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ABSTRACT: Medicinal fungi, including mushrooms, have well-
documented therapeutic uses. In this study, we perform a
cheminformatics-based investigation of the scaffold and structural
diversity of the secondary metabolite space of medicinal fungi and,
moreover, perform a detailed comparison with approved drugs, other
natural product libraries, and semi-synthetic libraries. We find that the
secondary metabolite space of medicinal fungi has similar or higher
scaffold diversity in comparison to other natural product libraries
analyzed here. Notably, 94% of the scaffolds in the secondary metabolite
space of medicinal fungi are not present in the approved drugs. Further,
we find that the secondary metabolites, on the one hand, are structurally
far from the approved drugs, while, on the other hand, they are close in terms of molecular properties to the approved drugs. Lastly,
chemical space visualization using dimensionality reduction methods showed that the secondary metabolite space has minimal
overlap with the approved drug space. In a nutshell, our results underscore that the secondary metabolite space of medicinal fungi is
a valuable resource for identifying potential lead molecules for natural product-based drug discovery.
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B INTRODUCTION example is fingolimod, an approved drug for multiple sclerosis,
obtained by synthetically modifying the fungal metabolite

Natural products, semi-synthetics, and synthetic libraries of 5
myriocin. - Thus, several databases of natural products of plant

different sources are being leveraged in high-throughput

screening (HTS) to identify new antiviral, antibacterial, and and microbial origins have been developed to facilitateiBt}}S
anticancer agents.”” In addition, there is an increased focus ongoing efforts in natural product-based drug discovery. ™
toward natural product libraries for identification of new Specifically, there have been several efforts to develop and
chemical entities with immunomodulatory, anti-aging, and analyze phytochemical libraries of medicinal plants used in
cognitive enhancement properties to prevent diseases and traditional medicine, such as TCM-Mesh'® and IMPPAT."""”
promote holistic well-being.”~> In this regard, the selection of In contrast, though medicinal fungi which include a variety of
appropriate chemical libraries with high diversity is a critical mushrooms have also been used in traditional medicine since
step in the drug discovery pipeline. Notably, chemical libraries ancient times,'” the secondary metabolite space of medicinal
with high structural diversity have a higher hit identification fungi remains comparatively much less explored. To this end,
rate in HTS than similarly sized libraries with low structural we previously created MeFSAT, a curated natural product
diversity.”” Therefore, it is imperative to assess the diversity database compiling information on 184 medicinal fungi, a
encoded by natural product libraries, which are a promising chemical library of 1830 secondary metabolites produced by
source of diverse chemical scaffolds. medicinal fungi, and therapeutic uses of the medicinal fungi."”
Natural products from plants, fungi, bacteria, and marine This enables the analysis of the diversity encoded by the
organisms are rich sources of biologically relevant small secondary metabolite space of medicinal fungi, which in turn

molecules.” Specifically, the natural product space of medicinal
plants and fungi is more likely to be enriched with therapeutic
small molecules.”'” Many fungal secondary metabolites have
been approved as drugs to treat human ailments. A prominent
example is penicillin, the first of the class of broad-spectrum f-
lactam antibiotics to be used clinically. Another example is
lovastatin which is the first statin approved for clinical use.
Lovastatin, initially isolated from the fungus Aspergillus terreus,
is a widely used drug to lower total serum cholesterol and low-
density lipoprotein cholesterol.'’ Also, derivatives of fungal
secondary metabolites have been approved as drugs. One such

will facilitate their use in drug discovery and wellness research.
Medina-Franco and colleagues have developed several
methods for quantifying and visualizing the structural diversity
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Table 1. List of Chemical Libraries Analyzed in This Study”

chemical library description number of unique chemicals reference
MeFSAT secondary metabolites of medicinal fungi 1829 Vivek-Ananth et al, 2021"
Approved drugs approved drugs from DrugBank 2466 Wishart et al,, 2017°°
TCM-Mesh phytochemicals of Chinese herbs 10,127 Zhang et al,, 2017"°
IMPPAT 2.0 phytochemicals of Indian medicinal plants 17,915 Vivek-Ananth et al, 2022"7
CMAUP phytochemicals of medicinal and edible plants across the globe 47,187 Zeng et al, 2019'°
NPATLAS-Bacteria natural products in NPATLAS of bacterial origin 12,505 van Santen et al, 2019'°
NPATLAS-Fungi natural products in NPATLAS of fungal origin 19,966 van Santen et al, 2019'°
MEGx natural product library from a commercial vendor 6458 AnalytiCon Discovery”'
NATx semi-synthetic library from a commercial vendor 33,000 AnalytiCon Discovery”'
MACROx semi-synthetic library from a commercial vendor 4306 AnalytiCon Discovery®'

“For each chemical library, the number of unique chemicals and the literature reference are provided.

Table 2. Comparative Analysis of the Scaffold Diversity of the Secondary Metabolites in MeFSAT with Other Chemical

Libraries”

chemical library M N Niing
MeFSAT 1829 618 370
Approved drugs 2466 1270 1026
TCM-Mesh 10,127 3949 2629
IMPPAT 2.0 17,915 5184 3344
CMAUP 47,187 11,118 6181
NPATLAS-Bacteria 12,508 4234 2463
NPATLAS-Fungi 19,966 6414 3779
MEGx 6458 2566 1723
NATx 33,000 11,445 6370
MACROx 4306 2039 1329

“Here, M is the size of the library, N is the total number of scaffolds (including the pseudo-scaffold for acyclic chemicals) in the library, N,

N/M N/ M Nype/N AUC Py,

0.338 0.202 0.599 0.786 7.443
0.515 0416 0.808 0.729 11.102
0.39 026 0.666 0.77 8.787
0.289 0.187 0.645 0.824 3.492
0236 0.131 0.556 0.837 3913
0.339 0.197 0.582 0.78 9.258
0.321 0.189 0.589 0.794 7.141
0.397 0.267 0.671 0.767 9.08

0.347 0.193 0.557 0.764 11.769
0.474 0.309 0.652 0.719 16.037

ing 18 the

total number of singleton scaffolds in the library, AUC is the area under the curve for the corresponding CSR curve, and P, is the percentage of

scaffolds required to retrieve 50% of chemicals in the library.

of chemical libraries. Medina-Franco et al.”’ were among the
first to perform a systematic analysis of the scaffold diversity
using cyclic system retrieval (CSR) curves and Shannon
entropy (SE). Later, they developed the consensus diversity
plot (CDP) to assess the global diversity of the chemical
libraries.”" Subsequently, these methods have been extensively
used to compare and assess the structural diversity of chemical
libraries, including natural products.”*~*’ Previously, Gonzalez-
Medina et al.”* have also done a comparative analysis of the
scaffold diversity of 223 fungal secondary metabolites with
approved drugs and commercial libraries. They found that the
fungal secondary metabolites are structurally diverse with
unique scaffolds not found in other libraries analyzed by them.
However, all the studies to date on the analysis of the diversity
of the fungal secondary metabolites were limited by a small
library (<300 chemicals) created specifically to identify anti-
cancer leads”**®*’ In other words, to the best of our
knowledge, no scientific study has been performed to assess
the scaffold diversity of a large secondary metabolite library
specifically curated from medicinal fungi.

In this study, we therefore performed a systematic analysis of
the scaffold diversity of a large chemical library (>1800
chemicals) of secondary metabolites of medicinal fungi.
Moreover, we compared the secondary metabolite space of
medicinal fungi (MeFSAT) with nine different chemical
libraries, including natural products, approved drugs, and
commercial semi-synthetic libraries (Table 1), using scaffold
diversity, structural diversity based on MACCS key structural
fingerprints, and diversity in terms of molecular properties. We
also used CDP to assess the global diversity of the chemical
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libraries. Finally, we used generative topographic mapping
(GTM) and principal component analysis (PCA) to visualize
and compare the chemical space of MeFSAT and other
chemical libraries considered here.

B RESULTS AND DISCUSSION

Molecular Scaffolds of the Secondary Metabolite
Space of Medicinal Fungi. MeFSAT' is a dedicated
resource compiling secondary metabolites produced by
medicinal fungi. After building the manually curated
MeFSAT'? database, we had performed a detailed analysis of
the chemical space captured therein. Characterization of the
molecular scaffolds in a chemical library enables identification
of compounds with novel scaffolds that can be considered in
the drug discovery pipeline. Previously, we had not computed
the molecular scaffolds for the secondary metabolites in the
MeFSAT'"’ database. In this study, we therefore identified the
molecular scaffolds for the secondary metabolites of medicinal
fungi (Methods).

Next, we updated the MeFSAT database by including the
valuable information on molecular scaffolds identified in each
secondary metabolite at three different levels, namely, G/N/B,
G/N, and Graph, following the definition by Lipkus et al.*>**
(Methods). The updated database is openly accessible,”* and
the users can filter secondary metabolites by selecting scaffolds
of interest via the “Scaffold filter” tab under “Advanced Search”
option (Figure S1). Moreover, the detailed information page
for each secondary metabolite in the updated database now
displays the identified scaffolds at the three levels (Figure S1).
Also, to further facilitate the use of the MeFSAT database for
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Figure 1. Molecular cloud visualization of the top scaffolds that occur in at least five secondary metabolites in MeFSAT. In this figure, the size of a
scaffold image reflects its frequency of occurrence in the secondary metabolite space of medicinal fungi. Further, we considered only the cyclic
chemicals while selecting the top scaffolds. Moreover, the benzene ring scaffold is omitted from this visualization as it is the most frequent scaffold

in any large chemical library.

drug discovery, we updated the secondary metabolite
annotation with links to external databases which provide
information on the commercial availability of the physical
samples of the chemicals.’**°

Overall, in the secondary metabolites of medicinal fungi
obtained from MeFSAT, we found 618 unique scaffolds at the
G/N/B level, including the pseudo-scaffold used to account for
acyclic chemicals in the library (Table 2; Methods). Of these
618 scaffolds, 56 scaffolds occur in S or more secondary
metabolites, and Figure 1 is a molecular cloud visualization®”*®
of these frequent scaffolds after excluding the benzene ring
scaffold. After computing the molecular scaffolds for the
approved drug space compiled in DrugBank version 5.1.9,*" we
found that there is minimal overlap between scaffolds in the
secondary metabolites of medicinal fungi and scaffolds in
approved drugs. 94% of the scaffolds identified in the
secondary metabolites of medicinal fungi are not present in
approved drugs (Figure 2). This result highlights the unique
scaffolds present in the secondary metabolite space of
medicinal fungi and therefore the potential of this natural
product space for future drug discovery.

Comparative Analysis of the Scaffold Diversity of
Secondary Metabolite Space of Medicinal Fungi with
Other Chemical Libraries. In this study, we compared the
scaffold diversity of secondary metabolites of medicinal fungi
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1231 38 579

Approved drugs
MeFSAT

Figure 2. Venn diagram displays the overlap between the molecular
scaffolds occurring in the secondary metabolite space of MeFSAT and
approved drugs in DrugBank.

(MeFSAT) with 9 other chemical libraries (Table 1;
Methods). Table 2 provides the statistics on the number of
scaffolds (N), the fraction of scaffolds per molecule (N/M),
and the number of singleton scaffolds (N,,) for the 10
chemical libraries analyzed here.

In terms of the fraction of scaffolds per molecule, the
secondary metabolite space of MeFSAT (N/M = 0.338) is
similar to the libraries of natural products from fungi
(NPATLAS-Fungi; N/M = 0.321) and natural products from
bacteria (NPATLAS-Bacteria; N/M = 0.339). Although the
library of approved drugs from DrugBank and the semi-
synthetic library MACROx are among the smallest in terms of
library size, the two chemical libraries were found to have a
higher N/M ratio of 0.515 and 0.474, respectively. In terms of
the fraction of singleton scaffolds per molecule, the secondary
metabolite space of MeFSAT (N;,.,/M = 0.202) was found to

ing

ing:
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have a higher value in comparison to relatively larger natural
product libraries, namely, IMPPAT 2.0, CMAUP, and
NPATLAS-Fungi, analyzed here (Table 2). Overall, in terms
of the fraction of scaffolds per molecule and the fraction of
singleton scaffolds per molecule, the secondary metabolite
space of MeFSAT has scaffold diversity similar or higher in
comparison to other natural product libraries analyzed here
(Table 2).

Analysis of Scaffold Diversity via Cyclic System
Retrieval Curves. Inspired by previous investiga-
tions,'*>*>** we computed CSR curves to quantify and
compare the scaffold diversity of chemical libraries (Figure 3;

100 >
0
< 80
U
5 /
< 601/ —— MeFSAT
8 —— Approved drugs
S} / TCM-Mesh
= 401/} IMPPAT 2.0
qc) CMAUP
‘L) NPATLAS-Bacteria
0] i NPATLAS-Fungi
a 20 MEGx
NATx
MACROxX
0+ : . - r
0 20 40 60 100

80
Percent of Scaffolds

Figure 3. CSR curves for 10 different chemical libraries considered in
this study. Note that a CSR curve close to the diagonal line indicates
high scaffold diversity. The two metrics, namely, the AUC and the
percentage of scaffolds required to retrieve 50% of chemicals (Ps),
derived from the CSR curves, also enable quantitative comparison of
the scaffold diversity between chemical libraries.

Methods). From the CSR curves shown in Figure 3, it can be
seen that the secondary metabolite space of MeFSAT has
higher scaffold diversity in comparison to the larger natural
product libraries IMPPAT 2.0 and CMAUP. Further, from the
CSR curves shown in Figure 3, we find that the scaffold
diversity of the secondary metabolite space of MeFSAT is
similar to that of the natural product libraries NPATLAS-
Fungi, NPATLAS-Bacteria, TCM-Mesh, and MEGx. On the
other hand, we find that the approved drugs from DrugBank
and the semi-synthetic library MACROx have the highest
scaffold diversity among the chemical libraries analyzed here.

Moreover, we performed a quantitative comparison of the
different chemical libraries using two metrics derived from the
CSR plot, namely, area under the curve (AUC) and percentage
of scaffolds required to retrieve 50% of chemicals (Ps,)
(Methods). As mentioned in the Methods section, a lower
AUC value and a higher Ps; value are indicators of higher
scaffold diversity. Table 2 lists the two metrics computed from
the CSR curves shown in Figure 3 for different chemical
libraries analyzed here. We find that the secondary metabolite
space of MeFSAT has an AUC value similar to other natural
product libraries. Interestingly, we also find that the P, values
distinguish on the one hand the semi-synthetic libraries, NATx,
and MACRO%, and on the other hand the approved drugs
from the natural product libraries analyzed here (Table 2).

Distribution of Chemicals across the Most Populated
Scaffolds in Different Libraries. We computed the scaled
Shannon entropy (SSE) for each chemical library to quantify
the nature of distribution of chemicals across the topmost
populated scaffolds (Methods). The maximum value (1) of
SSE indicates an even distribution of the chemicals across the
topmost populated scaffolds whereas the minimum value (0)
of SSE indicates that all chemicals have the same scaffold. In
Table 3, we present the computed SSE values by considering
the top S (SSES) to top 70 (SSE70) most populated scaffolds
for each chemical library analyzed here. The secondary
metabolite space of MeFSAT (SSE values: 0.979 to 0.876)
has the highest diversity among all the natural product libraries
analyzed here. The semi-synthetic libraries NATx (SSE values:
0.994 to 0.984) and MACROx (SSE values: 0.940 to 0.957)
have the highest SSE values among the libraries considered
here, and moreover, the SSE values are closer to 1 for the two
libraries, indicating high scaffold diversity. Note that the
scaffold diversity interpreted from SSE values is based only on
the topmost populated scaffolds, whereas the AUC based on
CSR curves is based on analysis of all the scaffolds in a
chemical library, and therefore, SSE and AUC measure
different aspects of the diversity. This explains the reason
behind the approved drugs having the lowest SSE values
(0.675 to 0.680) in spite of having a low AUC value computed
from the CSR curve (Figure 3).

Figure 4 displays the distribution of the number of chemicals
across the top 70 most populated scaffolds in MeFSAT, the
semi-synthetic library NAT%, the phytochemical library TCM-
Mesh, and the approved drugs. The corresponding distribu-
tions for other libraries analyzed here are shown in Figure S2.
Libraries with a low SSE70 value have a less even distribution

Table 3. SSE Computed Using the Most Populated Scaffolds for the Chemical Libraries Analyzed in This Study”

chemical library SSES SSE10 SSE20
MeFSAT 0.979 0.956 0.929
Approved drugs 0.675 0.618 0.626
TCM-Mesh 0.812 0.782 0.787
IMPPAT 2.0 0.671 0.649 0.663
CMAUP 0.785 0.766 0.781
NPATLAS-Bacteria 0.79 0.778 0.784
NPATLAS-Fungi 0.849 0.856 0.863
MEGx 0.868 0.857 0.851
NATx 0.994 0.991 0.986
MACROx 0.94 0.95 0.952

SSE30 SSE40 SSES0 SSE60 SSE70
0913 0.899 0.888 0.882 0.876
0.64 0.654 0.663 0.672 0.68

0.794 0.799 0.803 0.80S 0.807
0.669 0.678 0.685 0.688 0.691
0.781 0.784 0.788 0.792 0.796
0.795 0.80S 0.813 0.82 0.827
0.866 0.867 0.867 0.867 0.867
0.855 0.857 0.859 0.859 0.859
0.985 0.985 0.985 0.984 0.984
0.953 0.955 0.956 0.957 0.957

“The table provides the computed SSE values for the S most populated scaffolds (SSES) to the computed SSE values for the 70 most populated

scaffolds (SSE70) for different chemical libraries.
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Figure 4. Distribution of chemicals across the top 70 most populated scaffolds in: (a) secondary metabolites in MeFSAT, (b) semi-synthetic library
NATx, (c) phytochemical library TCM-Mesh, and (d) Approved drugs.

of chemicals, as can be seen in the case of approved drugs
(Figure 4d). In contrast, the semi-synthetic library NAT%,
which has the highest SSE70 value, has a more even
distribution of chemicals (Figure 4b).

Inter- and Intra-Library Distance between the
Secondary Metabolite Space of Medicinal Fungi and
Other Chemical Libraries. By employing the Soergel
distance using MACCS keys fingerprints and the Euclidean
distance using six molecular properties, we quantified the inter-
and intra-library distances for the chemical libraries analyzed
here (Methods). Figure Sab display the triangular heatmap
plots (THPs) summarizing the inter- and intra-library
distances for the chemical libraries based on: (a) the Soergel
distance computed using MACCS keys fingerprints, and (b)
the Euclidean distance computed using molecular properties,
respectively. In Figure 5, the diagonal cells of THPs show the
intra-library distance colored in gradients of red, wherein
darker shades of red indicate high diversity and lighter shades
of red indicate low diversity. Moreover, the oft-diagonal cells in
THPs show the inter-library distances colored in gradients of
blue, wherein darker shades of blue indicate high inter-library
distance (i.e., low similarity between the pair of libraries) and
lighter shades of blue indicate low inter-library distance (ie.,
high similarity between the pair of libraries).

Structural Diversity Based on Soergel Distance Using
MACCS Key Fingerprints. From the off-diagonal cells in THP
based on structural fingerprints shown in Figure Sa, it is
evident that secondary metabolites in MeFSAT are similar to
those in other natural product libraries analyzed here. In
particular, the secondary metabolite space of MeFSAT is
closest to NPATLAS-Fungi (0.52) and MEGx (0.52). In
contrast, the secondary metabolite space of MeFSAT is farthest
from the approved drugs (0.71), followed by semi-synthetic
libraries, NATx (0.70) and MACROx (0.67). Notably, the
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high inter-library distance between MeFSAT and approved
drugs highlights that the MeFSAT library is more suitable for
HTS to identify new chemical entities. From the diagonal cells
in THP based on structural fingerprints shown in Figure Sa, we
observe that MeFSAT has an intermediate intra-library
distance (0.45), whereas the approved drug space has the
highest intra-library distance (0.71), followed by the IMPPAT
2.0 phytochemical space (0.66).

Chemical Diversity Based on Euclidean Distance Using
Molecular Properties. From the off-diagonal cells in THP
based on molecular properties shown in Figure Sb, it is
observed that the secondary metabolites in MeFSAT are more
similar to natural product libraries and approved drugs, while
the secondary metabolites in MeFSAT are less similar to the
semi-synthetic libraries, NATx and MACROx. In particular,
the secondary metabolites in MeFSAT are closest to the
NPATLAS-Fungi (2.82) based on molecular properties.
Interestingly, the secondary metabolite space of MeFSAT is
found to be similar to the space of approved drugs based on
the molecular properties, in spite of the high inter-library
distance based on structural fingerprints (Figure Sa) and
minimal scaffold overlap between the two libraries (Figure 2).
This observation highlights that the MeFSAT library is
enriched with secondary metabolites with favorable molecular
properties similar to approved drugs though being structurally
diverse from the approved drugs, and this makes them more
suitable for HTS to identify new chemical entities. From the
diagonal cells in THP based on molecular properties shown in
Figure Sb, it is seen that MeFSAT has the highest intra-library
distance (2.94) among the natural product libraries considered
here, while the semi-synthetic libraries, NATx (3.23) and
MACROx (3.18), have the highest intra-library distance across
all the libraries analyzed here. Also, when comparing the
structural fingerprint-based intra-library distance (Figure Sa)
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Figure 5. THPs for the chemical libraries analyzed here. (a) THP
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diagonal cells show the inter-library distance and are colored in
gradients of blue. Dark blue indicates low similarity and light blue
indicates high similarity between libraries. The diagonal cells show the
intra-library diversity and are colored in gradients of red. Dark red
indicates high diversity and light red indicates low diversity within the
library.

and the molecular properties-based intra-library distance
(Figure Sb), the approved drugs were found to have the
highest diversity based on structural fingerprints but low
diversity based on molecular properties. This contrasting
observation can be understood by the fact that the drug
development pipeline is often constrained by the physico-
chemical properties, which limit the diversity of the molecular
properties of the approved drugs.***'

Global Diversity Analysis with Consensus Diversity
Plot. Figure 6 shows the CDP which captures the global
diversity of the chemical libraries analyzed here (Methods).
Briefly, in the CDP, the x-axis gives the Soergel-based intra-
library distance computed using MACCS keys fingerprints, the
y-axis gives the AUC from the CSR curves, the color of the
data points captures the molecular properties-based intra-
library distance computed using the Euclidean distance
function, and the relative size of the chemical libraries is
reflected in the size of the data points (Methods).
Furthermore, the data points (corresponding to different
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Figure 6. CDP visualizing the global diversity of the chemical
libraries. The x-axis represents the Soergel-based distance using
MACCS keys and the y-axis represents the AUC from the CSR curve.
The CDP is divided into four quadrants: I in cyan, II in white, III in
yellow, and IV in salmon-red. The data points are colored in a pink to
purple gradient, with light pink indicating low diversity and dark
purple indicating high diversity based on molecular properties. The
relative size of the chemical libraries is reflected in the size of the data
points.

chemical libraries) fall in either one of the four quadrants of
the CDP. In a CDP plot, the chemical libraries in quadrant IV
(salmon-red) are more diverse based on both scaffold and
structural fingerprints, the libraries in quadrant III (yellow)
have high scaffold diversity, the libraries in quadrant I (cyan)
have high structural diversity, and the libraries in quadrant II
(white) have relatively lower diversity (Figure 6).

From Figure 6, we find that secondary metabolites in
MeFSAT have higher scaffold diversity compared to larger
natural product libraries such as CMAUP, IMPPAT 2.0, and
NPATLAS-Fungi analyzed here. Further, the secondary
metabolites in MeFSAT have intermediate structural diversity
similar to NPATLAS-Fungi, MEGx, and the semi-synthetic
library NATx. Based on the color of the data points, we find
that the secondary metabolite space of MeFSAT has a similar
diversity in terms of molecular properties to other natural
product libraries analyzed here. Moreover, we find that
MeFSAT and NPATLAS-Fungi libraries are in the same
quadrant of the CDP, and thus, the two libraries have similar
global diversity even though the library size of NPATLAS-
Fungi is ~10-fold larger than MeFSAT (Table 1). As expected,
the library of approved drugs falls in the quadrant IV,
underscoring the high diversity of the approved drug space. We
also find that the majority of the natural product libraries are in
quadrant I and thus have high structural diversity.

By comparing the colors of the data points in Figure 6, we
find that all the natural product libraries analyzed here have an
intermediate diversity in terms of molecular properties,
whereas the semi-synthetic libraries, NATx and MACROx,
have a high diversity in terms of molecular properties. As can
be seen in Figure 5b, we also find that the library of approved
drugs has a lower diversity in terms of molecular properties. In
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Figure 7. Visualization of the chemical spaces generated via GTM using MACCS key structural fingerprints for the libraries analyzed here. (a)
Visualization of all chemical libraries analyzed here. (b) Visualization of MeFSAT and approved drugs, MeFSAT and NPATLAS-Fungi, and
MeFSAT, NATx, and MACROXx. (c) Visualization of each individual chemical library. The color used to represent each chemical library in the

visualization is provided in (c) along with the corresponding library name.

sum, the CDP captures the global diversity of the chemical
libraries, enabling combined visual interpretations of the
several metrics computed in this investigation.
Visualization of Chemical Spaces. Figure 7 is a
visualization of the chemical spaces corresponding to the
different libraries analyzed here, and the visualization was
generated via GTM using MACCS keys structural fingerprints
(Methods). The chemical space of the secondary metabolites
in MeFSAT overlaps with the chemical space of other natural
product libraries (Figure 7), and in particular, it is found to be
similar to the chemical space of NPATLAS-Fungi as per
expectation (Figure 7b). This finding also corroborates our
similar observation from Figure Sa. The chemical space of the
approved drugs was found to be more spread out with minimal
overlap with MeFSAT (Figure 7b). This is in alignment with

3108

our previous findings that the secondary metabolite space of
MeFSAT is structurally diverse from the space of approved
drugs (Figures 2 and Sa). The chemical space of the semi-
synthetic libraries, NATx and MACROx, was found to occupy
a different region in the GTM-based visualization, which is
underrepresented by the natural product libraries, including
MeFSAT (Figure 7b).

Figure S3 displays the visualization of the chemical spaces
generated via GTM using the six molecular properties for the
different libraries analyzed here (Methods). The secondary
metabolite space of MeFSAT is more spread out in
comparison to the space of approved drugs (Figure S3).
Also, the natural product libraries analyzed here occupy similar
regions of the chemical space, wherein they occupy most
regions in the two-dimensional visualization except for the
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regions closer to the left and bottom boundaries (Figure S3c).
The semi-synthetic library NATx was found to be more spread
out covering regions not occupied by the natural product
libraries (Figure S3).

Figure S4 displays the visualization of the chemical spaces
generated via PCA using MACCS keys structural fingerprints
for the different libraries analyzed here (Methods). The
observations on different chemical spaces analyzed here from
Figure S4 generated via PCA closely follow those obtained
from visualization generated via GTM using MACCS keys
fingerprints. The visualization of the chemical spaces generated
via PCA using six molecular properties (Figure SS) for the
different libraries analyzed here was found to be less
discriminative with the different libraries occupying a similar
region in the lower-dimensional space.

B CONCLUSIONS

In the present investigation, we analyzed and compared the
scaffold and structural diversity of the secondary metabolite
space of medicinal fungi (as compiled in the MeFSAT
database) with nine different chemical libraries, including
natural products, approved drugs, and semi-synthetic libraries.
We find that the secondary metabolite space of MeFSAT has
equal or higher scaffold diversity in comparison to other
natural product libraries (Tables 1 and 2; Figure 3). Also, we
updated the MeFSAT database with the information on
identified scaffolds in the secondary metabolites of medicinal
fungi (Figure S1).

Apart from analyzing the scaffold diversity of the chemical
libraries, we also analyzed the structural diversity and diversity
in terms of molecular properties (Figure S). Based on the
structural diversity analysis, MeFSAT is found to be
structurally closer to other natural product libraries and
structurally farthest from the approved drugs and semi-
synthetic libraries. In terms of molecular properties, MeFSAT
is found to be closer to the natural product libraries and
approved drugs, whereas it is farther from the semi-synthetic
libraries. Interestingly, we also find that the MeFSAT library
has minimal scaffold overlap with the approved drugs (Figure
2). This highlights the suitability of the MeFSAT library for
HTS to identify new chemical entities.

From the global diversity analysis of the chemical libraries
(Figure 6), we find that the MeFSAT library has intermediate
structural diversity similar to natural product libraries such as
NPATLAS-Fungi and MEGx, and the semi-synthetic library
NATZX, and has higher scaffold diversity in comparison to large-
sized natural product libraries such as CMAUP and IMPPAT
2.0. Further, we find that the MeFSAT and NPATLAS-Fungi
fall in the same quadrant of the CDP, and thus, they have
similar global diversity (Figure 6). By visualizing the chemical
spaces corresponding to the different chemical libraries, we
find that the secondary metabolite space of MeFSAT is similar
to other natural product libraries, and moreover, the secondary
metabolite space of MeFSAT has minimal overlap with the
approved drug space (Figure 7).

Lastly, one of the key findings of this study based on
observations from multiple analyses is that the secondary
metabolites of medicinal fungi (in MeFSAT) are scaffold-wise
and structure-wise distant (dissimilar) from the approved
drugs (Figures 2 and 5a). This observation alone cannot be
used to infer that there are metabolites in fungi that can be
used as drugs. Because consider a case where you have a library
of chemicals each made of only nitrogen or oxygen atoms
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alone. Even in this case, the library will be structurally distant
from the approved drugs, but the library will not be much use
for drug discovery research. In this regard, the secondary
metabolites of medicinal fungi, though scaffold-wise and
structure-wise distant from the approved drugs, have molecular
properties (that are important for drug-likeness) similar to the
approved drugs (Figure Sb). This makes the secondary
metabolites of medicinal fungi captured in MeFSAT more
suitable for identifying novel drugs with hitherto unknown
chemical scaffolds.

There are several challenges in the identification and
development of drugs from fungal secondary metabolites,
which include the availability of physical samples for
conducting clinical studies, pharmacokinetics and pharmaco-
dynamics of the secondary metabolites, and possible toxicity of
the secondary metabolites. We believe the updated MeFSAT
database and the results from our extensive analysis of the
secondary metabolite space of medicinal fungi using molecular
scaffolds, structural fingerprints, and molecular properties will
facilitate the ongoing efforts to identify novel drugs from fungal
secondary metabolites.

B METHODS

Compilation and Preprocessing of Chemical Libra-
ries. For this comparative analysis, the list of secondary
metabolites of medicinal fungi was obtained from our
previously published database, Medicinal Fungi Secondary
Metabolites And Therapeutics'” (MeFSAT). The chemical
diversity of the secondary metabolite space of medicinal fungi
was compared with the list of approved drugs compiled in
DrugBank version 5.1.9,”° phytochemicals, microbial natural
products, and commercial semi-synthetic libraries. Specifically,
we considered the following phytochemical libraries, namely
TCM-Mesh'"® which compiles phytochemicals from Chinese
herbs, IMPPAT 2.0'” which compiles phgltochemicals from
Indian medicinal plants, and CMAUP'® which compiles
phytochemicals from medicinal and edible plants across the
globe. Moreover, we subdivided the microbial natural product
library, NPATLAS," for this analysis into chemicals of fungal
origin (NPATLAS-Fungi) and chemicals of bacterial origin
(NPATLAS-Bacteria). Though 1202 secondary metabolites of
medicinal fungi captured in MeFSAT are also present in
NPATLAS-Fungi, MeFSAT captures the secondary metabolite
space specific to medicinal fungi, whereas the NPATLAS-
Fungi captures a more generic secondary metabolite space of
fungi. The large overlap between the MeFSAT and NPATLAS-
Fungi libraries is not surprising because both capture the
secondary metabolite space of fungi. Further, while compiling
secondary metabolites in MeFSAT, we had made use of the
NPATLAS database as one of the resources to retrieve
chemical structures of secondary metabolites reported in
published literature. Lastly, we also considered another natural
product library, MEGx, and two semi-synthetic libraries
namely, NATx and MACROx, from a commercial vendor.>' T-
Table 1 provides a summary of the different chemical libraries
analyzed here. Notably, the chemical libraries in SDF file
format were cleaned and deduplicated to create non-redundant
lists using MayaChemTools.”” The compound overlap
between the chemical libraries analyzed in this study is
shown in Figure S6. Note that we used the chemical libraries as
provided by the reference databases (Table 1), and the
diversity analysis presented in this study does not take into
consideration the stereochemistry of the chemicals.
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Computation of Molecular Scaffolds. The scaffolds
capture the core molecular framework of a chemical, and this
concept has been widely used to assess and compare the
scaffold diversity of chemical libraries.'”***>*****% In this
study, we used the scaffold definition proposed by Bemis-
Murcko™ to compute the molecular scaffolds of the chemicals
in different libraries, wherein the scaffold is represented by all
the ring systems and linkers connecting them. Based on this
definition, only chemicals with cyclic systems have a scaffold.
Since the analyzed libraries contain both cyclic and acyclic
chemicals, the acyclic chemicals have been assigned a pseudo-
scaffold in this work.

Following Lipkus et a one can compute the molecular
scaffolds in different chemical libraries at three different levels,
namely, graph/node/bond (G/N/B) level, graph/node (G/N)
level, or graph level (Figure S7). The scaffold at G/N/B level
has connectivity, element and bond information, and thus
making it more informative than G/N or graph level. Hence,
we analyzed the scaffold diversity of different libraries using
molecular scaffolds computed at the G/N/B level for each
chemical in this study. The scaffold computations were
performed using custom in-house Python scripts employing
RDKit.**

Quantifying the Scaffold Diversity. Previous inves-
tigations' **#*%%3%3% have shown that CSR plots help in
quantifying the scaffold diversity of chemical libraries. Using
the scaffold information at the G/N/B level, we plotted the
CSR curves for each chemical library considered here. In a
CSR curve for a chemical library, the percentage of scaffolds is
plotted on the x-axis, and the percentage of compounds
containing those scaffolds is plotted on the y-axis. From the
CSR curves, we computed two metrics, namely, the AUC and
the percentage of scaffolds required to retrieve 50% of the
chemicals (Py), to quantify and compare the scaffold diversity
of the different chemical libraries. The scaffold diversity of a
chemical library has a maximum value when the corresponding
CSR curve is a diagonal line, which implies that 50% of
scaffolds will retrieve 50% of the compounds in the library
(Pyo) and the AUC value is 0.5.

The SE is employed to characterize the distribution of
chemicals among the most populated scaffolds’>* in a
chemical library. For a selected population of P chemicals
and top n scaffolds in a library, SE is defined as

32,33
1,

Gt = -3 s
i=1 (1)

where

B= @)

Cl
P

In the above equations, ¢; is the number of chemicals
containing the scaffold i, and p; is the probability of the
occurrence of the scaffold i in P chemicals containing a total of
n scaffolds. The maximum possible value of SE is log,n,
wherein all the P chemicals are evenly distributed among n
scaffolds, and this represents high scaffold diversity in the
library. The minimum possible value of SE is 0, wherein all the
P chemicals have the same scaffold, and this represents low
scaffold diversity in the library. Since SE is dependent upon the
number of scaffolds n, we scaled SE by dividing it with the
maximum value of SE. The SSE is defined as
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SE

log, n

SSE =

()

It is evident that SSE can take values from 0 to 1, where 0
corresponds to low scaffold diversity and 1 corresponds to high
scaffold diversity of the chemical library.

Inter- and Intra-Library Distance Based on Structural
Fingerprints and Molecular Properties. We quantified the
inter- and intra-library distances between the different chemical
libraries using structural fingerprints and molecular properties
of the chemicals. We computed the Molecular ACCess System
(MACCS) keys fingerprints with 166 bits for each chemical
using RDKit.** To compare the similarity between two
libraries, we computed the Soergel distance, which is a
complement of the Tanimoto coefficient, using the binary
fingerprints of chemical structures.*® If x and y are the binary
fingerprints for two chemicals, then the corresponding Soergel
distance can be computed as follows

Soergel(x, y) = 1 — Tanimoto(x, ) (4)
where
xy’
Tanimoto(x, y) = — }’T =
Xt +yyt —xy (%)

We computed the Tanimoto coeflicient for a pair of
chemicals using RDKit.** The similarity coefficient of
chemicals across two libraries, D, and D,, that is, inter-library
distance, was computed using Soergel-based inter-library
distance d,, following Owen et al.*® and is given by

L UY
d, = Wz Z Soergel(x;', x/)

i=1 j=1

(6)

In the above equation, U and V are the number of chemicals
in the two libraries D, and D,. The diversity of chemicals in a
single library or intra-library distance can be computed by
modifying eq 6 and is given by

, Uzl U
5 Z Z Soergel (", xlu)

U S j=i+1

d,
(7)

Further, we computed six molecular properties important for
drug-likeness*’~*’ namely, hydrogen bond donors (HBD),
hydrogen bond acceptors (HBA), octanol/water partition
coefficient (LogP), molecular weight (MW), topological polar
surface area (TPSA), and number of rotatable bonds (RTB),
for each chemical using RDKit."* Notably, these molecular
properties were previously employed to compare chemical
diversity across different libraries.” The inter-library distance
based on the six molecular properties between two libraries D,
and D, containing U and V chemicals, respectively, was
computed by measuring the Euclidean distance function® and
is given by

v
I, = #Z Z Euclidean(Xi, Y])

i=1 j=1 (8)
where the Euclidean(X;, Y;) is given as
N
Euclidean(X;, Y;) = Z (X — ij)z
= (9)
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In the above equations, X; and Y; represent N-dimensional
vectors containing molecular properties of chemicals i and j in
libraries D, and D,, respectively.

Consensus Diversity Plots. CDP is a two-dimensional
visualization used to compare the diversity of chemical
libraries.”’ CDP captures four important properties to
characterize the diversity of the chemical libraries. First, the
structural fingerprint-based diversity of a library, captured by
Soergel-based intra-library distance using MACCS keys
fingerprints, is plotted on the x-axis of CDP. Second, the
scaffold diversity of a library, captured by AUC from the
corresponding CSR curve, is plotted on the y-axis of CDP.
Third, the data points in CDP are colored using a pink-to-
purple gradient to capture the molecular properties based
intra-library distance computed using the Euclidean distance
function. Fourth, the relative size of the chemical libraries is
represented by the size of the data points in CDP. Following
Gonzalez-Medina et al,*"** we analyzed the CDP by
partitioning it into 4 quadrants which are differentiated by
distinct colors. To define the four quadrants in CDP, we
considered the median of the Soergel-based intra-library
distance and an AUC value of 0.75 to assign the thresholds
for x-axis and y-axis, respectively.

Visualization of Chemical Spaces. In cheminformatics
literature,*" multiple methods have been proposed for
dimensionality reduction and visualization of chemical spaces.
Of these methods, generative topo§raphic mapping”> (GTM)
and principal component analysis™ (PCA) have been widely
used for chemical space visualization. Using GTM and PCA,
we visualized different chemical libraries based on MACCS
keys fingerprints and six molecular properties important for
drug-likeness. PCA projects the high-dimensional data to a
low-dimensional space using linear mapping.”” Although PCA
is widely used for dimensionality reduction, it is unsuitable for
nonlinear data.>* In contrast, GTM is a nonlinear method that
projects the high-dimensional data to a two-dimensional space
using radial basis function.>”

To represent any chemical space using structural finger-
prints, we employed MACCS keys fingerprints with 166 binary
bits that capture the presence or absence of structural features
in a chemical structure. To represent any chemical space using
molecular properties, we employed the six molecular proper-
ties, namely HBD, HBA, LogP, MW, TPSA, and RTB, as
described in the preceding section. The high-dimensional input
data for a chemical library in terms of either structural
fingerprints or molecular properties was then mapped to a two-
dimensional space using: (a) GTM implemented using ugtm”>
Python package and (b) PCA implemented using scikit-learn®
Python package. Subsequently, the dataset corresponding to a
chemical library after dimensionality reduction is visualized
using Matplotlib®” Python package.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c06428.
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