
C
ur

re
nt

 G
en

om
ic

s
�������
���	�	�

����������������

�������
	
���
�

������
�������
	� ��

 

Sharanbasappa D. Madival1, Dwijesh Chandra Mishra1,*, Anu Sharma1, Sanjeev Kumar1, Arpan 
Kumar Maji2, Neeraj Budhlakoti1, Dipro Sinha1 and Anil Rai1 

1Division of Agriculture Bioinformatics, ICAR-IASRI, New Delhi- 110012, India; 2Division of Computer Applications, 
ICAR-IASRI, New Delhi- 110012, India 

� Abstract: Background: One major challenge in binning Metagenomics data is the limited availability 
of reference datasets, as only 1% of the total microbial population is yet cultured. This has given rise 
to the efficacy of unsupervised methods for binning in the absence of any reference datasets.  
Objective: To develop a deep clustering-based binning approach for Metagenomics data and to evalu-
ate results with suitable measures. 
Methods: In this study, a deep learning-based approach has been taken for binning the Metagenomics 
data. The results are validated on different datasets by considering features such as Tetra-nucleotide 
frequency (TNF), Hexa-nucleotide frequency (HNF) and GC-Content. Convolutional Autoencoder is 
used for feature extraction and for binning; the K-means clustering method is used. 
Results: In most cases, it has been found that evaluation parameters such as the Silhouette index and 
Rand index are more than 0.5 and 0.8, respectively, which indicates that the proposed approach is giv-
ing satisfactory results. The performance of the developed approach is compared with current methods 
and tools using benchmarked low complexity simulated and real metagenomic datasets. It is found 
better for unsupervised and at par with semi-supervised methods. 
Conclusion: An unsupervised advanced learning-based approach for binning has been proposed, and 
the developed method shows promising results for various datasets. This is a novel approach for solv-
ing the lack of reference data problem of binning in metagenomics. 
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1. INTRODUCTION 

 Microorganisms are microscopic organisms that cannot 
be seen through our naked eyes. These organisms are Omni 
present, i.e. from a classroom to hot springs. It is a well-
known fact that one gram of soil may contain 18,000 differ-
ent organisms having their genome. The role of these mi-
croorganisms is huge in our ecosystem, especially in agri-
culture; the soil microbes perform an essential role by main-
taining a symbiotic relationship with the plants. Apart from 
this, these microorganisms' significant roles are in animal, 
fish and poultry science. The term 'Metagenomics' was first 
coined by Handelsman in 1998 [1]. Metagenomics can be 
defined as the direct genetic analysis of genomes contained 
in an environmental sample [2]. Metagenomics plays an 
important role in enabling researchers to study microorgan-
isms in-vivo. Metagenomics study provides more exposure 
to the genetic information of those microbes and tells the 
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better way to utilise them. However, Metagenomics data 
containing different strains have almost identical genetic 
constitutions and genome architecture. So it is not possible 
to isolate each strain separately. Binning indicates the pro-
cess of classifying DNA sequences into clusters that might 
be the true representative of an individual genome or ge-
nomes from taxonomically related microorganisms. It has 
been used to reconstruct the genomes of individual species 
from communities, including samples from complex envi-
ronments such as sediments and reactors. Binning can be 
classified in two ways, i.e. taxonomy dependent binning and 
taxonomy independent binning. Taxonomy Dependent Bin-
ning methods are subject to sufficient levels of similarity 
between reads and sequences/models in reference databases. 
Taxonomic Independent Binning methods simply group/bin 
reads in a given dataset based on their mutual similarity and 
do not involve a database comparison step [3]. One of the 
major challenges in taxonomy-dependent binning of Meta-
genomics data is the limited availability of reference da-
tasets as only 1% of the total microbial population is yet 
cultured. In case of the unavailability of a reference genome, 
binning has to be performed in an unsupervised manner. 
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The unsupervised binning approach uses genomic signatures 
such as GC contents, tetramer compositions, coverage pro-
file, taxonomic position analysis etc. for clustering the 
fragmented genomes. Using k-mers (4 or 6) also facilitates 
biological advantages, such as the detection of genomic bi-
ases resulting from the observed avoidance of specific pal-
indromic words of length k from genomes [4, 5]. An exten-
sive study of the previous work showed that the distribution 
of Guanine and Cytosine content in each genome is unique. 
Hence, GC content is an essential parameter for distinguish-
ing the microbial community [6-8]. 
 Further from the literature survey, it was evident that 
although several techniques like k-means, SOM, and Hier-
archical Clustering have been used for binning Meta-
genomics data, input data's high dimensionality poses many 
challenges to statistical and computational bottlenecks in 
their execution. The available dimensionality reduction 
techniques such as Principle Component analysis (PCA) [9], 
Correspondence Analysis (CA) [10], and Multidimensional 
Scaling (MDS) [11] have been applied in such cases. But 
these techniques lead to a loss of information 
 With the advent of advanced machine learning tech-
niques such as Support Vector Machine [12], Random For-
est [13], Neural Network-based deep learning [14] etc., this 
problem can be resolved. Among all these techniques, the 
performance of deep learning is the best. However, these 
machine learning techniques are primarily supervised learn-
ing techniques that can only be applied when a reference 
dataset is available. An Autoencoder is an unsupervised 
learning technique based on deep learning architecture that 
learns efficient data representations (encoding) by training 
the network to ignore signal "noise". Deep clustering [15] is 
an autoencoder-based approach used to extract the informa-
tive features from the available dataset and makes the data 
with reduced dimensions suitable for binning. However, 
their applicability in binning of Metagenomics data is still 
unexplored. To fill this gap, we proposed a study that uses a 
Convolutional Autoencoder (CAE) based deep clustering 
technique for binning the Metagenomics data that combines 
dimensionality reduction, feature selection, and clustering in 
a single framework. 
 This paper describes a novel convolutional autoencoder-
based unsupervised method for binning metagenomics data. 
The significant contributions discussed in this paper are: 
i. Novel Convolutional Autoencoder (CAE) based deep 

clustering technique for taxonomic independent binning 
for metagenomics dataset is developed. 

ii. Most of the work is done using Tetra-nucleotide fre-
quency, but this work includes Hexanucleotide frequen-
cy as well. 

iii. The optimum k value of binning is decided by plotting 
the WSS plots, also known as elbow curve plots.  

 The organisation of the paper is studied under different 
sections as follows. The introduction section is followed by 
the details of the materials and methodology section for 
achieving the objectives set for the study. Section 3 gives 
the detailed results obtained from the study. This also in-
cludes the evaluation parameters such as the Rand index, 
Silhouette index, Accuracy, Precision, Recall, F1 score and 

comparison of progressive approaches using state-of-the-art 
techniques in tabular form. The result section is followed by 
a discussion and the last entire study is summarised in the 
conclusion section. This manuscript ends with references, 
acknowledgement, conflict of interest and data availability. 

2. MATERIALS AND METHODS 

2.1. Materials 

 This section includes the various programming lan-
guages such as Python, PERL and R software and dataset 
and the details of the validation techniques used in this 
study to evaluate the developed approach. 

2.1.1. Dataset 

 The data used for this study was downloaded from the 
MyCC section of the SOURCEFORGE website (https:// 
sourceforge.net/projects/sb2nhri/files/MyCC/Data/). Three 
metagenomics datasets have been taken for study, viz. 10s 
[16], Sharon [17] and 25s. 10s and 25s datasets are simulated 
datasets of ten and twenty-five are already known species; 
Sharon is a real dataset containing 32 unknown species. 

2.2. Methods 

2.2.1. Feature Matrix Generation 

 Features like TNF, HNF and GC content are calculated 
from the FASTA files of different datasets using metaClus-
ter R package [18]. There are six cases (two cases under 
each dataset) based on various combinations of these fea-
tures have been studied. These cases are as follows: 
Case1: TNF + GC under 10’s dataset 
Case2: HNF + GC under 10’s dataset 
Case3: TNF + GC under 25’s dataset 
Case4: HNF + GC under 25’s dataset 
Case5: TNF + GC under Sharon dataset 
Case6: HNF + GC under Sharon dataset 

2.2.2. Pre-processing 

 In this, noise present in the dataset is removed, and the 
feature matrix is resized into different configurations with-
out a loss of features. Resizing is done because the Feature 
matrix with 4097×4097(HNF-GC) and 257×257(TNF×GC) 
will require a lot of computational power and storage capac-
ity. So to make this process easy, resizing the dataset into 
smaller sizes is done without losing any features and keep-
ing all features intact. In this study, in all cases, we resized 
the feature matrix into 64×64. 

2.2.3. Deep Clustering 

 Deep clustering frameworks combine feature extraction, 
dimensionality reduction and clustering into an end-to-end 
model, allowing the convolutional neural networks to learn 
suitable representations to adapt to the clustering module's 
assumptions and criteria used in the model. Deep clustering 
can be broadly categorised into three categories: Autoen-
coder-based, Generative model-based and direct optimiza-
tion-based. In this study, Convolutional Autoencoder (CAE) 
based deep clustering has been used.  
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2.2.4. Convolutional Autoencoder (CAE) 

 Convolutional Autoencoder (CAE) [19] is an Autoen-
coder-based architecture in which the encoder and decoder 
are embedded with CNN layers instead of ANN. Autoen-
coder is an unsupervised deep learning algorithm that takes 
data as input and tries to reconstruct it using a number of 
bits from the bottleneck, also known as latent space. Auto-
encoder works similarly to PCA, but the difference between 
them lies in the transformation part, i.e. PCA uses linear 
transformation whereas Autoencoder uses non-linear trans-
formations. Because of slicing and stacking the data, a huge 
amount of information is lost. Instead of stacking the data, 
the Convolution Autoencoder (CAE) keeps the spatial in-
formation about the input data as they are and extract re-
quired unique features gently in the Convolution layer. Fig. 
(1) demonstrates that 2-dimensional data is extracted into a 
thick square (Conv1), and then it continues to become a 
long cubic in the second layer (Conv2) and another longer 
cubic in the third layer (Conv3). This process is designed in 
such a way that it retains the maximum spatial relationships 
in the data.  
 Convolution Autoencoder works in 3 different layers 
Convolutional layer, Activation function and Max pooling 
layer. 

2.2.4.1. Convolutional Layer 

 This step creates many small pieces of data called fea-
ture maps or features. These squares preserve the relation-
ship between input data within the dataset. Here, each fea-
ture is scanned through the original dataset. This process 
produces the scores called filtering. After scanning, each 
feature produces filtered data with high and low scores. If 
there is a perfect match, there is a high score in that square. 
The score is low or zeroes if there is a less or no match. 
Strides are another parameter of the convolutional layer. It 
is the number of cells shifting over the input matrix. When 
we keep the stride value as 1, the filters shift one cell at a 
time. In this study, we kept strides=2 and filter sizes as 32, 
64, 128 and kernel_size (5,5,3) fixed.

2.2.4.2. Activation Functions 

 An activation function is added to an artificial neural net-
work to help the network learn complex patterns of the data. 
Different activation functions are used, such as the Step func-
tion, ReLU, Leaky ReLU, and Sigmoid activation function. In 
this study, we used the ReLU activation function. 
2.2.4.3. Max Pooling Layer 

 Pooling compresses the dataset size. If window size 
2x2 is called the pool size, which scans through each of the 

 
Fig. (1). Basic architecture of convolutional autoencoder. 
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filtered matrices and assigns the maximum value of that 
2x2 window to a 1x1 square in a new cell. The maximum 
value in the 2 x 2 window is the highest score, so the high-
est score is assigned to the 1 x 1 square. After pooling, a 
new stack of a smaller filtered matrix is produced. After 
that, splitting the smaller filtered cells and stacking them 
into a list is done. 
 The above three layers are building blocks in convolu-
tional layers and are implemented in Keras [20] library. One 
can build many convolution layers in the Convolution Auto-
encoder. There are three layers labelled Conv1, Conv2, and 
Conv3 in the encoding part. So, we built it accordingly. No-
tice that Conv1 is inside Conv2 and Conv2 is inside Conv3. 
Then it continues to add the decoding process. The Keras 
API requires the declaration of the model and the optimisa-
tion method. The model includes all layers required in the 
computation of the decoded outputs given the input data and 
then compiled. Mean Square Error (MSE) is a loss function 
that computes the distance between the current work of the 
algorithm and the expected output. It is used to evaluate 
how your algorithm models the data. Adam is the type op-
timiser used to change the attributes of neural networks, 
such as weights and learning rate, to reduce losses.  

2.2.5. Training the Model 

 We had given pre-processed feature matrix as an input. 
The batch_size is the number of samples, and the epoch is 
the number of iterations. We specify shuffle=True to require 
shuffling the train data before each epoch. We kept some 
parameters constant such as optimiser= Adam, loss func-
tion=, Mean square error for all kinds of datasets, number of 
features=100 by varying number of epochs and batch size. 
After completion of training, features with reduced dimen-
sions are stored in the flattened (hidden) layer of CAE. The-
se features are used for clustering purposes. In the case of 
the TNF+ GC feature matrix case, we kept batch size to 10 
and epochs to 50, as only a limited number of features are 
there. For the HNF+ GC feature matrix, we kept batch size 
to 100 and epochs to 350 because more features and obser-
vations data were generated. 

2.2.6. Clustering 

 Clustering is the task of dividing the population or data 
points into several groups such that data points in the same 
group are more similar to other data points in the same 
group and dissimilar to the data points in other groups. It is 
a collection of objects based on similarity and dissimilarity 
between them. There are different types of clustering, such 
as hierarchical clustering, Gaussian mixture model cluster-
ing, k-means, k-medoid spectral clustering, and DBSCAN 
[21] clustering etc. In this study, k-means clustering was 
applied to the encoded output obtained from CAE. 

2.2.7. WSS Plot 

 The first step was estimating the number of clusters re-
quired for effective data analysis. For this purpose, the El-
bow method is used. The K-means Clustering works by de-
fining the clusters so that the total variation within a given 
cluster is minimum [22]. WSS denotes the total within the 
cluster sum of squares, indicating how compact the cluster 
is. Our aim while using the clustering method is to keep the 

WSS as small as possible. This leads to the formation of 
effective clusters for the data analysis. The Elbow method is 
a method that considers the total WSS as a function of the 
number of clusters suitable for the particular dataset and 
enables us to choose the appropriate number of clusters in 
such a way that adding more clusters does not have any im-
pact on the data analysis results 

Within cluster sum of squares: WSS =� � �� �
��
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 WSS means the sum of distances between the points and 
the corresponding centroids for each cluster and BSS means 
the sum of distances between the centroids and the total 
sample mean multiplied by the number of points within each 
cluster. So, WSS is the measure of compactness, and BSS is 
the measure of separation. For clustering to be successful, 
we need to get the lower WSS and the higher BSS. WSS 
plots the graph between a number of clusters and the total 
within-cluster variance. Based on this plot, we decide on 
optimum clusters. 

2.3. Evaluation of the Developed Approach 

 Rand index, Silhouette index, Accuracy, Precision, recall 
and F1 Score were used to evaluate the quality of clusters.  

2.3.1. Rand Index 

 The Rand index [23] is a measure of the similarity be-
tween two data clustering approaches.  
 Given a set S of n elements S= {O1, O2, … , On} with 
two subsets S1 and S2 partitioned of S to compare S1 = 
{1,2, … , n}, a partition of S into R subsets, and S2 = {1, 2, 
… , n}, a partition of S into s subsets [23], define the fol-
lowing: 
a- Number of pairs in an element of S that are in the same 

subset of X and in the same subset of Y. 
b- Number of pairs in an element of S that are in the differ-

ent subset of X and in the different subset of Y. 
c- Number of pairs in an element of S that are in the same 

subset of X and in the different subset of Y. 
d- Number of pairs in an element of S that are in the differ-

ent subset of X and in the same subset of Y. 

 ���������� � ���

�������
                                                      (1) 

 Intuitively, a + b can be considered as the number of 
agreements between X and Y, and c + d as the number of 
disagreements between X and Y. R ranges between 0 to 1. 
The higher R-value indicates better clustering. 

 Rand index is calculated when we have both actual data 
and predicted data. Due to the lack of reference data, we 
labelled the predicted clusters to prepare our real data. The 
remaining sequences of other species are clustered under 
one set, and a group with a maximum number of sequences 
from a single species is numbered appropriately. 
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2.3.2. Silhouette Index 

 It measures how similar a contig is to its bin (cohesion) 
compared to other bins (separation). For example, If an (i) is 
the average distance of contig's to other coting's in the same 
bin and b(i) is the average distance of contig i to the contig's 
in its nearest neighbour bin, then the Silhouette index is given 
by – 

 � � �

�� � �� � �

������ � ������
                                                            (2) 

Where, 

• ���� is the average dissimilarity of the ith contig to all 
other contigs in the same bin. 

• � �  is the average dissimilarity of ith contig with all 
contig in the closest bin. 

 S value ranges between [-1, 1]. If the Silhouette index 
value is high, the contig's well-matched to its own bin and 
poorly matched to neighbouring bins. 

2.3.3. Confusion Matrix 

 This is used to describe the performance of a classifica-
tion model on a set of test data for which the actual values 
are known.  
Table 1. Showing species distribution among 7 clusters in Case 
1 (TNF+GC) in the 10s dataset. 

- Predicted 

Actual 

- Class = Yes  Class = No 

Class = Yes True Positive(TP) False Negative(FN) 

Class = No False Positive(FP) True Negative(TN) 

 
Accuracy is the most intuitive performance measure and is 
simply a ratio of correctly predicted observations to the total 
observations. 

 �������� � �����

�����������
                                                 (3) 

Precision is the ratio of correctly predicted positive obser-
vations to the total predicted positive observations. 

������	��� �
��

�����
                                                             (4) 

 
Recall (Sensitivity) - It is the ratio of correctly predicted 
positive observations to all observations in actual class  

 ������� � ��

�����
                                                                 (5) 

F1 score - It is the weighted average of Precision and Re-
call. 

 ��������� � �������������������	��

�����������������	���
                                          (6) 

 In the case of multi-class classification, we adopt aver-
aging methods for Precision, Recall, and F1 score calcula-
tion, resulting in a set of different average scores (macro, 
weighted, micro) in the classification report. The macro-
averaged is computed using the arithmetic mean (aka un-

weighted mean) of all the per-class. The weighted average is 
calculated by taking the mean of all per-class scores while 
considering each class’s support. Micro averaging computes 
a global average F1 score by counting the sums of the True 
Positives (TP), False Negatives (FN), and False Positives 
(FP). In the case of an imbalanced dataset, the weighted 
average gives more accuracy than all the other averages. 
Fig. (2) explains the workflow of the developed approach in 
a crispy manner. 

3. RESULTS  

3.1. 10s Dataset 

 This dataset contains assembled contig sequences of 10 
species in FASTA format, which includes nine bacterial and 
one archaebacterial species. 
 Features like TNF, HNF and GC Content are calculated 
by using metaCluster R package and then generation of 
combined feature matrix file using the vlookup function 
followed by pre-processing of the file. This generated fea-
ture matrix of sizes 3256×257(case 1), and 3256×4097 (case 
2) is resized to 64×64 without losing any features. For this 
purpose, libraries of Python like NumPy [24], pandas [25], 
sklearn [26], and Metrics were used. This pre-processed 
data is used as input to the development of the CAE model. 
CAE model was developed using available libraries like 
Keras and Tensorflow in Python. The features with lower 
dimensions stored in flattened (hidden) layers are used for 
clustering, which is done using sklearn.kmeans library in 
Python. The optimum number of clusters for this dataset 
was obtained using the WSS plot function, which plots the 
within-cluster sum of squares (WSS) vs. the number of clus-
ters, and Clustering results are visualised by plotting a scat-
ter plot (true features vs. predicted features) using the mat-
plotlib [27] library in Python. The same procedure has been 
followed in all cases. 
 In case 1 and case 2, TNF + GC content and HNF + GC 
content feature matrix of the 10s dataset is used, where one 
expects 10 clusters, but we got only around seven and eight 
groups, respectively (Tables 1 and 2). It is found that some 
species occur abundantly in a single group, and one species 
occurs in more than one bin. For example, Crocosphaera 
subtropica occurs in two clusters (Tables 2 and 3). It was 
found that within-cluster variation is much less than be-
tween-cluster variation. Looking into WSS plots, one can 
predict the optimum number of clusters using the elbow 
method, but it depends on how sharply one can judge. In our 
case, we considered them as seven and eight, respectively. 
Figs. (3 and 4) illustrate the optimum k value and scatter 
plots for case 1, while Figs. (5 and 6) show the optimal k 
value and scatter plots for case 2, respectively. 

3.2. 25s Dataset 

 This dataset contains 25 species assembled scaffold se-
quences in FASTA format, which includes 25 different spe-
cies of bacteria. The same procedure is followed here also. 
Here expected number of clusters is 25, but we got around 10 
and 14 groups in case 3 and case 4, respectively. There seems 
to be an abundance of Escherichia coli and Salmonella bon-
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gori in the dataset. Hence they appear in more than one bin 
(Tables 4 and 5). Figs. (7 and 8) illustrate the optimum k val-
ue and scatter plots for case 3, while Figs. (9 and 10) show 
the optimal k value and scatter plots for case 4, respectively. 
 
Table 2. Showing species distribution among 7 clusters in 
Case1 (TNF+GC) in the 10s dataset. 

Cluster 
Number 

Accession Number  Species Abundance 

1 NC_003112 Neisseria meningitidis 

2 NC_010546 Crocosphaera subtropica 

3 NC_005296 Rhodopseudomonas palustri 

4 NC_006582 Bacillus clausii 

5 NC_007779 

NC_003112 

Escherichia coli 

Neisseria meningitidis 

6 NC_010546 Crocosphaera subtropica 

7 NC_009641 Staphylococcus aureus 

 

3.3. Sharon Dataset 

 This dataset contains 32 species assembled sequences in 
FASTA format, including different genera and bacteria spe-
cies. Here expected number of clusters is 32, but we got 
around 6 and 10 groups in case 5 and case 6, respectively. 
The results in the Sharon dataset are not so convincing be-
cause there seems to be an abundance of just 4-5 species out 
of 32 species. Because of this, the silhouette index is more 

advantageous in this situation than the accuracy and rand 
index. CARCAL, CARFMA, CARANA, CARLCI, CARL-
STR, and CARPAC cover most of the groups, and the re-
maining organism sequences are distributed falsely among 
all the groups (Tables 6 and 7). Figs. (11 and 12) illustrate 
the optimum k value and scatter plots for case 5, while Figs. 
(13 and 14) show the optimal k value and scatter plots for 
case 6, respectively. 

Table 3. Showing species distribution among 8 clusters 
(HNF+GC) for the 10s dataset. 

Cluster 
Number 

Accession Number  Species Abundance 

1 NC_010546 Crocosphaera subtropica 

2 NC_008555 

NC_009641 

Listeria welshimeri 

Staphylococcus aureus 

3 NC_005296 

NC_007404 

Rhodopseudomonas palustri 

Thiobacillus enitrificans 

4 NC_009637 Methanococcus maripaludis 

5 NC_007779 

NC_003112 

Escherichia coli 

Neisseria meningitidis 

6 NC_005296 Rhodopseudomonas palustri 

7 NC_003112 

NC_007779 

NC_010546 

Neisseria meningitides 

Escherichia coli 

Crocosphaera subtropica 

8 NC_006582 Bacillus clausii 

Fig. (2). Workflow of the developed approach. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (3). WSS plot for case 1. 

 

 
Fig. (4). Showing distribution of contigs among bins for case 1. (A 
higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

3.4. Evaluation 

 The proposed method was compared with unsupervised 
Coverage and composition based binning of Metagenomes 

(CoMet) [28] tool for a single metagenomics sample and 
MetaConClust [29] - Unsupervised Binning of Meta-
genomics Data Using Consensus Clustering and semi-
supervised tools MetaBAT [30] and MaxBin [31]. For eval-
uation of the quality of clusters, silhouette index, Accuracy, 
specificity, Precision and recall were used. Silhouette index, 
Accuracy, specificity, Precision and recall were calculated 
by using the SKlearn library in Python. Rand index was 
computed using R packages like phyclust [32], caret [33] 
and pROC [34] in R.  

 
Table 4. Showing species distribution among 10 clusters 
(TNF+GC) for the 25s dataset. 

Cluster  Species Abundance 

1 Salmonella bongori 

2 Meiothermus silvanus 

3 Escherichia coli 

4 Clostridium thermocellum 

5 Clostridium perfringens, Clostridium 
thermocellum 

6 Escherichia coli, Salmonella bongori 

7 Escherichia coli, Salmonella bongori 

8 Desulfosporosinus acidophilus 

9 Meiothermus silvanus 

10 Escherichia coli, Salmonella bongori 
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Table 5. Showing species distribution among 14 clusters 
(HNF+GC) for the 25s dataset. 

Cluster Species Abundance 

1 Natronobacterium gregoryi 

2 Segniliparus  rotundus 

3 Desulfosporosinus meridiei 

4 Escherichia coli, Salmonella bongori 

5 Terriglobus  roseus 

6 Clostridium  perfringens 

7 Corynebacterium glutamicum, Coraliomargarita 
akajimensis 

8 Natronococcus occultus, Halovivax ruber 

9 Salmonella enterica,  Thermobacillus composti 

10 Pseudomonas stutzeri, Frateuria aurantia 

11 Olsenella uli 

12 Clostridium perfringens 

13 Clostridium thermocellum, Desulfotomaculum 
gibsoniae 

14 Hirschia baltica 

 
 Accuracy is a measure for supervised learning tech-
niques; our method is unsupervised. Therefore accuracy 
measure is not very suitable for comparing our method to 
other techniques. However, we have done this with some 

crude approaches. It is found that the developed approach is 
showing more promising results than existing reference-free 
learning approaches. The results are shown in Table 8. A 
comparison with various existing approaches is shown in 
Table 9, and a comparison with only reference-free ap-
proaches is shown in Table 10. 

 Limitations include the requirement of extensive data for 
training, complexity in understanding models and may be 
chance of missing important features. Moreover, deep learn-
ing requires expensive GPUs. This increases the cost to the 
users. When a species is exceedingly rare, there is still room 
for improvement. Organisms with a low contig contribution 
in the dataset cannot be grouped.  

4. DISCUSSION 

 This study used three standard benchmark datasets: 10s, 
25s and Sharon species. For convenience, two cases under 
each dataset were studied depending on the combination of 
features such as TNF+GC and HNF+GC. In this study, we 
know that there are ten species in the case of the 10s dataset, 
25 species in the case of the 25s dataset and 32 species in the 
case of the Sharon dataset. Ideally, we should get 10 clusters, 
25 clusters, and 32 clusters; however, we got only seven and 
eight, ten and fourteen, six and ten optimum clusters for 10s, 
25s and Sharon datasets with TNF+GC and HNF+GC fea-
tures, respectively. The possible reason is that some very 
closely related species fall under the same cluster as per the 
phylogenetic analysis. A total of seven optimum clusters were 
found in the 10s dataset using TNF+GC features based on the 
proposed method, with a silhouette index of roughly 0.60, a 
rand index of 0.95, and an accuracy of 0.86. In contrast, eight 
optimum clusters were found when utilising HNF+GC fea-
tures, with a Silhouette Index, Rand Index, and Accuracy of

Fig. (5). WSS plot for case 2. 
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Fig. (6). Showing distribution of contigs among bins for case 2. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

 

Fig. (7). WSS plot for case 3. 
 

5 10 15 20 25

0
50

00
0

10
00

00
15

00
00

Number of Clusters

W
ith

in
 g

ro
up

s 
su

m
 o

f s
qu

ar
es



362    Current Genomics, 2022, Vol. 23, No. 5 Madival et al. 

 

Fig. (8). Showing distribution of contigs among bins for case 3. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
 
 

 
Fig. (9). WSS plot for case 4. 
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Fig. (10). Showing distribution of contigs among bins for case 4. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

Fig. (11). WSS plot for case 5. 
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Table 6. Showing species distribution among 6 clusters (HNF+GC) for 25s dataset. 

Clusters Group Name Abundant Species Name 

1 CARCAL, CARFMA Candida albicans, Finegoldia magna 

2 CARPAC Propionibacterium acnes 

3 CARLCI, CARLSTR Propionibacterium acnes, Streptococcus sp. 

4 CARCAL,CARFMA,CARANA Candida albicans, Finegoldia magna, Anaerococcus sp. 

5 CARLCI, CARLSTR Propionibacterium acnes, Streptococcus sp. 

6 CARCAL,CARFMA,CARANA Candida albicans, Finegoldia magna, Anaerococcus sp.

 
Table 7. Showing species distribution among 10 clusters (HNF+GC) for Sharon dataset. 

Clusters Group Name Abundant Species Name

1 CARSTR Streptococcus sp. 

2 CARFMA Finegoldia magna 

3 CARPAC Propionibacterium acnes 

4 CARLCI Leuconostoc citreum 

5 CARLCI Leuconostoc citreum 

6 CARFMA Finegoldia magna 

7 CARPAC Propionibacterium acnes 

8 CARCAL Candida albicans

9 CARPAC Propionibacterium acnes 

10 CARFMA Finegoldia magna 

 

 
Fig. (12). Showing distribution of contigs among bins for case 5. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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Table 8. Showing the results of the proposed method on various datasets. 

Dataset 

TNF +GC Features 

 
HNF+GC Features 

10s Sharon 25s 10s Sharon 25s 

       Rand Index 0.95 0.88 0.91 0.76 0.68 0.69 

       Silhouette Index 0.60 0.55 0.53 0.62 0.54 0.68 

       Optimum Clusters 7 10 6 8 10 14 

Accuracy  0.86 0.73 0.77 0.78 0.68 0.72 

Precision 

Micro 0.86 0.73 0.77 0.78 0.46 0.72 

Macro 0.72 0.66 0.67 0.63 0.46 0.78 

Weighted 0.75 0.56 0.62 0.61 0.50 0.52 

Recall 

Micro 0.86 0.73 0.77 0.78 0.88 0.72 

Macro 0.88 0.86 0.90 0.88 0.46 0.93 

Weighted 0.86 0.73 0.77 0.78 0.46 0.72 

F1- score 

Micro 0.86 0.73 0.77 0.78 0.46 0.72 

Macro 0.79 0.73 0.75 0.73 0.61 0.84 

Weighted 0.80 0.63 0.68 0.69 0.31 0.61 

 
Table 9. Showing comparison with existing approaches using TNF+GC features. 

Tool 10s Dataset Sharon Dataset 25s Dataset 

- Bins ML Approach Silhouette 

Index 

Rand 

Index 

Bins Silhouette 

Index 

Rand 

Index 

Bins Silhouette 

Index 

Rand 

Index 

Proposed 7 unsupervised 0.60 0.95 6 0.55 0.88 10 0.53 0.91 

comet 17 unsupervised -0.24 0.77 16 -0.07 0.78 16 -0.16 0.48 

MetaBAT 10 Semi-supervised -* 0.98 7 -* 0.86 23 -* 0.96 

MaxBin 9 Semi-supervised -* 0.97 4 -* 0.55 24 -* 0.97 

Note: *Calculation of these values is not applicable for these tools as they are a semi-supervised tool 
 
Table 10. Showing comparison with existing reference free-based approaches using TNF+GC features. 

Dataset/ Combination of 

Features 

10s Sharon 

Silhouette Index Rand Index Accuracy Silhouette Index Rand Index Accuracy 

Proposed Method 0.60 0.95 0.86 0.55 0.88 0.73 

comet -0.24 0.77 0.82 -0.07 0.78 0.63 

MetaConClust  0.49 0.93 0.25 0.26 0.88 0.15 
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Fig. (13). WSS plot for case 6. 
 

 
Fig. (14). Showing distribution of contigs among bins for case 6. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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0.62, 0.76, and 0.78, respectively. This indicates that our  
proposed method is performing well. The proposed method 
was also compared with the existing tools such as a comet, 
MetaBAT, MaxBin, and MetaConClust using the features 
TNF+GC. Here, the comparison with other methods is based 
on TNF+GC only, as all other tools are not based on HNF 
features. It has been observed from the results that the pro-
posed method is better than the comet approach and Meta-
ConClust, which is an unsupervised method of binning. 
Compared to MetaBAT and MaxBin, the performance of the 
proposed method is at par for most of the data. This is be-
cause both MetaBat and MaxBin are semi-supervised meth-
ods and use some reference data for binning.  

CONCLUSION 

 This study shows a paradigm shift in the application of 
deep learning for an unsupervised method of binning in 
metagenomic. It opens a new path to explore the possibility 
of advanced AI techniques for binning in the absence of 
reference data, as very few reference genomes are available 
in the Metagenomics study. In the future, one can extend 
this work by considering features such as adding some extra 
genomic features, setting different hyper parameters, and 
clustering at two stages with different clustering techniques 
can further be explored to improve the quality of the clusters 
or bins. One can also try developing a tool that is independ-
ent of datasets. 
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