Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2022 Dec 20;42(12):1852–1857. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.12.14

丹参酮IIA通过抑制RIP3/FUNDC1信号通路减轻LPS诱导的小鼠肾小管上皮细胞凋亡

Tanshinone IIA alleviates lipopolysaccharide-induced renal tubular epithelial cell apoptosis by inhibiting RIP3/FUNDC1 signaling pathway

Shu ZHANG 1, Baolin SU 1, Liangliang WANG 1, Shuifu TANG 1, Gangyi CHEN 1,*
PMCID: PMC9878413  PMID: 36651254

Abstract

目的

探讨丹参酮IIA在防治脓毒血症急性肾损伤(AKI)方面的作用及潜在机制。

方法

将30只C57BL/6小鼠随机分为对照组(10 mg/kg LPS等体积无菌生理盐水)、LPS组(10 mg/kg LPS作用24 h)、LPS+丹参酮IIA组(10 mg/kg丹参酮IIA预处理15 min再给予10 mg/kg LPS作用24 h)(10只/组)。给药后检测小鼠血肌酐(Scr)、血尿素氮水平(BUN),PAS染色观察小鼠肾组织病理变化,Western blot检测小鼠肾组织RIP3、Cleaved-caspase3、p18-FUNDC1表达水平。将体外培养正常的人肾小管上皮细胞(HK-2)分为空白对照组、LPS刺激组(LPS,10 μg/mL)、LPS+siNC组(LPS 10 μg/mL+50 nmol/L siNC)、LPS+siRIP3组(LPS 10 μg/mL+50 nmol/L siRIP3)、丹参酮IIA干预组(LPS 10 μg/mL+ 丹参酮IIA 10 mg/L),分别给予以上干预措施。采用TUNEL方法检测各组HK-2细胞的凋亡情况,Western blot检测各组RIP3、Cleaved-caspase3、p18-FUNDC1表达水平,qT-PCR检测RIP3基因表达水平。

结果

与对照组相比,LPS作用小鼠24 h后,小鼠Scr及血BUN水平升高,PAS染色提示近段肾小管损伤,肾组织中RIP3、Cleaved-caspase3、p18-FUNDC1蛋白表达上调(P<0.001)。与LPS组相比,丹参酮IIA预处理后,小鼠Scr及BUN水平下降,PAS染色显示近段肾小管损伤减轻,肾组织中RIP3、Cleaved-caspase3、p18-FUNDC1蛋白表达下降(P<0.001)。体外研究显示,与对照组相比,LPS刺激的HK-2细胞后,TUNEL染色显示细胞凋亡水平明显增加,Cleaved-caspase3、RIP3、p18-FUNDC1表达上调(P<0.05)。应用丹参酮IIA预处理或体外沉默RIP3表达后再次予以LPS刺激细胞,TUNEL染色显示细胞凋亡水平较LPS组明显减少,Cleaved-caspase3、RIP3、p18-FUNDC1表达水平较LPS组下降(P<0.05)。

结论

丹参酮IIA可能通过抑制RIP3/FUNDC1信号通路来改善LPS诱导的肾小管上皮细胞凋亡。

Keywords: 丹参酮IIA, 急性肾损伤, 受体相关蛋白-3, 细胞凋亡, FUN14结构域蛋白1


脓毒血症是危重患者发生AKI的主要病因之一,尽管目前诊疗水平不断提高,但脓毒血症AKI在危重患者中的患病率及死亡率仍较高[1]。因此积极探索脓毒血症AKI的发病机制,对寻找有效的诊治方案具有重要的临床意义。

肾小管上皮细胞(RTECs)损伤是AKI发病的重要原因[2, 3],内毒素通过受体相互作用蛋白激酶(RIP)3导致RTECs死亡是AKI的重要机制。一方面,RIP3可介导RTEC发生凋亡性坏死[4-6];另一方面,它可以通过介导FUN14结构域蛋白1(FUNDC 1)诱导细胞凋亡[7]。FUNDC1是一种线粒体受体蛋白,参与线粒体自噬、细胞凋亡及线粒体Ca2+稳态的调控,近年来研究发现FUNDC1在肾脏疾病中发挥重要作用[7-9]。然而RIP3/FUNDC1信号通路在脓毒血症AKI中的作用,目前尚无报道。

丹参作为临床常用中药,具有活血祛瘀、通经止痛、清心除烦等功效,丹参酮IIA是从丹参中提取的脂溶性化合物,具有广泛的生理活性,包括抗氧化、抗凋亡、抗炎等[10, 11]。近年来研究表明,丹参酮IIA对脂多糖所致的AKI动物具有防治作用[12, 13],但其机制尚不清楚。

本研究分别建立LPS诱导的脓毒血症AKI小鼠模型以及LPS刺激的HK-2细胞凋亡细胞模型,观察丹参酮IIA对脓毒血症AKI的保护作用以及其对RIP3/FUNDC1通路的影响。

1. 材料和方法

1.1. 材料

1.1.1. 药物与试剂

丹参酮IIA,分子式C19H18O3,相对分子质量:294.34(成都植标化纯生物技术有限公司),用DSMO配制为1g/L的原液,用时根据需要应用培养基进行稀释。DMEM/F12培养基(CORNING)、二甲基亚砜(DMSO)(Sigma)、脂多糖(L-2880)(Sigma)、RIP3 siRNA(广州锐博生物有限公司)、胎牛血清(FBS)(Hyclone)、Anti-RIP3(Cat No. 17563-1-AP)(Proteintech)、Anti-cleaved-caspase3抗体(ab2302)(Abcam)、Anti-p-FUNDC 1(Tyr18)(Abgent)、TUNEL试剂盒(瑞士罗氏公司)、Scr、BUN试剂盒(美国博世生物技术有限公司)、糖原PAS染色试剂盒(Solarbio Life Sciences)。

1.1.2. 细胞

人源性肾小管上皮细胞株HK-2细胞(广州永诺生物科技有限公司)。

1.1.3. 仪器

超净工作台(Thermo Fisher);CO2培养箱(Thermo Fisher);电泳仪(Bio-Rad);垂直电泳槽和Trans-Blot转印槽(Bio-Rad);研究级正置荧光显微镜Eclipse Ni-E(Nikon)。

1.2. 实验方法

1.2.1. 动物建模

动物实验通过广州永诺生物动物中心伦理审查(编号IACUC-AEWC-F2109012)。30只雄性C57BL/6小鼠饲养于广州永诺生物科技有限公司,10只/组,饲养于SPF级的动物房,小鼠自由进水及进食。造模前全部小鼠均禁食12 h,造模条件如下:对照组予以腹腔注射与LPS等体积的生理盐水;LPS组小鼠腹腔注射10 mg/kg LPS,刺激24 h;LPS+丹参酮IIA组预先腹腔注射10 mg/kg丹参酮IIA处理15 min再给予10 mg/kg LPS作用24 h。

1.2.2. 细胞培养

HK-2细胞置于有10%胎牛血清的培养基(DMEM/F12)、5% CO2 37 ℃条件下进行培养,每1~2 d换液,细胞生长至密度约90%时即可传代。实验分为5组:空白对照组、LPS组(LPS 10 μg/mL,24 h)、LPS+丹参酮IIA组(丹参酮IIA 10 mg/L预处理1 h后,再给予LPS 10 μg/mL刺激24 h)、LPS+siNC组(LPS 10 μg/mL+50 nmol/L siNC)、LPS+siRIP3组(LPS 10 μg/mL+50 nmol/L siRIP3)。

1.2.3. TUNEL染色

将约1×104细胞接种于无菌盖玻片上,培养24~48 h,进行相应刺激后,PBS清洗细胞1次,4%多聚甲醛固定细胞30 min,用0.1%Triton X-100透化2 min。按说明书配置TUNEL检测液,将TUNEL检测液滴加至各待检测样本中,37 ℃避光孵育60 min。PBS清洗3次后,荧光显微镜下观察。

1.2.4. siRNA干扰

去除细胞培养基,PBS清洗细胞,加入适量无血清DMEM/F12培养基。将已混匀的siRNA-Lipo2000混合液培养基中,使含有siRNA的混合液均匀分布于细胞表面,并将培养皿放入5% CO2 37 ℃培养箱中。6~8 h后观察细胞转染情况及细胞状态,细胞表面出现透亮的圆孔,提示转染成功,即可更换10%FBS完全培养基。

1.2.5. Western blot检测

去除细胞培养基,PBS清洗细胞后,加入细胞裂解液充分裂解细胞,收集上清液,离心后取上清液,根据BCA法检测蛋白浓度,各组样本根据相同质量配齐蛋白,加入Loading buffer后煮沸后加样,进行SDS-PAGE电泳实验。应用湿转法将蛋白转移至PVDF膜上,脱脂奶粉封闭,一抗孵育过夜,二抗孵育后显影。

1.3. 统计学处理

采用SPSS 20.0统计软件进行统计分析。所有数据进行正态性检验及方差齐性检验,符合正态分布的计量资料,采用均数±标准差表示,多组比较采用单因素方差分析,各组间的两两比较采用Bonferroni多重比较法。当P<0.05认为差异有统计学意义。所有实验均独立重复3次。

2. 结果

2.1. 丹参酮IIA改善小鼠脓毒血症肾损伤

应用LPS刺激小鼠建立脓毒血症AKI小鼠模型,LPS刺激小鼠24 h后,Scr及BUN明显高于对照组(P<0.001,图 1C),肾组织PAS染色显示,LPS组小鼠近段RTEC出现空泡变性,管腔狭窄,上皮细胞脱落,基底膜裸露,而对照组没有这些改变(图 1AB)。这些结果表明LPS刺激成功建立了脓毒血症AKI模型,损伤部位主要为近段RTEC。应用丹参酮IIA预处理后(LPS+丹参酮IIA组),小鼠Scr及BUN水平较LPS组下降(P<0.001),肾组织病理显示,和LPS组比较,近段RTEC空泡变性、上皮细胞脱落、基底膜裸露等损伤改变显著减轻。

1.

1

各组小鼠肾组织肾脏病理情况(PAS染色)及肾功能水平(Scr、BUN)

Renal pathology and serum creatinine and blood urea nitrogen levels in the mice in different groups. A: Representative acid-Schiff-stained kidney sections in the three groups (PAS staining, original magnification: × 200). B: Quantification of tubular injury (10 fields for each kidney section). C: Serum creatinine and blood urea nitrogen levels in the 3 groups. *P<0.001 vs control, #P<0.001 vs LPS.

2.2. 丹参酮IIA可抑制小鼠RIP3/FUNDC1信号通路及肾脏凋亡水平

应用Western blot检测肾组织中Cleaved-caspase3的表达水平,结果显示,与对照组相比,LPS组肾组织中Cleaved-caspase3表达上调,丹参酮IIA预处理后(LPS+ 丹参酮IIA组),再给予LPS刺激,小鼠肾组织中Cleaved-caspase3表达水平较LPS组明显下降(图 2AB)。

2.

2

各组小鼠肾组织中p18-FUNDC1、C-caspase3、RIPK3表达水平

Expression levels of p18-FUNDC1, cleaved caspase-3 and RIP3 in the kidney of the mice detected by Western blotting. A: Western blots of p18-FUNDC1, C-caspase-3 and RIP3. B: Quantification of p18-FUNDC1, C-caspase-3 and RIP3 protein expressions. *P<0.001 vs control, #P<0.001 vs LPS.

检测肾组织中RIP3及p18-FUNDC1的表达水平,结果显示LPS刺激后,肾组织中RIP3、p18-FUNDC表达上调,而LPS+丹参酮IIA组,RIP3、p18-FUNDC表达水平较LPS组下降(图 2AB)。

2.3. 丹参酮IIA可减轻LPS诱导的HK-2细胞凋亡水平

与对照组相比,LPS刺激HK-2细胞24 h后(LPS组),细胞凋亡水平明显增加,差异有统计学意义(P<0.05)。丹参酮IIA预处理后,LPS诱导的HK-2细胞(LPS+丹参酮IIA组)凋亡水平明显减少,差异有统计学意义(P<0.05)(图 3AB)。

3.

3

LPS刺激下不同处理组细胞凋亡水平

Apoptosis of HK-2 cells with LPS exposure in different treatment groups. A: TUNEL staining of the cells with different treatments (×200). B: Quantification of TUNEL-positive cells in each group. *P<0.05 vs control, #P<0.05 vs LPS. *P<0.001 vs control, #P<0.001 vs LPS.

通过Western blot检测各组凋亡蛋白Cleavedcaspase3表达水平发现,与对照组相比,LPS刺激后,HK-2细胞Cleaved-caspase3表达增加,丹参酮IIA预处理后,LPS刺激下的HK-2细胞表达Cleaved-caspase3表达较LPS组下降(图 4AB)。

4.

4

LPS刺激下不同处理组细胞RIP3、c-caspase3、p18-FUNDC1表达水平

Expression of RIP3 and cleaved caspase-3 in HK-2 cells in different groups. A: Western blot of p18-FUNDC1, C-caspase-3 and RIP3 in HK-2 cells with different treatments. B: Quantification of p18-FUNDC1, C-caspase3 and RIP3 protein expressions. C: RIP3 mRNA expression detected using qRT-PCR in HK-2 cells following different treatments. *P<0.05 vs control, #P<0.05 vs LPS.

2.4. 抑制RIP3/FUNDC1信号通路可减轻HK-2细胞凋亡水平

通过TUNEL检测发现,转染siRIP3后给予LPS刺激(LPS+siRIP3组),细胞凋亡水平明显较LPS组减少(图 3AB)。Western blot检测各组细胞Cleaved-caspase-3的表达水平发现,LPS+siRIP3组细胞蛋白Cleavedcaspase-3表达较LPS组明显下调(图 4ABP<0.05)。

通过Western blot各组细胞p18-FUNDC1表达水平发现,转染siRIP3后给予LPS刺激(LPS+siRIP3组),而p18-FUNDC1的表达水平下降(P<0.05)。

2.5. 丹参酮IIA可抑制HK-2细胞RIP3/p18-FUNDC1信号通路

通过Western blot检测各组RIP3及p18-FUNDC1的表达水平发现,与对照组相比,LPS组RIP3、p18-FUNDC1表达水平增加。丹参酮IIA预处理下,LPS刺激的HK-2细胞,RIP3、p18-FUNDC1表达水平下调(图 4A~CP<0.05)。

3. 讨论

AKI是脓毒血症最常见并发症之一,脓毒血症AKI在危重患者中具有较高的死亡率,其高死亡率与其发病机制尚不完全明确有关。RTEC损伤是脓毒血症AKI主要的发病基础[14-16],研究显示,RTEC凋亡在脓毒血症AKI的发病中起重要作用[17-20]。本研究分别用LPS注射小鼠和体外刺激RTEC构建了体内及体外脓毒血症AKI模型。在这些模型中,丹参酮IIA能抑制RIP3/FUNDC1信号通路,减少细胞凋亡,并改善LPS刺激小鼠的肾功能。

RIP3是受体相互作用蛋白家族成员,由N端激酶结构域及C端RIP同型相互作用基序组成,具有磷酸化酶活性,在体内广泛分布,主要表达于肾脏、心脏、脑、脾脏等部位[21-26]。RIP3是凋亡性坏死通路中的关键因子,此外RIP3还可以通过介导FUNDC1参与细胞凋亡的发生。有研究显示脓毒血症AKI患者血、尿中RIP3水平增加,进一步动物研究也发现LPS诱导脓毒血症AKI小鼠,肾组织中RIP3表达增加,并参与脓毒血症AKI中RTEC凋亡的发生,然而机制尚不明确[27]。为验证RIP3是否通过调控FUNDC1介导RTEC凋亡的发生,本研究分别在体内、体外模型中检测RIP3、FUNDC1蛋白的表达情况。

在RIP3/FUNDC1信号通路介导的细胞凋亡途径中,RIP3通过磷酸化FUNDC1上的Tyr18位点,使其失活,进而FUNDC1介导的线粒体自噬被抑制,引起Caspase依赖的细胞凋亡的发生[7]。因此在RIP3/FUNDC1信号通路凋亡通路中,RIP3将介导p18-FUNDC1表达上调。本研究在LPS诱导的小鼠AKI模型及LPS刺激的HK-2细胞中检测RIP3及p18-FUNDC1的表达水平发现,LPS诱导的AKI小鼠模型,肾组织中RIP3、p18-FUNDC1蛋白表达上调;LPS刺激下HK-2细胞中RIP3、p18-FUNDC1表达同样增加,提示RIP3、FUNDC1可能参与LPS诱导的细胞凋亡损伤过程。在体外进一步沉默RIP3后,LPS介导的RTEC凋亡显著减少,p18-FUNDC1蛋白表达减少,表明RIP3/FUNDC1信号通路可能参与介导RTEC凋亡。

中药单体丹参酮IIA是中药丹参的主要成分,其分子结构及相关药理学功效都较为明确,具有抗凋亡、清除氧自由基、抗炎、抗肿瘤等作用。前期研究观察到,丹参酮IIA具有潜在的肾脏保护效应[28-30],但目前还没有关于丹参酮IIA对保护脓毒血症AKI的效应及机制研究。本研究中,我们发现丹参酮IIA可减轻LPS诱导的RTEC凋亡损伤。我们首先证实了丹参酮IIA可下调LPS诱导的AKI小鼠肾组织中凋亡蛋白Cleaved-caspase3的表达;还可减少TUNEL染色的阳性细胞数及下调HK-2细胞中蛋白Cleaved-caspase-3的表达。进一步,我们在体外模型中证实了丹参酮IIA的这一保护效应。

丹参酮IIA是通过什么机制减轻RTEC损伤?我们首次发现丹参酮IIA可下调RIP3的表达水平,并通过抑制RIP3/p18-FUNDC1信号通路改善RTEC凋亡水平。这为这种单体中医成分的肾保护提供了一种可能的机制假说。因此,我们提出丹参酮IIA一种新的RTEC保护途径。本研究不足之处,所选丹参酮IIA的剂量单一,对AKI的具体保护机制尚不清楚,故仍需进一步研究。

综上,丹参酮IIA可通过抑制RIP3/p18-FUNDC1信号通路来保护LPS诱导的RTEC损伤。丹参酮IIA作为中药丹参的主要活性成分,其现代药理作用丰富,毒副作用小,在临床中具有较好的应用价值。

Biography

张舒,博士研究生,E-mail: zhangshucherry@163.com

Funding Statement

市校(院)联合资助项目基础与应用基础研究项目(202201020322)

Contributor Information

张 舒 (Shu ZHANG), Email: zhangshucherry@163.com.

陈 刚毅 (Gangyi CHEN), Email: cgy08@126.com.

References

  • 1.Barbar SD, Clere-Jehl R, Bourredjem A, et al. Timing of renalreplacement therapy in patients with acute kidney injury and Sepsis. N Engl J Med. 2018;379(15):1431–42. doi: 10.1056/NEJMoa1803213. [Barbar SD, Clere-Jehl R, Bourredjem A, et al. Timing of renalreplacement therapy in patients with acute kidney injury and Sepsis[J]. N Engl J Med, 2018, 379(15): 1431-42.] [DOI] [PubMed] [Google Scholar]
  • 2.Yoo JY, Cha DR, Kim B, et al. LPS-induced acute kidney injury is mediated by Nox4-SH3YL1. Cell Rep. 2020;33(3):108245. doi: 10.1016/j.celrep.2020.108245. [Yoo JY, Cha DR, Kim B, et al. LPS-induced acute kidney injury is mediated by Nox4-SH3YL1[J]. Cell Rep, 2020, 33(3): 108245.] [DOI] [PubMed] [Google Scholar]
  • 3.Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 2020;27(1):210–26. doi: 10.1038/s41418-019-0349-y. [Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J]. Cell Death Differ, 2020, 27(1): 210-26.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Linkermann A, de Zen F, Weinberg J, et al. Programmed necrosis in acute kidney injury. Nephrol Dial Transplant. 2012;27(9):3412–9. doi: 10.1093/ndt/gfs373. [Linkermann A, de Zen F, Weinberg J, et al. Programmed necrosis in acute kidney injury[J]. Nephrol Dial Transplant, 2012, 27(9): 3412-9.] [DOI] [PubMed] [Google Scholar]
  • 5.Li RZ, Zhao XC, Zhang S, et al. RIP3 impedes transcription factor EB to suppress autophagic degradation in septic acute kidney injury. Cell Death Dis. 2021;12:593. doi: 10.1038/s41419-021-03865-8. [Li RZ, Zhao XC, Zhang S, et al. RIP3 impedes transcription factor EB to suppress autophagic degradation in septic acute kidney injury[J]. Cell Death Dis, 2021, 12: 593.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Xu Y, Ma H, Shao J, et al. A role for tubular necroptosis in cisplatininducedAKI. JAm Soc Nephrol. 2015;26(11):2647–58. doi: 10.1681/ASN.2014080741. [Xu Y, Ma H, Shao J, et al. A role for tubular necroptosis in cisplatininducedAKI[J]. JAm Soc Nephrol, 2015, 26(11): 2647-58.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wei X, Wei X, Lu ZS, et al. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic Reticulum-mitochondria contact in podocytes. Metabolism. 2020;105:154182. doi: 10.1016/j.metabol.2020.154182. [Wei X, Wei X, Lu ZS, et al. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic Reticulum-mitochondria contact in podocytes[J]. Metabolism, 2020, 105: 154182.] [DOI] [PubMed] [Google Scholar]
  • 8.Wang J, Zhu PJ, Li RB, et al. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 2020;30:101415. doi: 10.1016/j.redox.2019.101415. [Wang J, Zhu PJ, Li RB, et al. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission[J]. Redox Biol, 2020, 30: 101415.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Wu S, Lu Q, Ding Y, et al. Hyperglycemia-driven inhibition of AMPactivated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic Reticulum membranes in vivo. Circulation. 2019;139(16):1913–36. doi: 10.1161/CIRCULATIONAHA.118.033552. [Wu S, Lu Q, Ding Y, et al. Hyperglycemia-driven inhibition of AMPactivated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic Reticulum membranes in vivo[J]. Circulation, 2019, 139(16): 1913-36.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Des Devel Ther. 2020;14:4735–48. doi: 10.2147/DDDT.S266911. [Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases[J]. Drug Des Devel Ther, 2020, 14: 4735-48.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Xu L, Xu Y, Zhu Z, et al. Tanshinone IIA attenuates renal injury during hypothermic preservation via the MEK/ERK1/2/GSK-3β pathway. BMC Complement Med Ther. 2021;21(1):257. doi: 10.1186/s12906-021-03427-7. [Xu L, Xu Y, Zhu Z, et al. Tanshinone IIA attenuates renal injury during hypothermic preservation via the MEK/ERK1/2/GSK-3β pathway[J]. BMC Complement Med Ther, 2021, 21(1): 257.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Tai H, Jiang XL, Lan ZM, et al. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemiareperfusion injury in obese rats. BMC Complement Med Ther. 2021;21(1):100. doi: 10.1186/s12906-021-03270-w. [Tai H, Jiang XL, Lan ZM, et al. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemiareperfusion injury in obese rats[J]. BMC Complement Med Ther, 2021, 21(1): 100.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Dou JY, Zhang M, Cen H, et al. Salvia miltiorrhiza bunge (Danshen) and bioactive compound tanshinone IIA alleviates cisplatin-induced acute kidney injury through regulating PXR/NF-κB signaling. Front Pharmacol. 2022;13:860383. doi: 10.3389/fphar.2022.860383. [Dou JY, Zhang M, Cen H, et al. Salvia miltiorrhiza bunge (Danshen) and bioactive compound tanshinone IIA alleviates cisplatin-induced acute kidney injury through regulating PXR/NF-κB signaling[J]. Front Pharmacol, 2022, 13: 860383.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Manrique-Caballero CL, del Rio-Pertuz G, Gomez H. Sepsis-associated acute kidney injury. Crit Care Clin. 2021;37(2):279–301. doi: 10.1016/j.ccc.2020.11.010. [Manrique-Caballero CL, del Rio-Pertuz G, Gomez H. Sepsis-associated acute kidney injury[J]. Crit Care Clin, 2021, 37(2): 279-301.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Alobaidi R, Basu RK, Goldstein SL, et al. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35(1):2–11. doi: 10.1016/j.semnephrol.2015.01.002. [Alobaidi R, Basu RK, Goldstein SL, et al. Sepsis-associated acute kidney injury[J]. Semin Nephrol, 2015, 35(1): 2-11.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Sun J, Zhang J, Tian J, et al. Mitochondria in Sepsis-induced aki. J Am Soc Nephrol. 2019;30(7):1151–61. doi: 10.1681/ASN.2018111126. [Sun J, Zhang J, Tian J, et al. Mitochondria in Sepsis-induced aki[J]. J Am Soc Nephrol, 2019, 30(7): 1151-61.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Huang GW, Bao JW, Shao XH, et al. Inhibiting pannexin-1 alleviates Sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis. Life Sci. 2020;254:117791. doi: 10.1016/j.lfs.2020.117791. [Huang GW, Bao JW, Shao XH, et al. Inhibiting pannexin-1 alleviates Sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis[J]. Life Sci, 2020, 254: 117791.] [DOI] [PubMed] [Google Scholar]
  • 18.Kuwabara S, Goggins E, Okusa MD. The pathophysiology of SepsisassociatedAKI. Clin JAm Soc Nephrol. 2022;17(7):1050–69. doi: 10.2215/CJN.00850122. [Kuwabara S, Goggins E, Okusa MD. The pathophysiology of SepsisassociatedAKI[J]. Clin JAm Soc Nephrol, 2022, 17(7): 1050-69.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from Sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–99. doi: 10.1016/j.kint.2019.05.026. [Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from Sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96(5): 1083-99.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–64. doi: 10.1016/S0140-6736(19)32563-2. [Ronco C, Bellomo R, Kellum JA. Acute kidney injury[J]. Lancet, 2019, 394(10212): 1949-64.] [DOI] [PubMed] [Google Scholar]
  • 21.Moriwaki K, Chan FK. RIP3:a molecular switch for necrosis and inflammation. Genes Dev. 2013;27(15):1640–9. doi: 10.1101/gad.223321.113. [Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation[J]. Genes Dev, 2013, 27(15): 1640-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci. 2005;30(3):151–9. doi: 10.1016/j.tibs.2005.01.003. [Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress[J]. Trends Biochem Sci, 2005, 30(3): 151-9.] [DOI] [PubMed] [Google Scholar]
  • 23.Mandal P, Berger SB, Pillay S, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 2014;56(4):481–95. doi: 10.1016/j.molcel.2014.10.021. [Mandal P, Berger SB, Pillay S, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity[J]. Mol Cell, 2014, 56(4): 481-95.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Liu Y, Liu T, Lei T, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review) Int J Mol Med. 2019;44(3):771–86. doi: 10.3892/ijmm.2019.4244. [Liu Y, Liu T, Lei T, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review)[J]. Int J Mol Med, 2019, 44(3): 771-86.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sun LM, Wang HY, Wang ZG, et al. Mixed lineage kinase domainlike protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1/2):213–27. doi: 10.1016/j.cell.2011.11.031. [Sun LM, Wang HY, Wang ZG, et al. Mixed lineage kinase domainlike protein mediates necrosis signaling downstream of RIP3 kinase[J]. Cell, 2012, 148(1/2): 213-27.] [DOI] [PubMed] [Google Scholar]
  • 26.Kaiser WJ, Sridharan H, Huang CZ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288(43):31268–79. doi: 10.1074/jbc.M113.462341. [Kaiser WJ, Sridharan H, Huang CZ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL[J]. J Biol Chem, 2013, 288(43): 31268-79.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Sureshbabu A, Patino E, Ma KC, et al. RIPK3 promotes Sepsisinduced acute kidney injury via mitochondrial dysfunction. JCI Insight. 2018;3(11):e98411. doi: 10.1172/jci.insight.98411. [Sureshbabu A, Patino E, Ma KC, et al. RIPK3 promotes Sepsisinduced acute kidney injury via mitochondrial dysfunction[J]. JCI Insight, 2018, 3(11): e98411.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Liang R, Zhao Q, Jian G, et al. Tanshinone IIA attenuates contrastinduced nephropathy via Nrf2 activation in rats. Cell Physiol Biochem. 2018;46(6):2616–23. doi: 10.1159/000489688. [Liang R, Zhao Q, Jian G, et al. Tanshinone IIA attenuates contrastinduced nephropathy via Nrf2 activation in rats[J]. Cell Physiol Biochem, 2018, 46(6): 2616-23.] [DOI] [PubMed] [Google Scholar]
  • 29.Jiang C, Shao Q, Jin B, et al. Tanshinone IIA attenuates renal fibrosis after acute kidney injury in a mouse model through inhibition of fibrocytes recruitment. Biomed Res Int. 2015;2015:867140. doi: 10.1155/2015/867140. [Jiang C, Shao Q, Jin B, et al. Tanshinone IIA attenuates renal fibrosis after acute kidney injury in a mouse model through inhibition of fibrocytes recruitment[J]. Biomed Res Int, 2015, 2015: 867140.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Xu S, He L, Ding K, et al. Tanshinone IIA ameliorates streptozotocininduced diabetic nephropathy, partly by attenuating PERK pathwayinduced fibrosis. Drug Des Devel Ther. 2020;14:5773–82. doi: 10.2147/DDDT.S257734. [Xu S, He L, Ding K, et al. Tanshinone IIA ameliorates streptozotocininduced diabetic nephropathy, partly by attenuating PERK pathwayinduced fibrosis[J]. Drug Des Devel Ther, 2020, 14: 5773-82.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES