Skip to main content
. 2023 Jan 10;8(3):3102–3113. doi: 10.1021/acsomega.2c06428

Table 3. SSE Computed Using the Most Populated Scaffolds for the Chemical Libraries Analyzed in This Studya.

chemical library SSE5 SSE10 SSE20 SSE30 SSE40 SSE50 SSE60 SSE70
MeFSAT 0.979 0.956 0.929 0.913 0.899 0.888 0.882 0.876
Approved drugs 0.675 0.618 0.626 0.64 0.654 0.663 0.672 0.68
TCM-Mesh 0.812 0.782 0.787 0.794 0.799 0.803 0.805 0.807
IMPPAT 2.0 0.671 0.649 0.663 0.669 0.678 0.685 0.688 0.691
CMAUP 0.785 0.766 0.781 0.781 0.784 0.788 0.792 0.796
NPATLAS-Bacteria 0.79 0.778 0.784 0.795 0.805 0.813 0.82 0.827
NPATLAS-Fungi 0.849 0.856 0.863 0.866 0.867 0.867 0.867 0.867
MEGx 0.868 0.857 0.851 0.855 0.857 0.859 0.859 0.859
NATx 0.994 0.991 0.986 0.985 0.985 0.985 0.984 0.984
MACROx 0.94 0.95 0.952 0.953 0.955 0.956 0.957 0.957
a

The table provides the computed SSE values for the 5 most populated scaffolds (SSE5) to the computed SSE values for the 70 most populated scaffolds (SSE70) for different chemical libraries.