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Abstract

The development of efficient computational methods for drug target protein

identification can compensate for the high cost of experiments and is therefore

of great significance for drug development. However, existing structure-based

drug target protein-identification algorithms are limited by the insufficient

number of proteins with experimentally resolved structures. Moreover,

sequence-based algorithms cannot effectively extract information from protein

sequences and thus display insufficient accuracy. Here, we combined the

sequence-based self-supervised pretraining protein language model ESM1b with

a graph convolutional neural network classifier to develop an improved,

sequence-based drug target protein identification method. This complete model,

named QuoteTarget, efficiently encodes proteins based on sequence informa-

tion alone and achieves an accuracy of 95% with the nonredundant drug target

and nondrug target datasets constructed for this study. When applied to all pro-

teins from Homo sapiens, QuoteTarget identified 1213 potential undeveloped

drug target proteins. We further inferred residue-binding weights from the well-

trained network using the gradient-weighted class activation mapping (Grad–
Cam) algorithm. Notably, we found that without any binding site information

input, significant residues inferred by the model closely match the experimen-

tally confirmed drug molecule-binding sites. Thus, our work provides a highly

effective sequence-based identifier for drug target proteins, as well to yield new

insights into recognizing drug molecule-binding sites. The entire model is avail-

able at https://github.com/Chenjxjx/drug-target-prediction.
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1 | INTRODUCTION

With the development of high-throughput sequencing
technology, the number of known proteins has increased

exponentially (Nucleic Acids Res, 2021). However,
despite this increase, only about 3000 proteins have been
identified as targets for drug molecules in clinical use
(Wishart et al., 2018) far fewer than the total number of
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proteins that have been discovered. Indeed, due to the
significant time and economic cost of drug discovery
(DiMasi et al., 2016; Scannell et al., 2012; Paul
et al., 2010) process of target protein identification is
much slower and costlier than that of protein discovery
(Swaminathan et al., 2018; Alfaro et al., 2021; Wouters
et al., 2020). This has highlighted the need for developing
efficient computational tools to accurately identify new
drug target proteins (Gashaw et al., 2011) which can
compensate for the deficiency of experimental screening
and accelerate drug development.

Several databases, such as DrugBank (Wishart
et al., 2018) and the Therapeutic Target Database (TTD)
(Wang et al., 2020) had been constructed, which contain
critical information on clinically available drugs, includ-
ing additional information such as mechanisms of action,
known target proteins, and metabolism. Based on these
databases, computational tools to identify putative drug
targets were subsequently developed (Tian et al., 2018;
Xu et al., 2018; Le Guilloux et al., 2009; Hussein
et al., 2015; Zhang et al., 2022a). Among them, some
methods rely on the conformational structure of proteins
(Volkamer et al., 2010) while others depict proteins using
their sequence characteristics and physicochemical prop-
erties (Thangudu et al., 2012). These methods have been
reported to identify drug target proteins with accuracies
of nearly 90% (Yu et al., 2022). However, as the number
of currently known drug target proteins is still small, and
the dataset of putative nondrug target proteins may con-
sist of potentially undeveloped drug target proteins
(Thangudu et al., 2012) these drug targets prediction
methods may need further evaluation on larger external
datasets, even though they demonstrated high accuracies
on individual datasets (Jamali et al., 2016; Sun
et al., 2018; Li & Lai, 2007).

Notably, the release of AlphaFold2 (Jumper
et al., 2021) a tool for predicting protein structures based
on artificial intelligence, has inspired the development of
data-driven approaches that integrate information on
protein coevolution, phylogenetic relationships, and con-
served sites from multiple sequence alignment (MSA) to
uncover meaningful embeddings for amino acid and sec-
ondary structures (Rao et al., 2019; Rives et al., 2021;
Zhang et al., 2022b; Rao et al., 2021; Jing et al., 2021).
These methods perform better than traditional natural
language processing algorithms in several different
downstream tasks (Kulmanov & Hoehndorf, 2021;
Gligorijevi�c et al., 2021). For instance, ESM1b (Rives
et al., 2021) a sequence-based, self-supervised pretraining
transformer protein language model based on positional
context, has been used to predict both protein function
and folding categories, demonstrating a strong generali-
zation ability (Zhang et al., 2022c; Guo et al., 2022). This

highlights the tremendous potential for performing drug
target protein identification and addressing the
urgent need for new druggable targets by combining
effective pretraining models with deep learning-based
frameworks.

Here, we constructed a complete algorithm flow
called QuoteTarget (Sequence-based transformer protein
language model to identify potential druggable protein
targets), which includes both a protein representation
method and a classifier for identifying potential drug tar-
get proteins. By combining the sequence-based pretrain-
ing model ESM1b with a graph convolutional neural
network (GCN)-based classifier, our algorithm achieves
95% classification accuracy on the nonredundant dataset.
QuoteTarget outperformed existing methods and demon-
strated a strong generalization ability on multiple data-
sets. In addition, QuoteTarget was used to identify 1213
undeveloped putative drug target proteins in Homo sapi-
ens, thereby providing a valuable reference for future
experimental studies. Using the gradient-weighted class
activation mapping (Grad–Cam) algorithm, we calculated
residue-binding weights from the well-trained model,
which are consistent with experimentally confirmed drug
molecule-binding sites. Our study, therefore, provides an
efficient model for extracting features from amino acid
sequences alone to perform drug target protein identifica-
tion, with potential implications for recognizing drug-
binding sites.

2 | RESULTS

2.1 | Composition and basic features of
the dataset

To compile data for developing a comprehensive drug
target prediction algorithm, we first collected and inte-
grated datasets containing known drug target proteins
and nondrug target proteins. Drug target proteins were
obtained from the DrugBank and TTD databases. Drug-
Bank includes comprehensive molecular information
about drugs, including their mechanisms, interactions,
and targets (Wishart et al., 2018) and TTD is a database
consisting of therapeutic targets (Wang et al., 2020). After
removing duplicated proteins and proteins with sequence
identities larger than 95%, we obtained 6582 drug target
proteins, including 4056 entries from H. sapiens. This
group contains proteins bound by molecules in Drug-
Bank from the following categories: approved, small mol-
ecule, biotech, experimental, nutraceutical, illicit,
withdrawn, and investigational. A total of 2837 target
proteins (2183 from H. sapiens) for drug molecules
approved by the US Food and Drug Administration
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(FDA) were included in the drug target group
(Figure 1a).

To compile the nondrug target protein datasets, we
first removed the known drug target proteins from the
Swiss-Prot database (Boutet et al., 2007). We then
removed similar sequences using several different
methods. Based on the Pfam (Mistry et al., 2021) data-
base, we constructed a dataset of nondrug target proteins
with protein family redundancy removed, which contains
10,641 proteins. In addition, we constructed three other
datasets of nondrug target proteins with redundant pro-
teins removed based on varying levels of sequence simi-
larity. By using three different E-value (same meaning as

BLAST E-value) cutoffs of 0.001 (Evalue0.001), 1 (Eva-
lue1), and 10 (Evalue10), we obtained datasets containing
11,803, 9389, and 5330 proteins, respectively (Figure 1a);
of these, 7900, 5941, and 3078 proteins, respectively, are
from H. sapiens. In conclusion, we obtained two distinct
datasets of drug target proteins and four distinct datasets
of nondrug target proteins. Combining positive and nega-
tive samples, we got a total of eight datasets: All-Pfam,
All-Evalue0.001, All-Evalue1, All-Evalue10, App-Pfam,
App-Evalue0.001, App-Evalue1, and App-Evalue10.

To determine whether we could detect a clear distinc-
tion between features of the drug target proteins com-
pared to the nondrug target proteins, we measured the

FIGURE 1 The composition and basic features of the datasets constructed in this study. (a) we utilized two drug-target datasets: (1) all

targets and (2) Food and Drug Administration (FDA)-approved drug targets, as well as four nondrug-target datasets, constructed using

different extraction methods. (b) Length distribution of all drug-target proteins and nondrug-target proteins from Pfam. (c) Dimensionality

reduction of protein sequences based on uniform manifold approximation and projection (UMAP). Purple dots represent all drug-target

proteins and yellow dots represent nondrug-target proteins from Pfam. (d) Data analyzed as in (c), including only FDA-approved drug

targets
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length of amino acid sequences for proteins in both
groups (Figure 1b). We found that using protein length
alone cannot distinguish the two clusters of proteins. We
then encoded the proteins based on their sequences and
reduced dimensionality to a two-dimensional (2D) plane
using Uniform Manifold Approximation and Projection
(UMAP). It showed that neither all drug target proteins
nor FDA-approved drug target proteins could be clearly
distinguished from nondrug target proteins (Figure 1c,d).
These results indicated that a powerful classifier is
needed to distinguish drug target proteins from nondrug
target proteins.

2.2 | Flow of the drug target protein-
identification algorithm

To computationally identify drug target proteins, we con-
structed a complete algorithm flow from protein repre-
sentation to classification. To this end, a sequence-based
protein representation method was first built using a pre-
training model by encoding each protein sequence into a
protein representation matrix with size LM and a contact
map matrix with size L � L (Figure 2a, top panel). We
adopted the pretraining model from ESM1b in this step,
which is a large-scale, self-supervised, and transformer-
based protein language framework from Rives et al.
(Rives et al., 2021) (Figure 2a, bottom panel).

To better extract features of proteins for subsequent
classification, we then constructed a classifier based on a

GCN (Figure 2b). Each amino acid in a protein was
represented as a node of the graph, with the contact map
matrix serving as the adjacency matrix (see Methods).
The inputs then passed through two identically struc-
tured stacked graph convolutional layers and one self-
attention layer. Finally, the classification results were
output through a full-connection layer.

To determine the essential residue sites for drug–
protein interactions, we also calculated the binding
weight of each residue using the Grad–Cam algorithm. In
this step, the output of the classifier was backpropagated
to the last layer of the GCN, and the obtained gradients
were then multiplied by the activation matrix elements
for that layer to get the binding weight for each residue
(Figure 2c, see Methods for details). The complete algo-
rithm was named QuoteTarget and is available at https://
github.com/Chenjxjx/drug-target-prediction.

2.3 | Results on 5-fold cross-validation
and an external test dataset

Using the aforementioned protein representation method
and GCN, we then trained models on randomly extracted
datasets and tested them on external test datasets. To ver-
ify the robustness of QuoteTarget, we showed the average
index with a standard deviation of all models rather than
the optimal index from the 5-fold cross-validation. The
results revealed that QuoteTarget demonstrated excellent
performance on both validation datasets and external test

FIGURE 2 Flowchart for the drug target protein-prediction algorithm QuoteTarget developed in this study. (a) Protein pretraining

model and coding steps. All protein sequences were encoded into a matrix and a contact map as inputs for subsequent classifiers (top panel).

This pretraining model was adapted from Rives et al. (bottom panel). (b) Training graph convolutional neural network (GCN) for drug target

protein classification. The matrices generated in the coding step were used as the nodes of the graph, and the contact maps were used as the

edges of the graph. (c) The drug molecular-binding weight of each residue was calculated by grad–cam algorithm. Left panel shows an

example of protein 3IHJ. The color represents the drug's molecular-binding weight
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dataset, with an accuracy reaching 0.95 (95%). In
addition, we found that QuoteTarget also performed well
on other metrics, including precision, F1 score, Mcc
(Matthews correlation coefficient), sensitivity, and
specificity (Table 1). To eliminate possible effects of
our de-redundancy approaches, we also trained models
separately on datasets of All-Pfam, All-Evalue0.001, All-
Evalue1, and All-Evalue10. The results showed that Quo-
teTarget performed equally well on all these datasets
(Table 1). What's more, QuoteTarget performed well in
receiver operating characteristic (ROC) curve analysis on

both validation datasets and external test dataset, and
areas under the curve (AUC) were all above 0.98
(Figure 3a). These results indicated that our algorithm
identified drug target proteins accurately and reliably
with a strong generalization ability.

To further verify the robustness of the algorithm, we
trained and tested QuoteTarget on four other datasets of
App-Pfam, App-Evalue0.001, App-Evalue1, and App-Eva-
lue10. As above, we found the accuracy was close to 95%,
and the algorithm also performed well on other metrics
(Table 2). Moreover, ROC curves showed good

TABLE 1 Classification results of QuoteTarget on the all drug target dataset

Dataset Acc Precision F1 Mcc Sensitivity Specificity

5-fold
cross-validation

All-Pfam 0.95 ± 0.00 0.96 ± 0.01 0.94 ± 0.00 0.90 ± 0.01 0.92 ± 0.01 0.97 ± 0.01

All-Evalue0.001 0.96 ± 0.01 0.97 ± 0.01 0.94 ± 0.00 0.90 ± 0.00 0.90 ± 0.01 0.98 ± 0.00

All-Evalue1 0.95 ± 0.00 0.97 ± 0.01 0.94 ± 0.01 0.90 ± 0.01 0.91 ± 0.02 0.98 ± 0.01

All-Evalue10 0.94 ± 0.00 0.97 ± 0.01 0.95 ± 0.00 0.89 ± 0.01 0.93 ± 0.01 0.96 ± 0.02

External test All-Pfam 0.95 ± 0.00 0.96 ± 0.01 0.94 ± 0.00 0.90 ± 0.01 0.91 ± 0.01 0.98 ± 0.00

All-Evalue0.001 0.96 ± 0.00 0.97 ± 0.01 0.93 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.98 ± 0.00

All-Evalue1 0.95 ± 0.00 0.96 ± 0.01 0.93 ± 0.00 0.89 ± 0.00 0.91 ± 0.01 0.97 ± 0.01

All-Evalue10 0.94 ± 0.00 0.97 ± 0.01 0.95 ± 0.00 0.89 ± 0.01 0.93 ± 0.01 0.96 ± 0.01

Note: The indexes in the table are the mean values and standard deviations are from the 5-fold cross-validation.
Abbreviations: Acc, accuracy; F1, F1-score; Mcc, Matthews correlation coefficient.

FIGURE 3 Receiver operating characteristic (ROC) curves for classification results with the QuoteTarget algorithm on different

datasets. (a) Classification results on datasets of all-Pfam, all-Evalue0.001, all-Evalue1, and all-Evalue10. Red line represents the ROC curve

of the external test dataset, and gray line represents the ROC curve of 5-fold cross-validation. (b) Classification results for data analyzed as

(a) but using datasets of app-Pfam, app-Evalue0.001, app-Evalue1, and app-Evalue10
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performance for both validation datasets and external test
dataset, with AUC values above 0.96 (Figure 3b).

Given that there are more nontarget proteins than
drug-target proteins in our datasets, we performed addi-
tional analysis to eliminate possible effects from the dif-
ferent dataset sizes. To this end, we retrained
QuoteTarget with randomly extracted nondrug target
samples so that the numbers of target and nontarget pro-
teins were comparable. We found that regardless of the
dataset, QuoteTarget displayed high accuracy and stabil-
ity, other than a slight decrease in accuracy observed
with the decreased training data (Tables S1 and S2).
These results demonstrated that our algorithm was
robust for various data extraction methods and can iden-
tify drug target proteins accurately.

2.4 | Performance comparison with
different protein representation methods
and different classifiers

QuoteTarget algorithm can be divided into two parts:
protein representation and classifier. We first tested and
compared the performance of QuoteTarget with word2-
vec for protein representation method. word2vec is a typi-
cal encoding algorithm for language processing, which
has also been utilized for encoding protein sequences in
previous studies (Li & Lai, 2007; Chu et al., 2022; Saar
et al., 2021). For this analysis, we used the hyperpara-
meter of word2vec, which was shown to be optimal for
protein classification (see Methods). As the output of
word2vec cannot be adapted by GCN, we chose tradi-
tional machine learning methods as classifiers, including
decision tree, K-nearest neighbor, GaussionNB, SVM,
logistic regression, and random forest. Taking the dataset
of All-Pfam as an example, we found that the perfor-
mance of word2vec was significantly inferior to that of
ESM1b in both 5-fold cross-validation and the external
test (Figure 4). Detailed analyses showed that word2vec

combined with traditional machine learning classifiers
cannot extract features effectively, and sometimes all
samples were classified as negative. We also performed
an ablation of ESM1b pretraining model, that was, repla-
cing the complete ESM1b with randomly initialized
ESM1b, and then re-training QuoteTarget on our dataset.
The performance of the algorithm after ESM1b ablation
was significantly inferior to that using the complete
ESM1b (Figure 4, Figure S1a,b, Table S3). In summary,
as a powerful protein encoding method, ESM1b signifi-
cantly improved the performance of QuoteTarget.

AlphaFold2 has made a great breakthrough in struc-
tural prediction (Jumper et al., 2021). Next, we wanted to
explore whether the use of contact maps predicted by
AlphaFold2 could be better than ESM1b. We retrained
QuoteTarget using the contact maps predicted by Alpha-
Fold2 (see Methods for details). On both All-Pfam and
App-Pfam datasets, the results with AlphaFold2 were
very close to those with ESM1b (Table 3). In most statisti-
cal indexes, there was only a 0.01 fluctuation between
AlphaFold2 and ESM1b. However, predicting contact
maps using AlphaFold2 consumed 36 times more time
than ESM1b with the same computational resources (see
Methods). These results highlighted the high efficiency of
ESM1b in protein encoding.

As for the classifier, we then compared the perfor-
mance of GCN to the traditional machine learning
methods combined with the ESM1b protein representa-
tion. The results on multiple datasets showed that the tra-
ditional machine learning methods performed well with
accuracies higher than 0.8 (80%), but not as good as GCN
(Figure S1c–f, Table S4).

2.5 | Comparison of QuoteTarget with
other methods

Next, we compared QuoteTarget with two best-
performing drug target protein prediction algorithms that

TABLE 2 Classification results of QuoteTarget on the FDA-approved drug target dataset

Dataset Acc Precision F1 Mcc Sensitivity Specificity

5-fold
cross-validation

App-Pfam 0.94 ± 0.00 0.91 ± 0.01 0.86 ± 0.01 0.82 ± 0.01 0.81 ± 0.02 0.98 ± 0.00

App-Evalue0.001 0.95 ± 0.00 0.91 ± 0.01 0.86 ± 0.01 0.83 ± 0.01 0.82 ± 0.02 0.98 ± 0.00

App-Evalue1 0.94 ± 0.00 0.91 ± 0.03 0.87 ± 0.01 0.83 ± 0.01 0.84 ± 0.02 0.97 ± 0.01

App-Evalue10 0.93 ± 0.00 0.92 ± 0.02 0.89 ± 0.01 0.84 ± 0.01 0.87 ± 0.01 0.96 ± 0.01

External Test App-Pfam 0.95 ± 0.00 0.93 ± 0.01 0.87 ± 0.01 0.84 ± 0.01 0.81 ± 0.02 0.98 ± 0.00

App-Evalue0.001 0.96 ± 0.00 0.89 ± 0.02 0.88 ± 0.01 0.86 ± 0.01 0.87 ± 0.01 0.97 ± 0.00

App-Evalue1 0.95 ± 0.00 0.94 ± 0.02 0.89 ± 0.01 0.86 ± 0.01 0.84 ± 0.03 0.98 ± 0.01

App-Evalue10 0.93 ± 0.00 0.93 ± 0.01 0.90 ± 0.01 0.85 ± 0.01 0.87 ± 0.02 0.97 ± 0.01

Note: The indexes in the table are the mean values and standard deviations are from the 5-fold cross-validation.
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have been reported recently (Yu et al., 2022). One was
developed by Lin et al. based on protein physicochemical
properties and bagging-SVM classifier, which achieved
the highest accuracy compared to previous studies (Lin
et al., 2019). The other was constructed by Yu et al. based
on hybrid deep learning model, which performed well in
multiple statistical indexes (Yu et al., 2022). In their stud-
ies, several different combinations of protein features and
hyperparameters have been used. We selected the best-
performing feature combinations and hyperparameters
for both methods. We downloaded the source codes and
retrained the two models using their original datasets.
Indeed, we achieved exactly the same accuracy as origi-
nally reported in their articles, respectively, indicating
that we were able to reproduce their models exactly. We
then retrained and tested the two algorithms using their
source codes on our datasets, so that we could make a
fair comparison. The results showed that the accuracy of
QuoteTarget (95%) was much better than the other two
retrained models (67%–84%) on both All-Pram and App-
Pfam datasets. And our algorithm was more robust in
multiple statistical indexes (Table 4). In summary, Quote-
Target performed pretty well on a variety of datasets and
outperformed the existing algorithms.

We also used protein sequence similarity (through
BLAST) as a baseline method. The classification results
with different BLAST parameters on multiple datasets

showed that drug target proteins could not be effectively
distinguished from sequence similarity alone (Table 4,
Table S5).

2.6 | Identification of undeveloped drug
target proteins in H. sapiens

The above results demonstrated that QuoteTarget effi-
ciently extracted features from sequences for identify-
ing drug target proteins, with high-classification
accuracy and strong generalization ability. Next, we
attempted to identify undeveloped drug target proteins
in H. sapiens to provide references for future experi-
mental studies (Figure 5a). Based on the nonredundant
datasets compiled at the start of the study, we extracted
4056 drug target proteins from H. sapiens as positive
samples. A total of 6861 nondrug target proteins from
H. sapiens were then equally divided into three por-
tions, and three iterations were performed. In each iter-
ation, two portions were selected as negative samples
(approximately the same as the number of positive sam-
ples in the drug target protein dataset) for 5-fold cross-
validation. The remaining portion was used as the test
samples. This way, all potential undeveloped targets
among the nondrug target proteins of H. sapiens could
be identified.

FIGURE 4 Comparison of different protein encoding methods combined with different classification algorithms. (a) Classification

results on 5-fold cross-validation with word2vec, randomly initialized ESM1b, and complete ESM1b protein-encoding, respectively. All-Pfam

dataset was used for this analysis. (b) Data analyzed as in (a) but showing the results from the external test dataset

TABLE 3 Classification results of quoteTarget using contact maps predicted by AlphaFold2 instead of ESM1b

Dataset Acc Precision F1 Mcc Sensitivity Specificity

5-fold
cross-validation

All-Pfam 0.96 ± 0.00 0.96 ± 0.00 0.94 ± 0.01 0.90 ± 0.01 0.92 ± 0.01 0.97 ± 0.00

App-Pfam 0.95 ± 0.00 0.93 ± 0.01 0.87 ± 0.01 0.85 ± 0.01 0.82 ± 0.02 0.99 ± 0.00

External Test All-Pfam 0.95 ± 0.00 0.94 ± 0.00 0.93 ± 0.00 0.90 ± 0.00 0.93 ± 0.01 0.96 ± 0.00

App-Pfam 0.94 ± 0.00 0.94 ± 0.00 0.86 ± 0.01 0.83 ± 0.01 0.79 ± 0.01 0.98 ± 0.00

Note: The indexes in the table are the mean values and standard deviations are from the 5-fold cross-validation.
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The results showed that the accuracies of all three
iterations reached 0.95, with strong robustness
(Figure 5b, Table S6). In addition, although the vast
majority of proteins were identified as nondrug target
proteins, a small number of them were identified as drug

target proteins with high QuoteTarget scores. Among the
6861 nondrug target proteins tested, 164 proteins were
judged to be drug targets with a cutoff of 0.5 (Figure 5c,
Table S7). Notably, these proteins were not classified as
drug target proteins in any known database. Gene

TABLE 4 Comparison of QuoteTarget with other algorithms

Algorithm Dataset Acc Precision F1 Mcc Sensitivity Specificity

BLAST All-Pfam 0.28 0.84 0.42 �0.35 0.00 0.84

App-Pfam 0.16 0.82 0.27 �0.39 0.00 0.82

Lin et al. (Lin et al., 2019) All-Pfam 0.73 0.67 0.61 0.41 0.56 0.72

App-Pfam 0.67 0.92 0.21 0.25 0.12 0.93

Yu et al. (Yu et al., 2022) All-Pfam 0.76 0.67 0.77 0.50 0.83 0.67

App-Pfam 0.84 0.93 0.83 0.65 0.81 0.93

QuoteTarget All-Pfam 0.95 0.96 0.94 0.90 0.91 0.98

App-Pfam 0.95 0.93 0.87 0.84 0.81 0.98

FIGURE 5 Identification of undeveloped drug targets in Homo sapiens. (a) Schematic overview of the experimental strategy for

identifying undeveloped drug target proteins. (b) Results of 5-fold cross-validation analysis. The different combinations of datasets

correspond to the three randomly divided groups of nondrug target (negative) proteins in (a). (c) Graph showing the number of proteins

obtained using different weight cutoffs in the test step. (d) Functional enrichment gene ontology (GO) analysis of putative drug target

proteins obtained with a p-value cutoff of 0.5. In total, we identified 164 proteins. Color of the dots represents the �log10 adjusted p-value,

and the size represents the number of proteins
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ontology (GO) enrichment analysis revealed that they are
involved in basic metabolic processes, genome assembly,
and ribosomal synthesis (Figure 5d).

Next, we tested our model on larger datasets to
uncover more drug target candidates. To this end, we
extracted all H. sapiens proteins from the unreviewed
UniProt (TrEMBL) database (The UniProt, 2021). After
removing known drug target proteins and corresponding
protein families, a large dataset containing 62,037 non-
drug target proteins was compiled. Using the well-trained
model for prediction, 60,824 (98%) proteins from this
group were identified as nondrug target proteins by Quo-
teTarget, with a scoring cutoff of 0.5, supporting the
robustness of our model. In addition, we identified 1213
proteins in total with a score above 0.5, which may repre-
sent undeveloped drug target proteins (Figure S2).
Detailed gene lists and scoring values are available in the
Supplementary File.

2.7 | Identification of key residues in
drug target proteins by grad–cam

Lastly, we attempted to determine whether QuoteTarget
can successfully learn information about key residue-
binding sites and extract this information from complex
network parameters. For this analysis, we used Grad–
Cam, a feature weight visualization method for image
recognition (Selvaraju et al., 2020) which was also
applied in protein function identification to calculate res-
idue weights (Gligorijevi�c et al., 2021) and applied it to
our well-trained drug target protein-identification model
(Figure 1c).

Key residue sites for drug target protein identification
form the binding sites for drug molecules and thus have
clear biological relevance. Therefore, residue-binding
weights calculated by Grad–Cam were compared with
experimentally confirmed drug molecule-binding sites
from the BioLiP database (Yang et al., 2013a). For exam-
ple, 3UCD is an asymmetric complex of human neuron-
specific enolase-2-PGA/PEP (Qin et al., 2012). It can bind
to the drug molecule 2PG (Knox et al., 2011) and the 3D
structure has been resolved through structural biology
experiments (Figure 6a). Here, we found that residue-
binding weights from Grad–Cam are in good agreement
with experimentally confirmed drug molecule-binding
sites (Figure 6b). To further confirm the credibility of
Grad–Cam scoring, we randomly scored the residue-
binding weights of the protein 10 times and compared
these values with BioLiP-derived drug molecule-binding
sites. Based on ROC curve analysis, we found that ran-
dom scoring was far inferior to scoring based on the
trained model (Figure 6c). Moreover, in similar analyses

with the proteins 1A4I, 1R3T, and 1Z5V, Grad–Cam
scoring peaks were found to be consistent with
experimentally confirmed drug molecule-binding sites
(Figure 6d–l). We then collected 1571 proteins from the
intersection of the BioLiP database and our drug target
protein dataset. By analyzing the Grad-Cam scores of all
these proteins, we found that >80% proteins have experi-
mentally confirmed drug molecule-binding sites near the
peaks of Grad–Cam scoring (Figure S3a). In total, these
data suggested that QuoteTarget can successfully learn
information about drug molecule-binding sites, and the
residual binding weights can be inferred from complex
network parameters using Grad–Cam.

3 | DISCUSSION

QuoteTarget performed better than previous sequence-
based deep learning methods (Jamali et al., 2016; Li &
Lai, 2007). This may derive from the use of the large-scale
protein pretraining model ESM1b (Rives et al., 2021). For
drug target protein identification, the contact map pre-
dicted by ESM1b with much fewer computing resources
can achieve the same effect as AlphaFold2. To some
extent, this compensates for the lack of experimentally
determined protein structure. Probably due to the effi-
cient protein representation and the strong generalization
ability of ESM1b, we obtained consistently good results
on different datasets without tailoring hyperparameters.
On the other hand, GCN has strong data understanding
and high-cognitive ability (Wu et al., 2021) and the struc-
ture of edges and nodes makes it easier to parse connec-
tions between data. With the combination of ESM1b and
GCN, we have developed a well-performed drug target
protein prediction model with interpretability.

There are numerous advantages to sequence-based
algorithms. In particular, the application of structure-
based algorithms is limited by the fact that there are far
fewer protein structures than sequences. Moreover, our
sequence-based feature extraction may have the potential
to be applied to proteins containing disordered fragments
(Chu et al., 2022) which can deepen our understanding
of the fundamental features of proteins embedded in
sequences.

The druggability of a protein comes from that the pro-
tein can bind to an approved drug molecule with a thera-
peutic benefit (Liu & Altman, 2014). In this sense,
protein druggability is associated with the binding pocket
and the binding affinity of drug molecules (Owens, 2007).
In our results, the majority of proteins had actual binding
sites close to the Grad-Cam score peaks (Figure S3). The
position with high Grad-Cam score is the key position for
classification, indicating that the ability to bind to drug

CHEN ET AL. 9 of 14



molecules is an important criterion for identifying drug-
gable proteins. Given that we did not use any structural
information in QuoteTarget, nor did we train it with any

binding site information, it was remarkable that the
residue-binding weights were consistent with experimen-
tally confirmed drug molecule-binding sites (Figure 6).

FIGURE 6 Residue-binding weights calculated by grad–cam match experimentally confirmed binding sites. (a) 3D conformation of

3UCD binding to the drug molecule 2PG. Yellow spheres represent drug molecules. Color of the cartoon indicates the residue-binding

weights calculated by grad–cam. Higher scored regions are shown in red, and lower scored regions are shown in blue. (b) Comparison

between residue-binding weights calculated by grad–cam and experimentally confirmed binding sites from BioLiP. Gaussian smoothing was

performed for the residue-binding weight curve. (c) ROC curves comparing predicted residue-binding weights and true binding sites. Gray

curves represent the residue-binding weights obtained by random scoring. Results for the protein (d–f) 1A4I, (g–i) 1R3T, and (j–l) 1Z5V,
analyzed as described in (a–c)
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This may be because the evolutionary information con-
tained in a large number of sequences is related to pro-
tein function, which may be essential for drug target
identification.

It is worth noting that for a considerable number of
proteins, there are more peaks based on Grad–Cam scor-
ing than known binding sites in BioLiP (Figure S4). In
these cases, some peaks of Grad-Cam scoring still corre-
sponded to the experimentally confirmed drug molecule-
binding sites. Considering that there may be binding sites
for more than one drug molecule, we speculate that these
additional peaks in Grad–Cam scoring may be potentially
unexplored drug molecule-binding sites. Thus, our algo-
rithm not only provided a tool for identifying drug target
proteins precisely but also had the non-negligible poten-
tial to reveal previously unidentified drug molecule-
binding sites from amino acid sequences alone.

4 | METHODS

4.1 | Dataset integration and
preprocessing

Drug target proteins were obtained from the DrugBank
and TTD databases (Wishart et al., 2018; Wang
et al., 2020). DrugBank database contains 5696 drug tar-
get proteins, including 3061 FDA-approved drug target
proteins. The TTD database contains 3473 drug target
proteins, including 594 FDA-approved drug target pro-
teins. Redundant sequences within each database were
removed using seqkit (Shen et al., 2016) and sequences
with more than 95% identity were removed using CD-
HIT (Fu et al., 2012). After filtering, the DrugBank data-
base retained 5260 drug target proteins, including 2682
FDA-approved drug target proteins, and the TTD data-
base retained 3265 drug target proteins, including
588 FDA-approved drug target proteins. Integration of
the two databases yielded a total of 6582 drug target pro-
teins, including 2837 FDA-approved drug target proteins.
These proteins represent 3494 different protein families
based on Pfam.

Nondrug target proteins were obtained from Swiss-
Prot databases. After removing repeated sequences from
the 27,278 total sequences, 26,714 sequences remained.
We then constructed datasets of nondrug target proteins
in two ways. In the first way, we removed all drug target
protein families from the Pfam database according to the
type of “Family” under the family layer, leaving 10,641
proteins as nondrug target proteins. In the second way,
we removed known drug target proteins from DrugBank
and TTD and then removed proteins with similar
sequences based on different E-values from BLAST. After
removing similar sequences with E-values less than

0.001, 1, and 10, we obtained 11,803, 9389, and 5330 non-
drug target proteins, respectively. Potential nondrug tar-
get proteins in H. sapiens were obtained from the Swiss-
Prot and TreEMBL databases. After removing known
drug target proteins and corresponding protein families
from each group, these contained 6861 and 62,037 non-
target proteins, respectively.

4.2 | Protein encoding with ESM1b

Proteins were encoded by calling the pretraining model
esm1b_t33_650M_UR50S from the ESM1b framework,
which contains 27.1 million UniRef50 sequences. The
maximum protein sequence length that can be used by
the ESM1b model is 1024 residues. For sequences with a
length greater than 1024 residues, tokens exceeding 1024
were removed. For sequences with a length less than
1024 residues, zero-values (missing) were added at the
end to make the matrix reach the length of 1024 for sub-
sequent calculation. We took the values of “representa-
tion” in the 33rd layer tuple of positional embedding as
the protein representation matrix, and then used this rep-
resentation to calculate the contact map (threshold at
8 Å). In QuoteTarget, the L in Figure 1 is 1024 and the M
is 1280.

When AlphaFold2 was used to calculate the contact
maps, the single protein sequence was used as input. The
size of the contact map matrix calculated by AlphaFold2
was L�L�64. Then we performed argmax and normal-
ized the L�L�64 matrix to obtain the contact map
matrix with size L�L. It took 24 hours to calculate the
contact map of 18,000 proteins using AlphaFold2 on 8 x
Nvidia 3090 GPUs. The same task took 40minutes with
ESM1b.

4.3 | Protein encoding with word2vec

word2vec, a typical natural language processing method,
contains two models of continuous bag-of-words
(CBOW) and continuous skip-gram (Mikolov et al., 2013;
Rong, 2014). We used the skip-gram model, with a win-
dow size of three. After a 3-gram overlapped model, each
residue was encoded in 200 dimensions.

4.4 | Machine learning classifiers

For the GCN-based classifier, we used contact maps pre-
dicted by ESM1b as the adjacency matrix and the repre-
sentation vectors of each amino acid as the nodes of the
network. In detail, a protein with L residues was repre-
sented as F �ℝL�M for nodes, contact map C�ℝL�L for
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edge. The graph neural network we used was as
following:

G lþ1ð Þ ¼ σ D�1~CG lð ÞW lð Þ
� �

,

where ~D�ℝL�L was a diagonal degree matrix with
~Dii ¼

P
k
~Cik , and ~Dii normalized ~C to sum up to 1 in each

row. ~C¼Cþ IL was the adjacency matrix. ~C added the
predicted contact map C in graph network with the iden-
tity matrix IL for self-loops. G lð Þ �ℝL�M was the activation
hidden matrix for the lth layer. The initial state G 0ð Þ

defined as G 0ð Þ ¼F. W lð Þ �ℝM�M0
was a weight matrix of

layer-specific trainable parameters which map the fea-
tures from size of M to a lower dimension space with a
size of M0. σ denoted a nonlinear activation function
ReLU �ð Þ. Normalization layer was added after each GCN
layer. the final output of the GCN layers was:
H¼ v1, v2, …, vLð Þ. where vi was a p dimensional vector
token embedding for the ith node. H integrated all token
embeddings with H�ℝL�p.

Then we used the self-attention mechanism to com-
pute the weight coefficients T�ℝr�L. r was the number
of attention groups:

T¼ SoftMax W 2 tanh W 1H
T

� �� �

where HT was the transposition of H�ℝL�p. W 1 �ℝq�p

and W 2 �ℝr�q were two learned attention matrices with
the hyper-parameters q and r. The SoftMax function nor-
malized the weight sum of each row to 1. The final out-
put Out�ℝ1�p was represented by the product of T
and H:

Out¼ 1
r

Xr

k¼1
THð Þk

Hyperparameters during training were as follows: Learn-
ing rate = 1 e-4, Batch size = 64, Weight_decay = 1 e-5,
GCN_feature_dim = 1280, GCN_hidden_dim = 256, and
GCN_output_dim = 64. Hyperparameters of the self-
attention layer were as follows: Dense_dim = 16 and
Attention_heads = 4. Loss function: mean square error
loss. The model was trained for a total of 10 epochs.
Hyperparameters of the models for traditional machine
learning classifiers are shown in Table S8.

4.5 | 5-fold cross-validation and external
test dataset

We randomly extracted one-fifth of the total dataset con-
taining drug and nondrug target samples as the external

test dataset. The remaining data were then used for
5-fold cross-validation. For each fold cross-validation, we
trained 10 models with batch sizes from 1 to 10, and the
optimal model was then selected based on the one with a
minimum loss of validation. Accuracy and other reported
indices are the average values of 5-fold cross-validation
with the standard deviation. The results of the external
test were derived by testing the 5-fold models on the
same external test dataset.

To ensure that the numbers of positive and negative
samples were comparable, we randomly extracted 65%,
55%, 70%, and 100% of proteins from the four nondrug
target datasets, Pfam, Evalue0.001, Evalue1, Evalue10,
respectively, and then analyzed these subsets with the all
drug target dataset. We also randomly extracted 25%,
25%, 30%, and 50% of proteins from the four nondrug tar-
get datasets, Pfam, Evalue0.001, Evalue1, Evalue10,
respectively, and then analyzed these subsets with the
FDA-approved drug target dataset. Results from 5-fold
cross-validation and tests on external datasets were con-
sistent with those described above.

4.6 | GO analysis

Functional enrichment analysis was performed using the
function enrichGO in the R package clusterProfiler, with
the items of biological process (Yu et al., 2012). In addi-
tion, genome-wide annotation org.Hs.eg.db for H. sapiens
was used. All enrichment results were filtered with an
adjusted p-value <0.05.

4.7 | Extraction of residue-binding
weights based on Grad–Cam

The output t of the classifier was back propagated to the
last layer of the GCN. The obtained gradients were then
used to calculate the importance of each filter in the
layer, and the weight α was obtained. Weighted summa-
tions were performed for filter data of each feature layer
G by α. Finally, a matrix representing important sites
with the same length as the protein was obtained by the
ReLU activation function:

Grad�CAM¼ReLU
X
k

αtkG
k

 !

where G represents the feature of the convolutional net-
work layer output of the last graph, t represents the cate-
gory of the target (1 for drug target, and 0 for nontarget),
k represents the kth filter, and αtk represents the weight
on Gk. We then calculated αtk as follows:
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αtk ¼
1
Z

X
i

∂St

∂Gk
i

where St is the score of the drug target identified by the
classifier, and Gk

i represents the parameter of the ith resi-
due in the kth filter.

4.8 | Experimentally confirmed drug
molecule-binding sites

Experimentally confirmed drug molecule-binding sites
were collected from the BioLiP database (Yang
et al., 2013). We integrated all sites that bind to known
drug molecules. The BioLiP database, updated as of
January 5, 2022, contains 1571 proteins and 6089 drug
molecules that overlap with our drug target protein data-
set. For polymeric proteins with multiple chains, we
showed the 3D structure of binding between the A-chain
and drug molecules.
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