Skip to main content
. 2022 Nov 18;23(5):299–317. doi: 10.2174/1389202923666220927105311

Table 2.

Comparison of precision, recall and computational complexity of the models.

Sr. No. Method Precision
(%)
Recall (%) Computational
Complexity
References
1. DAP 85.5 83.57 H [1]
2. GA SIWR 91.2 89.14 M [2]
3. FP Tree 88.35 86.36 M
4. FP SVM 85.5 83.57 H
5. i6m 86.36 84.41 H [5]
6. EdeepVPP 94.24 92.11 VH [55]
7. Vira Miner 87.69 85.71 H -
8. Vira Seeker 87.21 85.24 H
9. Deep Vira Finder 88.35 86.36 H
10. RF 92.15 90.07 H [15]
11. GBM 91.2 89.14 VH
12. PLS 90.25 88.21 H
13. VFM 92.15 90.07 H [56]
14. BMTME 85.5 83.57 H [57]
15. MTR 86.45 84.5 H
16. AKOM 86.64 84.69 H [59]
17. CMSPAM 85.03 83.11 H
18. Spectrometry 89.3 87.29 H [60]
19. Random Selection 84.55 82.64 M
20. MLP 86.45 84.5 H [23]
21. DNN 92.15 90.07 VH [31]
22. RF 87.02 85.06 H [33]
23. GCA & SCA 86.55 84.59 H [26]
24. GeneXNet 93.96 91.84 VH [38]
25. ResNet 91.68 89.61 VH
26. DenseNet 90.54 88.49 VH
27. RPLS 84.06 84.5 H [39]
28. RF-SVM 82.71 83.15 H
29. IP 83.7 84.14 H [41]
30. GA ICA 81.27 81.7 H [43]
31. AUFL DT 82.89 83.33 H [45]
32. AUFL kNN 82.98 83.42 H
33. CNV Bayesian 89.34 89.82 VH [46]
34. PSODT 87.21 87.67 H [47]
35. SVM 88.61 89.07 H [48]
36. DAE 88.73 89.2 VH
37. RF 82.85 83.29 H
39. BiLSTM CNN 89.96 90.43 VH [63]
40. PLS TTZ 83.39 83.83 H [51]
41. RIPPER SVM 89.73 90.2 VH [54]