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� Abstract: Genome sequences indicate a wide variety of characteristics, which include species and 
sub-species type, genotype, diseases, growth indicators, yield quality, etc. To analyze and study the 
characteristics of the genome sequences across different species, various deep learning models have 
been proposed by researchers, such as Convolutional Neural Networks (CNNs), Deep Belief Networks 
(DBNs), Multilayer Perceptrons (MLPs), etc., which vary in terms of evaluation performance, area of 
application and species that are processed. Due to a wide differentiation between the algorithmic im-
plementations, it becomes difficult for research programmers to select the best possible genome pro-
cessing model for their application. In order to facilitate this selection, the paper reviews a wide varie-
ty of such models and compares their performance in terms of accuracy, area of application, computa-
tional complexity, processing delay, precision and recall. Thus, in the present review, various deep 
learning and machine learning models have been presented that possess different accuracies for differ-
ent applications. For multiple genomic data, Repeated Incremental Pruning to Produce Error Reduc-
tion with Support Vector Machine (Ripper SVM) outputs 99.7% of accuracy, and for cancer genomic 
data, it exhibits 99.27% of accuracy using the CNN Bayesian method. Whereas for Covid genome 
analysis, Bidirectional Long Short-Term Memory with CNN (BiLSTM CNN) exhibits the highest ac-
curacy of 99.95%. A similar analysis of precision and recall of different models has been reviewed. 
Finally, this paper concludes with some interesting observations related to the genomic processing 
models and recommends applications for their efficient use. 
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1. INTRODUCTION 

 Extraction of species-specific information from genomic 
data is a multidomain task, which involves various signal 
processing, deep learning, post-processing, feedback-based 
learning, and performance tuning operations. In order to 
perform this task, a large amount of data is required to be 
collected for the given species, and this data must be tagged 
with species-specific information [1]. This tagged infor-
mation is decided by the application scenario, and thus re-
quires expert intervention for accurate analysis. A sample 
architecture that performs this task can be observed in Fig. 
(1), wherein macro steps for genomic sequence processing 
are showcased. 
 Based on this architecture, it can be observed that a wide 
variety of data must be collected in order to train the pro-
cessing model. The collected data is input into a pre-
processing model, wherein operations like denoising, miss-
ing value estimation, filtering, etc., are performed. The  
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pre-processed genome sequences are given to a feature ex-
traction block, wherein unigram, bigram, trigram, and other 
pattern features are extracted. These features must follow 
two main rules, such as (i) feature variance for sequences 
belonging to the same category must be as low as possible, 
and (ii) feature variance for sequences belonging to different 
categories must be as high as possible. 
 To facilitate application of these rules, the feature selec-
tion engine is used. This engine utilizes algorithms, like 
principal component analysis (PCA) and latent dirichlet 
analysis (LDA), on extracted features in order to widen the 
feature variance gap between different class sequences [2]. 
These algorithms aim to solve this problem by projecting 
the data from higher to lower dimensions. Results of the 
selection engine are given to a classifier, wherein machine 
learning algorithms, like convolutional neural network 
(CNN), recurrent neural network (RNN), artificial neural 
network (AiNN), etc., are used [3]. Machine learning meth-
ods are most effective when they optimize an appropriate 
performance measure. They also focus on algorithmically 
constructed models with optimal prediction as their goal 
rather than parametric data modeling [4]. These algorithms 
assist in the stratification of genome sequences into 1 of N 
genes [5]. Results of this engine are given to a post-
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processing block, wherein error estimation is performed, 
and based on this error performance of classifier, the feature 
selection engine is tuned. This engine also assists in the 
temporal analysis of genomic data for the prediction of fu-
ture diseases (or events) based on historical classification 
[6]. The selection of an optimal subset of features improves 
the learning efficiency and increases the predictive perfor-
mance [7]. In order to perform these tasks, a wide variety of 
system models have been proposed by researchers in the last 
decade. A survey of these algorithms, along with their nu-
ances, advantages, limitations and characteristics, can be 
observed in the next section. This is followed by a perfor-
mance evaluation of the reviewed models, which assists in 
the identification of best models for a given genome pro-
cessing application. Finally, this review concludes with a 
comparative analysis of various machine learning and deep 
learning models and recommends various ways to improve 
their performance. 
 

 
Fig. (1). General purpose architecture for genomic data processing. 
(A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

2. GENOME SEQUENCE PROCESSING MODELS 

 With the massive generation of data, the era known as 
‘big’ data, deep learning (DL) approaches have appeared as 
a discipline of machine learning (ML) that are considered to 
be more efficient and effective when we deal with a big 
amount of data. The DL methodologies have helped provide 
high computation power to resolve complex research hy-
potheses in genomics [8]. Genomic data sequences are ca-
pable of representing a wide variety of information about 
the underlying species. For instance, in human beings, the 
genomic sequences assist in the presence of cancer, diabe-
tes, heart and stroke issues, and other diseases. While, in 
plants, these sequences can also be used to analyze the types 
of species, the disease severity, yield quality, etc. [9]. 

2.1. Processing Models for Crops’ Genome Sequences 

 Deep learning techniques are useful in genome sequence 
analysis and classification. Deep Neural Network (DNN) 
has a vanishing gradient problem; as the number of layers 
increases, the number of connections increases persistently. 
The novel Spinal net model is the advancement of the DNN 
model for high-accuracy prediction of 6mA sites in rice ge-
nomes [5]. Abbas et al. proposed a novel model that uses 
the SpineNet-6mA network, which is capable of predicting 
DNA N6-methyladenine sites in genomes. The model is 
tested on rice genomes and is able to achieve an accuracy of 
94.31%, precision of 92.92%, and recall of 95.71% on mul-
tiple datasets [5]. It uses a combination of batch normaliza-
tion, along with max pooling and one-hot encoding in order 
to classify between 6m and non-6m genomes, as observed in 
Fig. (2), wherein entire internal architecture for this model is 
described. From the SpineNet-6mA network model, it is 
observed that each Spinal Net neuron comprises normal 
neurons, the outputs of which are combined in order to ob-
tain the final activation. Due to this, the total number of pro-
cessing elements is doubled, thereby improving the compu-
tational power of the network. This increase in computa-
tional power also increases accuracy, precision and recall of 
classification [10]. This novel architecture of the SpineNet-
6mA model is able to receive large data that thereby achieve 
better efficiency. Hence, SpineNet-6mA model can have the 
best performance on rice genome processing due to its mod-
ified internal architecture when compared to the models 
iDNA6m, SNN Rice6m, MM 6mA, i6m, and DNA6m 
MINT, which showcase an accuracy of 91.7%, 92.04%, 
83.6%, 90.9%, and 90.11%, a precision of 90.5%, 89.75%, 
83.63%, 86.64%, and 93.24%, and recall of 93%, 94.33%, 
89.32%, 86.7%, and 92.16%, respectively [5]. 
 Various classification models have been proposed by 
researchers, which assist in deploying context-sensitive ge-
nome stratification engines [11]. Besides, emerging high-
performance bioinformatics tools specific for plant research 
are explained by Martinez et al. [2016], where the authors 
have studied the genomic sequence of numerous plant spe-
cies, including the main crop species. Here, the comparative 
analysis is focused on the common and specific computa-
tional tools developed to achieve the particular objectives of 
each database [10]. For instance, Yu et al. proposed the de-
sign of a maize micro phenotype classification model, 
wherein forward and reverse genomic prediction for shoot

Dataset collection

Pre - processing

Feature selection

Feature  extraction

Classification

Classes

Species 1

Species 2

Species N

Post Processing and
Feedback



Genomic Sequence Processing Models for High Efficiency Prediction Current Genomics, 2022, Vol. 23, No. 5    301 

 
Fig (2). Design of the spinal net model for genome classification [5]. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

apical meristem (SAM) data has been described. The pro-
posed model is capable of achieving an accuracy of 62% for 
seven different corn classes, including sweet corn, landrac-
es, tropical, popcorn, stiff stalk, non-stiff stack, and un-
known [9]. When evaluated on seven different classes, the 
model has been observed to have lower accuracy; thus, in-
corporation of deep learning and transfer learning must be 
done here for improving it. An example of a high-efficiency 
model for maternal haploid induction rate prediction in 
maize crops has been described by Almeida et al.; the ge-
nomic estimated breeding value (GEBV) was used for train-
ing and validation. This model used haploid induction rate, 
days to anthesis, the height of plant, the height of ear, the 
size of tassel, and self-induction rate in order to achieve an 
accuracy of 83% across different datasets, which can be 
improved via the use of multiple deep learning models [12]. 
Deep learning models have been widely used for crop clas-
sification, where the study of summer crops has been done 
using two types of models, i.e., Long Short-term Memory 
(LSTM), and the other based on one-dimensional convolu-
tional (Conv1D) layers [13]. An increase in the delay in 
models’ selective phenotyping has been discussed by 
Michel et al., wherein pedigree and genomic (PG) infor-
mation was combined with pre-existing phenotypic infor-
mation to remove non-variant training samples. This infor-
mation is represented using equation 1, where different phe-
notypes are combined to form the final quality measure. 

� � � � � � � � � � � � � � �                                          (1) 
Where, �� �� �� �� ��������� represent various phenotypes 
and their respective genomic effects [14]. A higher value of 
output phenotype (y) indicates better selection quality of 
combination, thereby indicating better algorithmic perfor-
mance. Due to the use of such strength evaluation attributes, 
the proposed PG model is capable of obtaining an accuracy 
of 59% on multiple datasets. An improved model for appli-
cation-specific genomic data classification has been ex-
plained by Dai et al., wherein the non-homology analysis of 
gene functions for maize was conducted. The authors have 
discussed six different methods, and compared their accura-
cy, precision, recall and area under the curve (AUC) per-
formance. Random Forest (RF), Gradient Boosting Machine 
(GBM), Partial Least Squares (PLS) and Lasso and Elastic-
Net Regularized Generalized Linear Models (GLMNET) 

exhibited an accuracy of 97%, 96%, 95%, and 91%, respec-
tively [15]. RF had the highest accuracy, but precision, re-
call and AUC performance were higher for GLMNET, 
which indicated that RF must be fused with GLMNET to 
improve overall genome classification performance.  
 Deep learning models have better classification perfor-
mance when compared to linear models. This can also be 
observed from work done by Grinberg et al., where elastic 
net (EN), lasso regression (LaR), ridge regression (RiR), 
GBM, RF, support vector machines (SVM), two-step se-
quential method based on linear regression (TSSLR), and 
Genomic best linear unbiased prediction (GBLUP) have 
been used for yeast, wheat and rice genome classification 
[16]. Onda et al. observed that when cross-validation 
frameworks are added to these models, their accuracy is 
exponentially improved, because these models assist in var-
iant feature selection, thereby improving their classification 
performance [17]. An accuracy of 78% was observed for 
EN, 77.9% for LaR, 56.3% for RiR, 60.9% for GBM, 63.6% 
for RF, 71.2% for SVM, 78.6% for TSSLR, and 71.1% for 
GBLUP, which is higher than Bloom filter and other linear 
models. Thus, these models must be used for clinical appli-
cations that classify the genomic data accurately. Another 
interesting approach that uses GBLUP modelling techniques 
for analysis of sugarcane clonal performance via analysis of 
non-additive genetic effects has been discussed by the au-
thors Yadav et al. and Virnodkar et al.; this model uses dif-
ferent genomic traits for analysis, which allows them to 
measure cane per hectare, fibre content and commercial 
cane sugar properties with 65.9% accuracy, thereby suggest-
ing the use of deep learning models like CNN, or LSTM 
based RNN for better performance [13, 18, 19]. This per-
formance can be further tuned via the use of calibration and 
validation steps as suggested by Auinger et al., where they 
have analysed advanced cycle maize plants and predicted 
their genomic breeding values. The model uses the GBLUP 
method and employs population-specific calibration using 
the analysis of molecular variance (AMOVA) method, due 
to which, the proposed model is capable of achieving an 
accuracy of 71%, thereby making the model applicable for 
coarse-grained analysis [20].  
 Various species-specific models have also been pro-
posed, where Lubanga et al. have analysed quality traits in 
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the tea genome via genomic and pedigree-based prediction. 
They have compared various prediction models and con-
cluded that Bayesian ridge regression (BRR) is superior to 
BayesA, BayesB, BayesC, and GBLUP, reproducing kernel 
Hilbert spaces (RKHS) models that use pedigree relation-
ships, namely RKHS-pedigree (RKHSP), RKHS markers 
(RKHSM), and RKHS markers and pedigree (RKHSMP). 
Tea traits, including theogallin, theobromine and epicate-
chin gallate, were predicted with 73% accuracy via BRR, 
72% accuracy via BayesA, 70% accuracy via GBLUP, and 
68% accuracy via RKHSMP models [21]. Also, a deep 
learning model has been discussed by Knoch et al. (2021) 
for canola, where they have proposed the use of mul-
ti-omics-based predictive model (MOBPM). The MOBPM 
method replaces genetic markers with transcriptomic infor-
mation, and uses reproducing Hilbert regression, which is 
based on Gaussian kernels [22]. This combination is capable 
of achieving better hybrid prediction accuracies for complex 
genomic canola traits. Researchers have been able to find 
different canola stages, including seed emergence, seed 
yield, oil yield, protein content, days to onset for flowering, 
oil content and seed glycosylates with 75% accuracy, there-
by making it useful for coarse-grained analysis. This accu-
racy can be improved via the use of deep learning models 
designed by Montesinos et al., wherein models like RNNs, 
CNNs, multilayer perceptron (MLP), deep belief networks 
(DBNs), and their combinations for better classification 
performance have been compared. MLP has been observed 
to have an accuracy of 91%, CNNs an accuracy of 93%, 
RNNs an accuracy of 92%, while DBNs have been observed 
to have an accuracy of 94% on different genomic datasets, 
thereby making them useful for a wide variety of clinical 
applications [23]. An application of similar models for 
groundnut trait identification was carried out, where Bayesi-
an Generalized Linear Regression (BGLR) with cross-
validation schemes was used. The proposed model by Pan-
dey et al. was capable of achieving an accuracy of 65% on 
different genomic sequences, thereby making it useful for 
analysis of flowering duration, maturity duration, seed 
weight analysis, oleic acid estimation, late leaf spot estima-
tion, etc. [24].  
 The deep learning models are useful for a wide variety 
of applications, including cross-genomic prediction; one 
such work was done by Mellers et al., wherein oat breeding 
costs reduced by 15% due to genomic analysis. The model 
proposed uses BLUP and differentially penalized regression 
(DiPR) for analysis, which results in an accuracy of 75% 
across different data inputs [25]. The work by Basnet et al. 
explained such a model for hybrid wheat prediction using 
BLUP, general combining ability (GCA), specific combin-
ing ability (SCA), along with the gender of the species. Due 
to such a combination, the model has been observed to 
achieve an accuracy of 91.1% for different wheat yield clas-
ses [26]. This makes it useful for on-field analysis of days to 
flowering, days to heading, and days to maturity. 
 For all crop genome processing, a novel heuristic feature 
selection-based model can be designed, where context-
specific feature selection model can be combined as a dual 
model using an SVM classifier and extra trees. The genome 
sequences will be initially transformed in the form of N-
gram features. These feature sets will be chosen using a dual 
model that maximizes variance levels using a genetic algo-

rithm. The parameters considered would be the optimization 
iterations, optimization solutions, features extracted by the 
N-gram process, and the learning rate of the model. With 
this, we could get highly accurate training and testing da-
tasets. Furthermore, the ensembled deep learning models 
can be used for classification. 

2.2. Processing Models for Disease Classification and 
Identification in Human Beings 

 In order to increase the scalability of the learning mod-
els, testing can be done on different genomic datasets as 
described by Sun et al., wherein The Cancer Genome Atlas 
(TCGA) cancer survival datasets and age-related eye disease 
studies (AREDS and AREDS2) datasets are described. It is 
observed that these datasets cover a wide variety of genomic 
data, and thus can be used for better evaluation of genome 
classification models [6]. The use of various deep learning 
models has been explained by Ramasamy et al., wherein an 
Adaptive Skipping Training model named Half of Threshold 
(HoT) was described. The model has been tested on various 
genomic datasets, including Hepatitis, Heart, SPeCT, Liver 
Disorders, Drug Consumption, Breast Cancer Wisconsin 
(Diagnostic), Cardiotocography, Thyroid Disease and 
Splice-junction Gene Sequences, thereby indicating its vast 
scalability [27]. 
 The HoT model is used for parametric feedback and 
iterative training, which improves the overall accuracy of 
genomic classification. The model is showcased in Fig. (3), 
wherein results from the neural network are compared with 
target results, and based on this comparison, training 
weights are manipulated and non-variant inputs are skipped 
for improved classification efficiency. Due to the use of 
iterative learning, the proposed adaptive skipping HoT 
(SHoT) model showcases an accuracy of 92.6%, which is 
higher than the normal HoT model that achieves an accura-
cy of 85.3%, and back-propagation neural network (BPNN), 
which achieves an accuracy of 78.6%, on the same dataset 
[27].  
 Due to adaptive skipping, the algorithm is showcased to 
have a faster response when compared to HoT and BPNN 
models, thereby improving its scalability and real-time clin-
ical usage. The one-hot encoding is a sample strategy that 
uses n-bit state registers to encode n states. Each state has its 
own register bit, and only one register is valid at any time 
[28]. Zhang et al. worked on a CNN model named Deep-
DRBP-2L, which uses LSTM for the identification of DNA 
and RNA binding proteins. In this model of DeepDRBP-2L, 
initially, a pool of convolutional layers is used for effective 
feature extraction, followed by multiple pooling layers and 
convolutional pooling layers for effective feature selection. 
The selected features are given to a bidirectional LSTM 
model for feature activation, and the activated features are 
classified using a flatten neural network layer for improved 
classification accuracy [29]. The proposed DeepDRBP 
model has been observed to be capable of achieving an ac-
curacy of 91%, a precision of 80.68%, and a recall of 
81.14%, which is better than DNA binder having an accura-
cy of 89.5%, a precision of 62.45%, and recall of 89.1%, 
and Stack DP prediction model having an accuracy of 
86.5%, a precision of 55.63%, and recall of 89.1% on the 
same datasets [29]. 
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 The convolutional layers can be used for the identifica-
tion of disease-specific patterns in genomic data, which can 
be used for future analysis and disease prediction. Yu et al.  
proposed a model wherein essential methylation patterns 
and their related genes were identified using maximum rele-
vance feature selection (MRFS), increment feature selection 
(IFS) and SVM-based classification. Internal architecture 
for MRFS and IFS utilizes feature convolutions in order to 
identify genes with the largest relevance, genes with robust 
and consensus ranks, and genes with optimal combination; 
this work was able to achieve an accuracy of 89.5% for 
stroke-related genome prediction [30]. A similar work has 
been done by Singh et al. and Xu et al., wherein DNNs and 
AiNN were used for the prediction of enhancer-promoter 
interaction and essential genes in prokaryotes with high ef-
ficiency. The DNN model is capable of achieving an accu-
racy of 97%, a precision of 91%, and recall of 90% [31], 
while AiNN showcases an accuracy of 83%, a precision of 
80%, and recall of 79% for a wide variety of datasets [32]. 
The performance of these models is high enough for clinical 
usage, but they require large computational delays, which 
limits their deployment capabilities. Improved models have 
beenproposed by Liu et al. and Davi et al., wherein machine 
learning models have been used for the prediction of sigma-
54 promoters and severe dengue promoters in human DNA 
and RNA sequences. The proposed models are capable of 
identifying the mentioned sequences via intelligent feature 
selection, which allows them to achieve high accuracy with 
minimum error rates. It is observed that RF [33] has an ac-
curacy of 91.6%, while SVM [34] has an accuracy of 86%, 
which makes it useful for a wide variety of applications. 
 Many machine learning algorithms have been used for 
classification of Alzheimer's disease; these algorithms have 

their own application and challenges [35]. The proposed 
model for Alzheimer’s disease prediction used Sparse Re-
gression Model (SRM) with Joint Projection Learning (JPL) 
on the standard Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset with over 91% accuracy [36]. Similarly, 
the model suggested by Sergeev et al.  was capable of iden-
tifying tuberculosis using two-step cross-validation via a 
combination of LR, RF, GBM, Single Marker Test, and 
Elastic Net classifier. An accuracy of 84% was achieved by 
using the proposed model with an aggregated precision of 
92.9% and recall of 75.2% [37]. The deep learning models 
have beenmentioned by Khorshed et al., wherein multiple 
tissue cancer prediction has been performed. These models 
used a specialized CNN architecture, namely GeneXNet, 
which is capable of achieving an accuracy of 98.9% on dif-
ferent cancer tumour types. The GeneXNet model uses a 
combination of CNN and transfer learning for analysis of 
data from multiple domains [38]. A series of GeneX blocks 
that consist of a deep learning block followed by a residual 
learning block were combined in order to form the Gen-
eXNetwork, which is capable of highly accurate cancer 
classification for adrenal gland, bile duct, bladder, bone 
marrow, brain, cervix, colorectal, eyes, kidney, liver, lung, 
lymph nodes, and other body sites [38]. The model outper-
forms ResNet, which has an accuracy of 96.5%, DenseNet 
with an accuracy of 95.3%, NasNet with an accuracy of 
93.5%, and MobileNet having an accuracy of 94.2% on the 
same datasets [38]. This model is currently capable of can-
cer detection but can be further used for detecting multiple 
types of genomic classes via the application of gene consen-
sus modelling, wherein genes are selected depending on 
their applicability to the given context. An example of such 
a consensus model was provided by Wu et al., where PLS-

 
Fig (3). The Half of Threshold (HoT) algorithm for gene classification [27]. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
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based gene microarray analysis was performed for the Large 
B Cell Lymphoma dataset [39]. The model uses a combina-
tion of singular value decomposition (SVD) and threshold-
ing for linear consensus classification. Genes selected after 
consensus were used for multiple disease type classification 
via a combination of ridge PLS, which resulted in an accu-
racy of 93.4%, being higher than SVM having an accuracy 
of 91.5% and RF-SVM, which has an accuracy of 91.9%, on 
the same cancer dataset [39]. 
 This accuracy can be improved via the use of multivari-
ate gene interaction analysis described by Knight et al., 
wherein they applied optimal Bayesian classification [40]. 
This model uses a combination of Poisson and Bayesian (P 
and B) analysis in order to achieve an accuracy of 91.5% on 
different gene types [40]. Similar models have been dis-
cussed where inverse projection representation (IP), com-
prehensive pathway activity analysis (CPAA) and hybrid 
heuristic dimensionality reduction (HHDR) have been used 
[41]. The IP model is capable of effective tumour classifica-
tion and uses two-stage hybrid gene selections to achieve an 
accuracy of 93%, which is higher than SVM having an ac-
curacy of 85%, and sparse representation-based classifica-
tion (SRC) having an accuracy of 89% on the same datasets 
[41]. While the CPAA model is used for cancer classifica-
tion via inferring gene interactions with an accuracy of 83% 
[42], the HHDR model is used for the classification of ma-
laria via genetic algorithm (GA) and a combination of PCA, 
independent component analysis (ICA) and SVM to achieve 
an accuracy of 91.7%, which is higher than GA with PCA 
that has an accuracy of 85% and GA with ICA that has an 
accuracy of 90.3% [43]. 
 The reviewed models utilize deep learning and perform 
feature selection via supervised learning. This requires a 
large amount of training data, thereby limiting their work to 
big data applications. The neural network is trained with 
gene expression profiles of genes that are predictive of re-
currence in liver cancer; the ANNs have become capable of 
correctly classifying all samples and distinguishing the 
genes most suitable for the organization [44]. In order to 
reduce data requirement, Ye et al. proposed the use of an 
adaptive unsupervised feature learning (AUFL) model that 
is capable of gene signature identification for lung cancer. 
TCGA was used for its evaluation, and an accuracy of 
92.2% was achieved when AUFL was combined with kNN, 
92.1% with DT, 91.3% with SVM, and 91% with LDA, 
which makes it useful for a wide variety of applications 
[45]. Similar models have been discussed, wherein copy 
number variation (CNV) detection, tumour classification 
using AI, and cell subtype classification using denoising 
autoencoder (DAE) have been performed on multiple gene 
datasets [46]. The CNV approach uses Bayesian inference 
models for obtaining an accuracy of 99.27% [47], while AI 
classifies kidney renal clear cell carcinoma (KIRC), lung 
adenocarcinoma (LUAD) [48], lung squamous cell carci-
noma (LUSC), and uterine corpus endometrial carcinoma 
(UCEC) with 96.9% accuracy, which makes it useful for 
clinical applications [49]. The artificial intelligent model 
uses a combination of binary particle swarm optimization 
and decision tree (PSODT) with CNN, which assists in op-
timum feature selection, thereby reducing computational 
delay [47]. The DAE model uses a combination of DNN 

with autoencoder that works by reducing the reconstruction 
error. 
 Due to the complex structure, the model is able to ex-
tract the most relevant features from the input set, thereby 
resulting in an accuracy of 98.59%, which is higher than 
SVM, RF and Active NN, which has an accuracy of 
98.45%, 92.06% and 97.66%, respectively, on the same 
dataset. Algorithms, like robust trace norm multitask learn-
ing (TNML) [50], use logistic regression for efficient fea-
ture selection and are able to achieve an accuracy of 79.3% 
for cancer detection. PLS with novel TTZ feature vector 
[51] is applied to lung disease classification and is able to 
achieve an accuracy of 92.65%, while the LASSO SVM 
model is applied to cancer datasets and is able to achieve an 
accuracy of 91.3%, thereby making them useful for various 
applications. Similar models have been explained, where the 
authors have discussed the use of repeated incremental 
pruning to produce error reduction (RIPPER) [52], CNNs, 
RNNs [53], and RIPPER with SVM for multiple applica-
tions [54]. The RIPPER model is capable of achieving an 
accuracy of 80.8%, CNNs an accuracy of 96%, RNNs an 
accuracy of 96.2%, and SVM with RIPPER to achieve an 
accuracy of 99.7%, thereby improving their utility for real-
time clinical and on-field deployments. Based on this re-
view, deep learning and iterative learning models have been 
found to be most efficient for human gene sequence classifi-
cation; also, these methods are able to take advantage of 
high dimensional input, which is an important asset for pop-
ulation genetics inference and often more robust than other 
statistical approaches [4]. 

2.3. Processing Models for Viral Genome Classification 

 Accurate genomic sequence classification and typing 
could help enhance the phylogenetics and functional studies 
of viruses [7]. The work done by Dasari et al. compared 
various CNN architectures, and concluded that LSTM mod-
els along with EdeepVPP models outperform other models 
in terms of accuracy of genomic classification. EdeepVPP 
model has been observed to be capable of achieving an ac-
curacy of 99.2% on various CoVID-19 datasets, which 
makes it highly useful for viral genome prediction [55]. The 
EdeepVPP model utilizes one-hot encoding along with mo-
tif analysis for pattern evaluation, thereby assisting in for-
mation of feature maps, as indicated in Fig. (4), wherein 
viral sequences along with their positions are shown. The 
CNN model utilizes five different-sized layer sets, each con-
sisting of dropout, max pooling, 1D convolution, and activa-
tion layers, which assist in high-density feature extraction. 
 The proposed model was compared on 2011 G5, 2011 
N19, 2015 F and other genomic datasets; it was observed to 
outperform other models, including Vira Sorter having an 
accuracy of 74.2%, Vira Pipe having an accuracy of 79%, 
Vira Finder having an accuracy of 89.3%, Vira Miner hav-
ing an accuracy of 92.3%, RNN Vira Seeker having an ac-
curacy of 91.8%, and Deep Vira Finder with an accuracy of 
93% on the same datasets [55]. Similar fused models have 
been proposed by Liu et al. and Ibba et al., wherein Virus 
Finding and Mining (VFM), Bayesian multi-trait multi-
environment (BMTME), and multi-trait ridge regression 
(MTR) have been described. These models utilize a combi-
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nation of different clustering and classification techniques in 
order to estimate genomic activity, thereby assisting in im-
proved classification performance [56]. The VFM model 
has an accuracy of 97%, while the BMTME model has an 
accuracy of 90%, and the MTR model has an accuracy of 
91% on different genomic datasets [57].  
 The Artificial Intelligence system learns to execute the 
interpretation task on new health data of the same type, 
which in clinical diagnostics is often the identification or 
forecasting of a disease state [58]. Various deep learning 
and artificial intelligence techniques have been discussed, 
wherein sequential pattern mining (SPM), along with co-
occurrence matrix (CMSPAM), and All-K-Order-Markov 
(AKOM), is used for highly efficient pattern modelling. The 
results indicate that AKOM outperforms CMSPAM and 
other models in terms of accuracy and delay needed for 
evaluation. This is due to the fact that AKOM works on 
effective feature selection via inter-class variance maximi-
zation, which improves its real-time performance. The accu-
racy of AKOM was observed to be 91.2%, which is higher 
than CMSPAM having an accuracy of 89.5%, Compact 
Prediction Tree (CPT) having an accuracy of 86.5%, CPT+ 
having an accuracy of 90.2%, Dependency Graph (DG) hav-
ing an accuracy of 80.5%, Transition Directed Acyclic 
Graph (TDAG) having an accuracy of 86.5%, and LZ78 
having an accuracy of 85.4% on different datasets [59]. 
These models showcase moderate precision and recall per-
formance due to inconsistency in output rule generation. 
This precision and recall performance can be further im-
proved as Poran et al. suggested the models that use effec-
tive feature extraction and multiple feature selection, where-
in mass spectrometry-based profiling of users is performed. 
These models are capable of performing this task with 94% 
accuracy, which is higher than the random selection accura-
cy of 89%, due to which the model is capable of real-time 
clinical analysis [60]. Similar to this work, the model that 
was studied by Xie et al. analysed the effects of Middle East 
respiratory syndrome-coronavirus (MERS CoV) via the 
artificial neural network-based linear B-Cell prediction 
(ABCPred) classification method. The ABCPred model is 

capable of achieving an accuracy of 84.5% on different 
epitopes [61], thereby making it useful for coarse-grained 
analysis of MERS-CoV. It was found that the machine 
learning classification method can be implemented to diag-
nose COVID-19 as an assistant system [62]. The BiLSTM 
CNN [63] was able to achieve an accuracy of 99.95% for 
COVID genome sequence classification. 

2.4. Models for Classification of Various Gene Expres-
sions and RNA Sequences of Multiple Genome Data 

 Ribonucleic acid (RNA) modifications are post-
transcriptional chemical composition changes that have a 
fundamental role in regulating the main aspect of RNA 
function [64]. Barbeira et al.  discussed various deep learn-
ing models, including EN, cross‐tissue gene expression im-
putation (CTGI), deterministic approximation of posteriors 
(DAP), and multivariate adaptive shrinkage (MASH) for 
genomic data classification [1]. These models are capable of 
classification of human genomes, plant genomes, and ani-
mal genomes with high accuracy. The EN model showcased 
a precision and recall of 80% and 85% with moderate com-
putation complexity, while the CTGI model showcased a 
precision and recall of 83% and 86% with low complexity. 
Similarly, the DAP model showcased a precision and recall 
of 86% and 89% with high complexity, while the MASH 
model showcased a precision and recall of 75% and 79% 
with a moderate level of complexity [1]. All these models 
were applied to different kinds of genomic data and show-
cased good performance. Although these models exhibited 
good accuracy, they involved large delays for training and 
evaluation. These delays can be reduced using feature selec-
tion, as proposed by Seo et al., wherein GA was used to 
identify most variant features. The modelled GA utilizes a 
ratio of statistically identical k-words (SIWRs) in order to 
evaluate the fitness function of each genomic sequence, 
where SIWR is evaluated as follows in equation (2). 
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                                                                  (2) 

 
Fig. (4). Deep learning model for genomic feature map generation [55]. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

1 2 3 4 5

T A A C G A C T T
N A G T T A T A G
. . . . . . . . .
. . . . . . . . .
C T A A C T N A G
A A C T G A T G C

G C A C A T T
A=T T A T A G
. . . . . . .
. . . . . . .
A C T G A T G
G A A T C N C

32 Filters

Extracted filters from 
convolution layer 1

Feature maps

Convolution on input 
sequences

Activated  
features

Pattern logo

Extracted
patterns

Pick position

Seq1

Seqn

Motif 
analysis

B

280 FC Layers

35 FC Layers

300 x 1, 32

150 x 1, 32

147 x 1, 8

73 x 1, 8

71 x 1, 8

35 x 1,  8 Output 
Layers

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

Onehot encode 
(1 , 300 x 5)

C

T

C

T

N

G

A

Conv1D, Filters=32 
Kernel_size=7 

Padding='same'

Droupout(0.2) 
Max-pooling 

Strides=2 
Kernel_size=2

1
Conv1D 
Filters=8 

Kernel_Size=4

2

Droupout(0.2) 
Max-pooling 

Strides=2 
Kernel_size=2

3

Conv1D 
Filters=8 

Kernel_size=3
4

Droupout(0.2) 
Max-pooling 

Strides=2 
Kernel_size=2

5

A

Dense(2) 
Activation=Softmax

Dense(32) 
Activation=ReLU

Flatten



306    Current Genomics, 2022, Vol. 23, No. 5 Durge et al. 

Where, S1 and S2 represent sequence occurrence counts for 
each of the feature vectors. The proposed SIWR GA model 
is able to identify plant and human genomes with 96% accu-
racy, 95% precision, and 94.5% recall rates, which is higher 
than the frequent pattern (FP) tree that has an accuracy of 
93%, precision of 91%, and recall of 90%. Further, it show-
cases better efficiency when compared to FP SVM and 
spaced SVM, which exhibit an accuracy of 90% and 85%, a 
precision of 89% and 83%, and recall of 80% and 79%, re-
spectively. All this performance is achieved while having 
low delay, thereby improving the deployment capability of 
the network for high-speed clinical applications. Animal-
specific models are also suggested for highly efficient ge-
nomic prediction, wherein Australian sheep whole genome 
sequence data were processed using GBLUP and Bayesian 
classification [65]. The model is able to categorize between 
crossbred Border Leicester x Merino and purebred Merino 
sheep with an accuracy of 61.1%, which can be improved 
via reinforcement and deep learning models, as discussed by 
Zrimec et al., wherein an accuracy of 83% was achieved 
across 20k RNA datasets of seven different organisms. This 
accuracy is very high considering the fact that the used 
CNN model is evaluated for multiple organism types [66]. 
The development of classification models is highly recom-
mended for the diagnosis and classification of diseases and 
disease monitoring at the molecular level [67]. Zhou and Ji 
discussed another example, wherein chromatin accessibility 
was evaluated using genomic data via the big data improved 
reliability (BIRD) method. The suggested model used ge-
nomic data along with chromatin accessibility and temporal 
genomic information in order to predict chromatic accessi-
bility with an accuracy of 85%, thereby improving its de-
ployment capabilities [68].  
 Machine learning models are also trained using 2D and 
3D data hyperspectral imaging, where early prediction of 
biomass is performed in hybrid rye using GBLUP [69]. The 
GBLUP model has been observed to have moderate accura-
cy, but it is highly precise and has high recall values with 
low delay for multiple datasets. Patra et al. explained a nov-
el Regulatory Enrichment Pathway Analysis (REPA) ap-
proach, which assists in the application of gene set analysis 
to genome-wide transcription factor binding data. The mod-
el is highly scalable and can be used for the analysis of ribo-
some, alcoholism, cancer pathways, bacterial invasion of 
epithelial cells, etc., with 83% accuracy, thereby making it 
useful for a wide variety of applications [70]. An interesting 
piece of research was done by Waldvogel et al., where evo-
lutionary computational models were used for the estimation 
of species responses to global climate change. The identifi-
cation of keystone species has been observed to be of ut-
most importance while performing this analysis [71]. These 
species can be identified using genomic data, phenotypic 
data, and ecological data, which assists in the classification 
of allele frequency changes, reaction norms, range shifts, 
etc., with high accuracy. Interactions between different gen-
otypes and environmental elements also assist in the estima-
tion of different properties in biological species [71].  
 The algorithms, like Least Absolute Shrinkage and Se-
lection Operator (LASSO) with SVM [72] and Positive Ma-
trix Factorization Method (PMFM) [73], are given for effi-
cient gene sequence classification. The PMFM [73] model 

and nonoverlapping sequence pattern mining (NOSEP) 
model [74] work on effective feature selection and can be 
used on multiple types of datasets. The PMFM model is able 
to achieve an accuracy of 90.03%, while NOSEP model 
achieves an accuracy of 85.6% on different genomic da-
tasets. The delay of these models is high, which can be re-
duced via the use of parallel processing as suggested by 
Khan et al., wherein large-scale RNAs are classified into 
piRNAs and non-piRNAs with an accuracy of 81.7%, which 
makes them useful for theoretical analysis [11, 75]. As ex-
plained by Wang et al., gene-gene (GG) interactions are 
used for clustering, classification and construction of infer-
ence networks, which can be used for single-cell RNA se-
quences [76]. The model was evaluated using RF, k-nearest 
neighbour (kNN), ANN, SVM with linear kernel, SVM with 
radial basis kernel function (RBF), and deep neural net-
works (DNNs). GG with RF has been observed to have an 
accuracy of 79.54%, kNN an accuracy of 74.53%, ANN an 
accuracy of 78.14%, LIN SVM an accuracy of 78.06%, and 
SVM RBF with an accuracy of 77.18%, while DNNs were 
reported to have an accuracy of 78.95% on BioCarta and 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) da-
tasets [76]. A statistical survey of these models, along with 
their suggested applications, is discussed in the next section, 
which will assist researchers in selecting the most optimum 
models for their cases. 

3. EMPIRICAL MODEL ANALYSIS 

 From the previous section, it can be observed that deep 
learning models, like CNN, RNN, BiLSTM, DAE, etc., are 
capable of performing high-accuracy gene sequence classi-
fication. However, these models are applied to specific ap-
plications and specific datasets, which encapsulate their 
capabilities with respect to other fields of genomic pattern 
analysis. Thus, it is difficult to identify the best performing 
models for multiple genomic applications. By referring to 
this section, researchers would be able to identify most op-
timum models suited for their application, and use them to 
improve accuracy, precision, recall, and computational 
complexity of their deployments.  

3.1. Accuracy for Specific Applications 

 In order to perform this, parametric values for accuracy 
(A) and recommended application (RA) are tabulated in 
Table 1. Due to such a wide variety of available applica-
tions, this accuracy comparison is divided into two different 
parts, such as for human diseases and crops. While the val-
ues of accuracy were evaluated for different disease types in 
their respective researches, for the purpose of comparison, 
we have evaluated the average values, which will assist in 
quantifying this comparison even for different disease and 
species types. For the purpose of this review, we did not 
augment any value, but used it directly from the reference 
texts, which assisted in maintaining its credibility for com-
parison purposes. 

3.1.1. Accuracy of Genomic Processing Models for Hu-
man Diseases 

 The models used for human diseases were analyzed, and 
each of them was bifurcated according to the genome data
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Table 1. Accuracy comparison of genomic classification models along with their area of application. 

Sr. No Recommended Application Method Accuracy (%) References 

1. Multiple genomes EN  86  
 

[1, 23, 31, 40, 53, 54, 57, 59, 60, 68] 
DAP  90 

BMTME  90 

MTR  91 

DNN  97 

AiNN  83 

AKOM 91.2 

BIRD  85 

P&B  91.5 

CNN  96 

RNN  96.2 

RIPPER SVM  99.7 

CMSPAM  89.5 

CPT  86.5 

CPT+  90.2 

DG  80.5 

MLP 91 

TDAG  86.5 

Spectrometry  94 

Random Selection  89 

2. Plant and human genomes GA SIWR  96  
[2] FP Tree  93 

FP SVM  90 

3. Rice SpineNet-6m  94.3  
 

[5] 
iDNA6m  91.7 

SNN Rice6m  92.04 

i6m  90.9 

DNA6m MINT  90.11 

4. Cardiac SHoT  92.6  
[27] HoT  85.3 

BPNN  78.6 

5. Covid EdeepVPP  99.2  
[55, 63] Vira Sorter  74.2 

Vira Pipe  79 

Vira Finder  89.3 

Vira Miner  92.3 

Vira Seeker  91.8 

Deep Vira Finder  93 

BiLSTM CNN 99.95 

(Table 1) contd…. 
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Sr. No Recommended Application Method Accuracy (%) References 

6. Sheep species GBLP  61.1 [65] 

7. Maize RF  97  

 

[12, 15, 20] 
GBM  96 

PLS  95 

GLMNET  91 

LDA, PMLR, SVM  89 

AMOVA  71 

GEBV 83 

8. Human disease VFM  97  

 

[16, 29, 33, 34, 56] 
DeepDRBP-2L  91 

RF  91.6 

DNA Binder  89.5 

Stack DP  86.5 

EN  78 

LaR  77.9 

SVM  86 

TSSLR  78.6 

9. Biomass GBLUP  75 [69] 

10. Sugarcane GBLUP  65.9 [18] 

11. Tea BRR  73  

[21] BayesA  72 

GBLUP  70 

12. Canola MOBPM  75 [22] 

13. Groundnut BGLR  65 [24] 

14. MERS-CoV ABCPred  84.5 [61] 

15. Stroke prediction MRFS, IFS with SVM  89.5 [30] 

16. Alzheimer’s disease SRM with JPL  91 [36] 

17. Tuberculosis LR, RF & GB  84 [37] 

18. Wheat GCA & SCA  91.1 [26] 

19. Cancer GeneXNet  98.9  

 

 

[38, 39, 41, 43, 45, 47, 48] 

ResNet  96.5 

DenseNet  95.3 

NasNet  93.5 

MobileNet  94.2 

RPLS  93.4 

FLD  81.5 

TSP  91.2 

RF-SVM  91.9 

(Table 1) contd…. 
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Sr. No Recommended Application Method Accuracy (%) References 

- - IP 93 - 

SVM  98.45 

SRC  89 

RF  92.06 

GA ICA  90.3 

AUFL kNN 92.2 

AUFL DT 92.1 

PSODT 96.9 

Active NN  97.66 

DAE  98.59 

CNV Bayesian  99.27 

20. Lung disease PLS TTZ  92.65 [51] 

21. Homo Sapiens GG with RF  79.54 [76] 

- GG with ANN  78.14 - 

- GG with LIN SVM  78.06 - 

- GG with SVM RBF  77.18 - 

- GG with DNN 78.95 - 

 
processed. To support the classification, Fig. (5) is present-
ed, wherein the accuracy of different genome models for 
heart and brain sequence data analysis is visualized. It is 
observed that RIPPER SVM [54], SHoT [27], RNN [53], 
and CNN [53] outperform other models in terms of accura-
cy, and thus must be used for heart and brain dataset ge-
nome sequence analysis. 
 A similar representation for Covid and cancer genome 
analysis can be observed (Fig. 5), wherein BiLSTM CNN 
[63] and EdeepVPP [55] have exhibited good accuracy for 
Covid genomic dataset, whereas VFM [56], CNV Bayesian 
[46], GeneXNet [38], DAE [48], SVM [48], and Active NN 
[48] have been shown to outperform others for cancer ge-
nome data analysis.  
 These models have been observed to have good accuracy 
because of their feature extraction and selection capabilities, 
which assist in improving genome representation efficiency 
levels. This, when combined with deep learning-based clas-
sification, assists in improving classification performance 
for different genome types. A weighted sum classifier can 
be built to combine these models, which will assist in fur-
ther enhancing their performance for different disease types. 

3.1.2. Accuracy of Genomic Processing Models for Crops 

 The genome sequence analysis of crops is classified as 
grains and non-grains, where rice, wheat, oats, etc., come 
under grains. It can be observed from Fig. (6) that RNN 

[53], CNN [53], GA SIWR [2], and SpineNet-6m [5] out-
perform others for grain genome dataset. A similar represen-
tation for genome analysis of non-grains can be observed 
(Fig. 6), wherein sugarcane, maize, tea, groundnut, etc., 
come under non-grain. It can be observed that RF [15], 
GBM [15], PLS [15], GLMNET [15], LDA, PMLR, SVM 
[15], GEBV [12], and AMOVA [20] outperform others. 
 Crop genomes have simpler structures than human ge-
nomes, thus models that use simplified techniques are ob-
served to have better classification performance levels. The 
identified models use simple feature extraction, and com-
bine it with high-performance feature selection and classifi-
cation, which assists in improving accuracy, precision, and 
recall performance for different genome types. A bioin-
spired model (like genetic algorithm or firefly optimization) 
with a context-specific classifier can be built to identify op-
timum features from these models, which will assist in fur-
ther enhancing their performance for different disease types. 

3.2. Precision, Recall and Computational Complexity of 
Genomic Models 

 A comparison was made for precision (P), recall (R) and 
computational complexity (CC) of the algorithms that have 
good accuracy, and results are tabulated in Table 2, where 
the computational complexity is divided into ranges of low 
(L), medium (M), high (H), and very high (VH) depending 
on internal architectures for the genomic model. 
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Fig. (5). Accuracy of models for classification of heart and brain, cancer and Covid genome analysis (%). (A higher resolution / colour version 
of this figure is available in the electronic copy of the article). 

 In Table 2, it can be observed that EdeepVPP [55], Gen-
eXNet [38], RF [15], VFM [56], DNN [31], ResNet [38], 
GA SIWR [2], GBM [15], DenseNet [38], PLS [15], and 
BiLSTM CNN [63] outperform others in terms of precision 
performance, while EdeepVPP [55], GeneXNet [38], 
BiLSTM CNN [63], RIPPER SVM [54], RF [15], VFM 
[56], DNN [31], CNV Bayesian [46], ResNet [38], DAE 
[48], GA SIWR [2], GBM [15], and SVM [48] have better 
recall performance than others. While, in terms of computa-
tional complexity, GA SIWR [2], FP Tree [2], Random Se-
lection [60], RF [15], VFM [56], SVM [48], PLS [15], 
PSODT [47], and Spectrometry [60] outperform others; 
thus, they are categorized as high-speed genome processing 
algorithms. Fig. (7) represents top 20 genomic models that 
outperform others in terms of precision and recall. 

3.3. Algorithmic Rank of Genomic Models 

 As per the genomic application requirement, these mod-
els must be used by a programmer or end user for improving 
their system’s performance. Based on these metrics, a novel 
algorithmic rank is evaluated, which will further assist in 
model selection. The rank is evaluated using equation 3 as 
follows: 
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                                                                (3) 

Where, (A) is Accuracy, (P) Precision, (R) Recall, and (CC) 
Computational complexity. The rank will assist readers in 
identifying algorithms with maximum accuracy, good preci-
sion, high recall and low computational complexity. Table 3 
shows algorithmic rank (AR) for the top 30 genomic mod-
els. From this rank, it is observed that GA SIWR [2], 
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Fig. (6). Accuracy of models for classification of grain and non-grain genome analysis (%). (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 

 
Table 2. Comparison of precision, recall and computational complexity of the models. 

Sr. No. Method Precision 
(%) 

Recall (%) Computational 
Complexity 

References 

1. DAP 85.5 83.57 H [1] 

2. GA SIWR 91.2 89.14 M  

[2] 3. FP Tree 88.35 86.36 M 

4. FP SVM 85.5 83.57 H 

5. i6m 86.36 84.41 H [5] 

6. EdeepVPP 94.24 92.11 VH [55] 

(Table 2) contd…. 
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Sr. No. Method Precision 
(%) 

Recall (%) Computational 
Complexity 

References 

7. Vira Miner 87.69 85.71 H 

- 8. Vira Seeker 87.21 85.24 H 

9. Deep Vira Finder 88.35 86.36 H 

10. RF 92.15 90.07 H  

[15] 11. GBM 91.2 89.14 VH 

12. PLS 90.25 88.21 H 

13. VFM 92.15 90.07 H [56] 

14. BMTME 85.5 83.57 H [57] 

15. MTR 86.45 84.5 H 

16. AKOM 86.64 84.69 H [59] 

17. CMSPAM 85.03 83.11 H 

18. Spectrometry 89.3 87.29 H [60] 

19. Random Selection 84.55 82.64 M 

20. MLP 86.45 84.5 H [23] 

21. DNN 92.15 90.07 VH [31] 

22. RF 87.02 85.06 H [33] 

23. GCA & SCA 86.55 84.59 H [26] 

24. GeneXNet 93.96 91.84 VH [38] 

25. ResNet 91.68 89.61 VH 

26. DenseNet 90.54 88.49 VH 

27. RPLS 84.06 84.5 H [39] 

 28. RF-SVM 82.71 83.15 H 

29.  IP 83.7 84.14 H [41] 

30. GA ICA 81.27 81.7 H [43] 

31. AUFL DT 82.89 83.33 H [45] 

32. AUFL kNN 82.98 83.42 H 

33. CNV Bayesian  89.34 89.82 VH [46] 

34. PSODT 87.21 87.67 H [47] 

35. SVM 88.61 89.07 H  

[48] 

 
36. DAE 88.73 89.2 VH 

37. RF 82.85 83.29 H 

39. BiLSTM CNN 89.96 90.43 VH [63] 

40. PLS TTZ 83.39 83.83 H [51] 

41. RIPPER SVM 89.73 90.2 VH [54] 
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Fig. (7). Top 20 genomic processing models that outperform in terms of precision and recall. (A higher resolution / colour version of this figure 
is available in the electronic copy of the article). 

 
Table 3. Algorithmic rank (AR) and model rank for top 30 models. 

Sr. No. Method AR Model Rank References 

1. DAP  2.11 23 [1]  

2. GA SIWR  2.59 1 [2] 

3. FP SVM  2.11 24 

4. FP Tree  2.56 2 

5. i6m  2.12 20 [5] 

6. Vira Miner  2.14 11 [55] 

7. Vira Seeker  2.13 12 

8. Deep Vira Finder  2.14 10 

(Table 3) contd…. 
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Sr. No. Method AR Model Rank References 

9. RF  2.18 4 [15] 

10. PLS  2.16 7 

11. VFM  2.18 5 [56] 

12. BMTME  2.11 25 [57] 

13. MTR  2.12 17 

14. AKOM  2.13 14 [59] 

15. CMSPAM  2.11 30 

16. Spectrometry  2.15 9 [60] 

17. Random Selection  2.52 3 

18. MLP  2.12 18 [23] 

19. RF  2.13 13 [33] 

20. SRM with JPL  2.12 19 [36] 

21. GCA & SCA  2.12 15 [26] 

22. RPLS  2.12 16 [39] 

23. RF-SVM  2.11 29 

24. IP  2.12 21 [41] 

25. AUFL kNN  2.11 26 [45] 

26. AUFL DT  2.11 27 

27. PSODT  2.16 8 [47] 

28. SVM  2.17 6 [48] 

29. RF  2.11 28 

30. PLS TTZ  2.12 22 [51] 

 
FP Tree [2], and Random Selection [2] are the best-
performing models for genomic data classification, and 
must be used for real-time clinical purposes. 

CONCLUSION AND FUTURE PROSPECTS 

 From the in-depth comparative analysis, researchers will 
be able to identify the best-performing algorithms suited for 
a given category of genome sequences. In terms of accura-
cy, it is observed that RIPPER SVM, DNN, VFM, RNN, 
CNN, GA SIWR, DBN, Spectrometry, CNN, FP Tree, 
BiLSTM CNN, CNV Bayesian, EdeepVPP, GeneXNet, 
DAE, SVM, Active NN, PSODT, ResNet, SpineNet-6m, 
RF, GBM, and PLS have better performance when com-
pared to other models. Thus, these models must be used for 
high-accuracy classification and genome processing applica-
tions. In terms of precision, EdeepVPP, GeneXNet, RF, 
VFM, DNN, ResNet, GA SIWR, GBM, DenseNet, PLS, 
BiLSTM CNN, RIPPER SVM, SpineNet-6m, CNV Bayesi-
an, Spectrometry, and DBN outperform other models; thus, 
their use for highly precise applications is suggested. While, 
in terms of recall, EdeepVPP, GeneXNet, BiLSTM CNN, 
RIPPER SVM, RF, VFM, DNN, CNV Bayesian, ResNet, 
DAE, GA SIWR, GBM, SVM, DenseNet, Active NN, PLS, 

PSODT, SpineNet-6m, Spectrometry, DBN, and RNN 
showcase better performance across multiple types of da-
tasets. Thus, these models must be used when genomic data 
has to be classified with a low error rate and high consisten-
cy. Furthermore, GA SIWR, FP Tree, Random Selection, 
RF, VFM, SVM, PLS, PSODT, and Spectrometry have the 
highest speed; therefore, their use is recommended for high-
speed and moderate to high accuracy applications.  
 In the future, researchers can identify the best-
performing algorithms for application-specific cases and 
create an ensemble model. This model must initially identify 
the type of genome and then process it using the highest 
performing classification model. Moreover, augmentation of 
genomic data must be done in order to improve the accuracy 
and precision performance via oversampling, which might 
incur greater computational delays, but would guarantee 
better performance than their original counterparts. The fu-
ture goal is to build systems biology models of biological 
systems that faithfully reflect the area of biology, and which 
can be used for mechanistic predictions. Furthermore, they 
can also be used as recommender systems for gene sequence 
processing. This will assist in the identification of optimum 
sequence pairs for high-accuracy and low-delay computa-
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tional system design, thereby assisting in improving overall 
system efficiency. 
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