Table 2.
Sr. No. | Method |
Precision
(%) |
Recall (%) |
Computational
Complexity |
References |
---|---|---|---|---|---|
1. | DAP | 85.5 | 83.57 | H | [1] |
2. | GA SIWR | 91.2 | 89.14 | M | [2] |
3. | FP Tree | 88.35 | 86.36 | M | |
4. | FP SVM | 85.5 | 83.57 | H | |
5. | i6m | 86.36 | 84.41 | H | [5] |
6. | EdeepVPP | 94.24 | 92.11 | VH | [55] |
7. | Vira Miner | 87.69 | 85.71 | H | - |
8. | Vira Seeker | 87.21 | 85.24 | H | |
9. | Deep Vira Finder | 88.35 | 86.36 | H | |
10. | RF | 92.15 | 90.07 | H | [15] |
11. | GBM | 91.2 | 89.14 | VH | |
12. | PLS | 90.25 | 88.21 | H | |
13. | VFM | 92.15 | 90.07 | H | [56] |
14. | BMTME | 85.5 | 83.57 | H | [57] |
15. | MTR | 86.45 | 84.5 | H | |
16. | AKOM | 86.64 | 84.69 | H | [59] |
17. | CMSPAM | 85.03 | 83.11 | H | |
18. | Spectrometry | 89.3 | 87.29 | H | [60] |
19. | Random Selection | 84.55 | 82.64 | M | |
20. | MLP | 86.45 | 84.5 | H | [23] |
21. | DNN | 92.15 | 90.07 | VH | [31] |
22. | RF | 87.02 | 85.06 | H | [33] |
23. | GCA & SCA | 86.55 | 84.59 | H | [26] |
24. | GeneXNet | 93.96 | 91.84 | VH | [38] |
25. | ResNet | 91.68 | 89.61 | VH | |
26. | DenseNet | 90.54 | 88.49 | VH | |
27. | RPLS | 84.06 | 84.5 | H | [39] |
28. | RF-SVM | 82.71 | 83.15 | H | |
29. | IP | 83.7 | 84.14 | H | [41] |
30. | GA ICA | 81.27 | 81.7 | H | [43] |
31. | AUFL DT | 82.89 | 83.33 | H | [45] |
32. | AUFL kNN | 82.98 | 83.42 | H | |
33. | CNV Bayesian | 89.34 | 89.82 | VH | [46] |
34. | PSODT | 87.21 | 87.67 | H | [47] |
35. | SVM | 88.61 | 89.07 | H | [48] |
36. | DAE | 88.73 | 89.2 | VH | |
37. | RF | 82.85 | 83.29 | H | |
39. | BiLSTM CNN | 89.96 | 90.43 | VH | [63] |
40. | PLS TTZ | 83.39 | 83.83 | H | [51] |
41. | RIPPER SVM | 89.73 | 90.2 | VH | [54] |