC凋亡的发生,然而机制尚不明确[27]。为验证RIP3是否通过调控FUNDC1介导RTEC凋亡的发生,本研究分别在体内、体外模型中检测RIP3、FUNDC1蛋白的表达情况。
在RIP3/FUNDC1信号通路介导的细胞凋亡途径中,RIP3通过磷酸化FUNDC1上的Tyr18位点,使其失活,进而FUNDC1介导的线粒体自噬被抑制,引起Caspase依赖的细胞凋亡的发生[7]。因此在RIP3/FUNDC1信号通路凋亡通路中,RIP3将介导p18-FUNDC1表达上调。本研究在LPS诱导的小鼠AKI模型及LPS刺激的HK-2细胞中检测RIP3及p18-FUNDC1的表达水平发现,LPS诱导的AKI小鼠模型,肾组织中RIP3、p18-FUNDC1蛋白表达上调;LPS刺激下HK-2细胞中RIP3、p18-FUNDC1表达同样增加,提示RIP3、FUNDC1可能参与LPS诱导的细胞凋亡损伤过程。在体外进一步沉默RIP3后,LPS介导的RTEC凋亡显著减少,p18-FUNDC1蛋白表达减少,表明RIP3/FUNDC1信号通路可能参与介导RTEC凋亡。
中药单体丹参酮IIA是中药丹参的主要成分,其分子结构及相关药理学功效都较为明确,具有抗凋亡、清除氧自由基、抗炎、抗肿瘤等作用。前期研究观察到,丹参酮IIA具有潜在的肾脏保护效应[28-30],但目前还没有关于丹参酮IIA对保护脓毒血症AKI的效应及机制研究。本研究中,我们发现丹参酮IIA可减轻LPS诱导的RTEC凋亡损伤。我们首先证实了丹参酮IIA可下调LPS诱导的AKI小鼠肾组织中凋亡蛋白Cleaved-caspase3的表达;还可减少TUNEL染色的阳性细胞数及下调HK-2细胞中蛋白Cleaved-caspase-3的表达。进一步,我们在体外模型中证实了丹参酮IIA的这一保护效应。
丹参酮IIA是通过什么机制减轻RTEC损伤?我们首次发现丹参酮IIA可下调RIP3的表达水平,并通过抑制RIP3/p18-FUNDC1信号通路改善RTEC凋亡水平。这为这种单体中医成分的肾保护提供了一种可能的机制假说。因此,我们提出丹参酮IIA一种新的RTEC保护途径。本研究不足之处,所选丹参酮IIA的剂量单一,对AKI的具体保护机制尚不清楚,故仍需进一步研究。
综上,丹参酮IIA可通过抑制RIP3/p18-FUNDC1信号通路来保护LPS诱导的RTEC损伤。丹参酮IIA作为中药丹参的主要活性成分,其现代药理作用丰富,毒副作用小,在临床中具有较好的应用价值。
Biography
张舒,博士研究生,E-mail: zhangshucherry@163.com
Funding Statement
市校(院)联合资助项目基础与应用基础研究项目(202201020322)
Contributor Information
张 舒 (Shu ZHANG), Email: zhangshucherry@163.com.
陈 刚毅 (Gangyi CHEN), Email: cgy08@126.com.
References
- 1.Barbar SD, Clere-Jehl R, Bourredjem A, et al. Timing of renalreplacement therapy in patients with acute kidney injury and Sepsis. N Engl J Med. 2018;379(15):1431–42. doi: 10.1056/NEJMoa1803213. [Barbar SD, Clere-Jehl R, Bourredjem A, et al. Timing of renalreplacement therapy in patients with acute kidney injury and Sepsis[J]. N Engl J Med, 2018, 379(15): 1431-42.] [DOI] [PubMed] [Google Scholar]
- 2.Yoo JY, Cha DR, Kim B, et al. LPS-induced acute kidney injury is mediated by Nox4-SH3YL1. Cell Rep. 2020;33(3):108245. doi: 10.1016/j.celrep.2020.108245. [Yoo JY, Cha DR, Kim B, et al. LPS-induced acute kidney injury is mediated by Nox4-SH3YL1[J]. Cell Rep, 2020, 33(3): 108245.] [DOI] [PubMed] [Google Scholar]
- 3.Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 2020;27(1):210–26. doi: 10.1038/s41418-019-0349-y. [Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J]. Cell Death Differ, 2020, 27(1): 210-26.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Linkermann A, de Zen F, Weinberg J, et al. Programmed necrosis in acute kidney injury. Nephrol Dial Transplant. 2012;27(9):3412–9. doi: 10.1093/ndt/gfs373. [Linkermann A, de Zen F, Weinberg J, et al. Programmed necrosis in acute kidney injury[J]. Nephrol Dial Transplant, 2012, 27(9): 3412-9.] [DOI] [PubMed] [Google Scholar]
- 5.Li RZ, Zhao XC, Zhang S, et al. RIP3 impedes transcription factor EB to suppress autophagic degradation in septic acute kidney injury. Cell Death Dis. 2021;12:593. doi: 10.1038/s41419-021-03865-8. [Li RZ, Zhao XC, Zhang S, et al. RIP3 impedes transcription factor EB to suppress autophagic degradation in septic acute kidney injury[J]. Cell Death Dis, 2021, 12: 593.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Xu Y, Ma H, Shao J, et al. A role for tubular necroptosis in cisplatininducedAKI. JAm Soc Nephrol. 2015;26(11):2647–58. doi: 10.1681/ASN.2014080741. [Xu Y, Ma H, Shao J, et al. A role for tubular necroptosis in cisplatininducedAKI[J]. JAm Soc Nephrol, 2015, 26(11): 2647-58.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Wei X, Wei X, Lu ZS, et al. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic Reticulum-mitochondria contact in podocytes. Metabolism. 2020;105:154182. doi: 10.1016/j.metabol.2020.154182. [Wei X, Wei X, Lu ZS, et al. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic Reticulum-mitochondria contact in podocytes[J]. Metabolism, 2020, 105: 154182.] [DOI] [PubMed] [Google Scholar]
- 8.Wang J, Zhu PJ, Li RB, et al. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 2020;30:101415. doi: 10.1016/j.redox.2019.101415. [Wang J, Zhu PJ, Li RB, et al. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission[J]. Redox Biol, 2020, 30: 101415.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Wu S, Lu Q, Ding Y, et al. Hyperglycemia-driven inhibition of AMPactivated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic Reticulum membranes in vivo. Circulation. 2019;139(16):1913–36. doi: 10.1161/CIRCULATIONAHA.118.033552. [Wu S, Lu Q, Ding Y, et al. Hyperglycemia-driven inhibition of AMPactivated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic Reticulum membranes in vivo[J]. Circulation, 2019, 139(16): 1913-36.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Des Devel Ther. 2020;14:4735–48. doi: 10.2147/DDDT.S266911. [Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases[J]. Drug Des Devel Ther, 2020, 14: 4735-48.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Xu L, Xu Y, Zhu Z, et al. Tanshinone IIA attenuates renal injury during hypothermic preservation via the MEK/ERK1/2/GSK-3β pathway. BMC Complement Med Ther. 2021;21(1):257. doi: 10.1186/s12906-021-03427-7. [Xu L, Xu Y, Zhu Z, et al. Tanshinone IIA attenuates renal injury during hypothermic preservation via the MEK/ERK1/2/GSK-3β pathway[J]. BMC Complement Med Ther, 2021, 21(1): 257.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Tai H, Jiang XL, Lan ZM, et al. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemiareperfusion injury in obese rats. BMC Complement Med Ther. 2021;21(1):100. doi: 10.1186/s12906-021-03270-w. [Tai H, Jiang XL, Lan ZM, et al. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemiareperfusion injury in obese rats[J]. BMC Complement Med Ther, 2021, 21(1): 100.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Dou JY, Zhang M, Cen H, et al. Salvia miltiorrhiza bunge (Danshen) and bioactive compound tanshinone IIA alleviates cisplatin-induced acute kidney injury through regulating PXR/NF-κB signaling. Front Pharmacol. 2022;13:860383. doi: 10.3389/fphar.2022.860383. [Dou JY, Zhang M, Cen H, et al. Salvia miltiorrhiza bunge (Danshen) and bioactive compound tanshinone IIA alleviates cisplatin-induced acute kidney injury through regulating PXR/NF-κB signaling[J]. Front Pharmacol, 2022, 13: 860383.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Manrique-Caballero CL, del Rio-Pertuz G, Gomez H. Sepsis-associated acute kidney injury. Crit Care Clin. 2021;37(2):279–301. doi: 10.1016/j.ccc.2020.11.010. [Manrique-Caballero CL, del Rio-Pertuz G, Gomez H. Sepsis-associated acute kidney injury[J]. Crit Care Clin, 2021, 37(2): 279-301.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Alobaidi R, Basu RK, Goldstein SL, et al. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35(1):2–11. doi: 10.1016/j.semnephrol.2015.01.002. [Alobaidi R, Basu RK, Goldstein SL, et al. Sepsis-associated acute kidney injury[J]. Semin Nephrol, 2015, 35(1): 2-11.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Sun J, Zhang J, Tian J, et al. Mitochondria in Sepsis-induced aki. J Am Soc Nephrol. 2019;30(7):1151–61. doi: 10.1681/ASN.2018111126. [Sun J, Zhang J, Tian J, et al. Mitochondria in Sepsis-induced aki[J]. J Am Soc Nephrol, 2019, 30(7): 1151-61.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Huang GW, Bao JW, Shao XH, et al. Inhibiting pannexin-1 alleviates Sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis. Life Sci. 2020;254:117791. doi: 10.1016/j.lfs.2020.117791. [Huang GW, Bao JW, Shao XH, et al. Inhibiting pannexin-1 alleviates Sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis[J]. Life Sci, 2020, 254: 117791.] [DOI] [PubMed] [Google Scholar]
- 18.Kuwabara S, Goggins E, Okusa MD. The pathophysiology of SepsisassociatedAKI. Clin JAm Soc Nephrol. 2022;17(7):1050–69. doi: 10.2215/CJN.00850122. [Kuwabara S, Goggins E, Okusa MD. The pathophysiology of SepsisassociatedAKI[J]. Clin JAm Soc Nephrol, 2022, 17(7): 1050-69.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from Sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–99. doi: 10.1016/j.kint.2019.05.026. [Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from Sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96(5): 1083-99.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–64. doi: 10.1016/S0140-6736(19)32563-2. [Ronco C, Bellomo R, Kellum JA. Acute kidney injury[J]. Lancet, 2019, 394(10212): 1949-64.] [DOI] [PubMed] [Google Scholar]
- 21.Moriwaki K, Chan FK. RIP3:a molecular switch for necrosis and inflammation. Genes Dev. 2013;27(15):1640–9. doi: 10.1101/gad.223321.113. [Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation[J]. Genes Dev, 2013, 27(15): 1640-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci. 2005;30(3):151–9. doi: 10.1016/j.tibs.2005.01.003. [Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress[J]. Trends Biochem Sci, 2005, 30(3): 151-9.] [DOI] [PubMed] [Google Scholar]
- 23.Mandal P, Berger SB, Pillay S, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 2014;56(4):481–95. doi: 10.1016/j.molcel.2014.10.021. [Mandal P, Berger SB, Pillay S, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity[J]. Mol Cell, 2014, 56(4): 481-95.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Liu Y, Liu T, Lei T, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review) Int J Mol Med. 2019;44(3):771–86. doi: 10.3892/ijmm.2019.4244. [Liu Y, Liu T, Lei T, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review)[J]. Int J Mol Med, 2019, 44(3): 771-86.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Sun LM, Wang HY, Wang ZG, et al. Mixed lineage kinase domainlike protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1/2):213–27. doi: 10.1016/j.cell.2011.11.031. [Sun LM, Wang HY, Wang ZG, et al. Mixed lineage kinase domainlike protein mediates necrosis signaling downstream of RIP3 kinase[J]. Cell, 2012, 148(1/2): 213-27.] [DOI] [PubMed] [Google Scholar]
- 26.Kaiser WJ, Sridharan H, Huang CZ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288(43):31268–79. doi: 10.1074/jbc.M113.462341. [Kaiser WJ, Sridharan H, Huang CZ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL[J]. J Biol Chem, 2013, 288(43): 31268-79.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Sureshbabu A, Patino E, Ma KC, et al. RIPK3 promotes Sepsisinduced acute kidney injury via mitochondrial dysfunction. JCI Insight. 2018;3(11):e98411. doi: 10.1172/jci.insight.98411. [Sureshbabu A, Patino E, Ma KC, et al. RIPK3 promotes Sepsisinduced acute kidney injury via mitochondrial dysfunction[J]. JCI Insight, 2018, 3(11): e98411.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Liang R, Zhao Q, Jian G, et al. Tanshinone IIA attenuates contrastinduced nephropathy via Nrf2 activation in rats. Cell Physiol Biochem. 2018;46(6):2616–23. doi: 10.1159/000489688. [Liang R, Zhao Q, Jian G, et al. Tanshinone IIA attenuates contrastinduced nephropathy via Nrf2 activation in rats[J]. Cell Physiol Biochem, 2018, 46(6): 2616-23.] [DOI] [PubMed] [Google Scholar]
- 29.Jiang C, Shao Q, Jin B, et al. Tanshinone IIA attenuates renal fibrosis after acute kidney injury in a mouse model through inhibition of fibrocytes recruitment. Biomed Res Int. 2015;2015:867140. doi: 10.1155/2015/867140. [Jiang C, Shao Q, Jin B, et al. Tanshinone IIA attenuates renal fibrosis after acute kidney injury in a mouse model through inhibition of fibrocytes recruitment[J]. Biomed Res Int, 2015, 2015: 867140.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Xu S, He L, Ding K, et al. Tanshinone IIA ameliorates streptozotocininduced diabetic nephropathy, partly by attenuating PERK pathwayinduced fibrosis. Drug Des Devel Ther. 2020;14:5773–82. doi: 10.2147/DDDT.S257734. [Xu S, He L, Ding K, et al. Tanshinone IIA ameliorates streptozotocininduced diabetic nephropathy, partly by attenuating PERK pathwayinduced fibrosis[J]. Drug Des Devel Ther, 2020, 14: 5773-82.] [DOI] [PMC free article] [PubMed] [Google Scholar]
