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ABSTRACT The genus Mycobacterium contains several slow-growing human pathogens,
including Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium avium.
Mycobacterium smegmatis is a nonpathogenic and fast growing species within this genus.
In 1990, a mutant of M. smegmatis, designated mc?155, that could be transformed with epi-
somal plasmids was isolated, elevating M. smegmatis to model status as the ideal surrogate
for mycobacterial research. Classical bacterial models, such as Escherichia coli, were inad-
equate for mycobacteria research because they have low genetic conservation, different
physiology, and lack the novel envelope structure that distinguishes the Mycobacterium
genus. By contrast, M. smegmatis encodes thousands of conserved mycobacterial gene
orthologs and has the same cell architecture and physiology. Dissection and characterization
of conserved genes, structures, and processes in genetically tractable M. smegmatis mc2155
have since provided previously unattainable insights on these same features in its slow-
growing relatives. Notably, tuberculosis (TB) drugs, including the first-line drugs isoniazid
and ethambutol, are active against M. smegmatis, but not against E. coli, allowing the
identification of their physiological targets. Furthermore, Bedaquiline, the first new TB drug
in 40 years, was discovered through an M. smegmatis screen. M. smegmatis has become a
model bacterium, not only for M. tuberculosis, but for all other Mycobacterium species and
related genera. With a repertoire of bioinformatic and physical resources, including the
recently established Mycobacterial Systems Resource, M. smegmatis will continue to accelerate
mycobacterial research and advance the field of microbiology.

KEYWORDS distributive conjugal transfer, mycobacterial systems resource, cell envelope,
drug discovery, efficient plasmid transformation, leaderless mRNA, mycobacteriophage,
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espite the discovery of Mycobacterium tuberculosis in 1882 by Robert Koch (1) and its
global health burden (2, 3), it is only in the last 30 years that the secrets of its genetic
make-up have begun to be revealed and characterized. For example, in 1990, we did not
know: (i) the targets of tuberculosis (TB)-specific drugs, (ii) the molecular genetic basis of
attenuation of the vaccine strain, Mycobacterium bovis BCG, (iii) which genes were essential
for in vitro and in vivo growth, and if these genes were similar to those of other bacteria. Editor Patricia A Champion, University of
The pathogenicity and slow growth — 3 to 4 weeks to form colonies — make M. tuberculo- Notre Dame
sis extremely difficult to work with in the laboratory. The seminal breakthrough toward Copyright © 2023 American Society for
developing genetic approaches to study pathogenic mycobacteria was the isolation of a Microbiology. All Rights Reserved.
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transformable derivative of Mycobacterium smegmatis, designated mc?155. M. smegmatis is P
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a nonpathogenic and fast-growing species (colonies in 3 days) and was historically used as Tihe auiliss dedsie e confiict of iniciEsi.
a mycobacteriophage host. The development of mc?155 made M. smegmatis the model Published 4 January 2023

for studying properties of all mycobacteria, including pathogens, such as M. tuberculosis
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FIG 1 Web diagram of M. smegmatis’ role as a model organism. M. smegmatis serves applied, educational, and basic science in myriad ways. Colored ovals
represent key fields that M. smegmatis contributes to, while terminal rectangular nodes represent examples of scientific contributions in each field, most of which
were discussed in this review. lllustrations were created with BioRender.com.

and the nontuberculous mycobacteria (NTM) pathogens, Mycobacterium abscessus
and Mycobacterium avium (4). This review describes the history of mc?155, its use in devel-
oping genetic tools for pathogenic mycobacteria, and its application to characterizing biologi-
cal mechanisms and targets of TB drugs (Fig. 1). Moreover, this review describes current
“omic” approaches pioneered in M. smegmatis and now used for unbiased genome-wide dis-
covery of complex multi-faceted processes in medically important mycobacteria.

Note on the proposal to rename Mycobacterium smegmatis. We disagree with the
recent proposal to rename Mycobacterium smegmatis as Mycolicibacterium smegmatis
(5). We support the editorial by Tortoli et al. (6): (i) the split of the Mycobacterium genus
has caused unnecessary confusion in health care settings, compromising patient safety,
and costing time and money on reeducating health care professionals; (i) the proposed split
was incomplete, not accounting for ~40 species; and (jii) all previously verified taxonomic
names are considered valid for use in publication. In addition, the new taxonomic classification
was based on conserved signature indels (CSIs) and conserved signature proteins (CSPs).
Many CSls and CSPs may be the result of horizontal gene transfer, which are poor traits for tax-
onomic classification. Most researchers have chosen to continue using the conventional genus
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name after the new classification proposal, indicating that Mycobacterium smegmatis is still the
preferred taxonomic name.

THE ORIGIN OF M. SMEGMATIS MC2155

While Crawford and Bates had isolated plasmids from mycobacteria in 1979 (7), subse-
quent attempts to transform mycobacteria had been unsuccessful (8). Foreign DNA was first
introduced into mycobacteria in 1987 with a shuttle phasmid (9). This chimeric vector had an
E. coli bacteriophage lambda cosmid inserted in a non-essential region of the lytic mycobacter-
iophage TM4 (9, 10). The shuttle phasmid replicates in E. coli as a plasmid and in mycobacteria
as a phage (9, 11). The generation of viable phage that infected both M. smegmatis and M.
bovis BCG demonstrated the feasibility of the approach and established that DNA from E. coli
was not degraded by mycobacteria. A second shuttle phasmid based on the temperate myco-
bacteriophage, L1, was generated and shown to lysogenize M. smegmatis mc26, the progeni-
tor strain of M. smegmatis mc2155 (12). Subsequently, a gene encoding kanamycin-resistance
(KmR) was cloned into the L1-based shuttle phasmid and successfully transfected into mc26,
establishing kanamycin as an effective selection in mycobacteria (12). With this knowledge, a
library of plasmids was made by cloning random fragments of the mycobacterial plasmid
pAL5000 (13, 14), which replicates in Mycobacterium fortuitum, in an E. coli plasmid encoding
KmR (12). This library of chimeric episomal plasmids was electroporated into M. smegmatis
mc26 and a few rare transformants were isolated and thus, establishing a plasmid-transforma-
tion system (12). These rare transformants turned out to be a mutant of M. smegmatis that
was defective in preventing plasmid establishment (15). The plasmid in the original transform-
ant was cured and the resulting plasmid-free strain was designated mc2155. Whereas mc26
remained virtually un-transformable, mc2155 routinely yielded up to a million transformants
per microgram of plasmid DNA; it had acquired an efficient plasmid transformation (ept-7)
phenotype. In 2014, whole-genome sequence comparisons between mc?155 and its paren-
tal strain revealed that the efficient plasmid transformation (ept) mutation mapped to eptC,
encoding a structural-maintenance-of-the-chromosome (SMC) protein (16). A similar SMC
protein-mediated plasmid restriction has been found in other bacteria as well (17). This ept
mutant of M. smegmatis revolutionized approaches to mycobacterial biology and estab-
lished mc?155 as the workhorse of mycobacterial genetics; fast-growing, nonpathogenic,
and transformable.

FEATURES OF M. SMEGMATIS THAT MAKE IT A GREAT MODEL

Shuttle phasmids and plasmids not only enabled the isolation of mc2155, but were used
to generate key molecular genetic tools, including integration-proficient vectors (18), expres-
sion vectors (19), luciferase-reporter phages (20), and suicide- (21), and recombineering-vec-
tors (22). Furthermore, the ability of M. smegmatis to grow in temperature ranges up to 55°C
allowed the isolation of temperature-sensitive TM4 phage mutants (23, 24), providing for
both efficient delivery and counter-selection for specialized transduction and Tn- and tar-
geted-mutagenesis (20, 25-27). These early technologies allowed the generation of insertion
mutant libraries and the identification of essential genes using Tn-site hybridization and Tn-
seq technologies (28-31). As these genetic tools flourished, mc2155 became broadly accepted
as the genetically tractable model Mycobacterium.

Its non-pathogenicity was a great entry point for researchers not equipped with a
biosafety level (BSL)-3 facility and for novice microbiologists, such as undergraduate students,
who cannot work with pathogens. Fast growth is not only ideal for genetics and biochemistry,
but also for studying single cells, their growth, and cell architecture. In particular, high-through-
put screenings involving single-cell analyses, such as microscopy, are nearly impossible with
the pathogens because of the slow growth and need for specialized equipment in BSL-3 facili-
ties. In this section, we highlight the notable features of M. smegmatis, and how newer, shared
resources have further enhanced mycobacterial research.

Comparative genomics validate the choice of M. smegmatis as the model
Mycobacterium. Of the ~4,000 protein-coding genes in the genome of M. tuberculosis, >
2,800 have orthologs in M. smegmatis with >50% amino acid identity (32). The average
protein identities between protein orthologs in M. smegmatis and their pathogenic cousins
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are >70% in most cases (33). Most importantly, the similarities extend beyond the M. tubercu-
losis complex (MTBC). As a conservative estimate, there is a core set of ~1,150 M. smegmatis
proteins that share >50% amino acid identity, which are encoded by many species including
the MTBC, M. abscessus, Mycobacterium marinum, M. avium, and M. leprae (32). The core pro-
teins almost certainly perform the same functional role in each species. This level of conserved
function is also highlighted by transposon mutagenesis studies: 96% of the genes identified
as essential in M. smegmatis have orthologs in M. tuberculosis, and 90% of which are essential
in M. tuberculosis (34). The genetic organization of each species is also well conserved, with
similar patterns of gene co-localization around the chromosome, suggesting conserved mech-
anisms of gene regulation.

Centralized resources for the study of mycobacteria. A good model organism is
accompanied by community-shared resources of strains, defined knockouts, and plasmids
expressing individual genes (e.g., https://biocyc.org/, https://bgsc.org/). These physical resour-
ces, integrated with data sets (protein-protein interactions, phenotypic profiling, etc.), permit a
systems biology approach to gene function and provide insights on cellular processes. While
still in their infancy, similar resources are becoming available for mycobacteria, most impor-
tantly in M. smegmatis. For example, bioinformatic resources such as Mycobrowser (https://
mycobrowser.epfl.ch/) and BioCyc (https://mycobacterium.biocyc.org/) provide an interac-
tive space to analyze genes of interest, which are cross-referenced to orthologs in other
sequenced genomes, with links to key sites describing BLAST searches, putative gene func-
tions, and structures. The Wadsworth Center’s Interactive Genomics browser displays RNA-
seq, Ribo-seq, and transcription start site data for M. smegmatis and M. tuberculosis, which
allow the user to accurately determine gene boundaries, identify novel genes, leadered and
leaderless transcripts, and non-coding RNAs (https://www.wadsworth.org/research/scientific
-resources/interactive-genomics). MSRdb (https://msrdb.org/) describes a collection of M.
smegmatis gene knockouts, knockdowns, and strains expressing genes fused to a fluorescent
reporter for protein localization. It was created as part of the Mycobacterial Systems Resource
(MSR) (32), which is based on the 1,153 core proteins described above, most having no
assigned function. The physical resource contains: a total of 569 precise gene knockouts of
non-essential genes; a collection of plasmids that encode small guide RNAs for CRISPRi-medi-
ated targeted suppression of 843 genes; and 1,116 genes cloned in a vector to express a fluo-
rescent protein (Dendra2)-tagged fusion protein. Like other method breakthroughs, the
CRISPRi technology was developed and optimized in M. smegmaitis (35) and its application to
fine-tune gene repression elegantly demonstrated in M. tuberculosis (36). The pooled collec-
tion of CRISPRi plasmid libraries targeting genes and ncRNAs in both M. smegmatis and M. tu-
berculosis are available through Addgene (https://www.addgene.org/) (36).

We highlight 2 recent studies that exemplify the benefit of using M. smegmatis for
microscopy-based approaches. The first example is high-throughput imaging on the library
of conserved, fluorescently tagged, core proteins generated in the MSR (37). The spatiotem-
poral analysis of over 700 proteins demonstrated that sub-cellular protein localization often
correlates with function. For example, ribosomal proteins were clustered, but excluded from
the nucleoid and the polar and subpolar regions of the cell. The co-localization of proteins
with both known and unknown functions provides immediate insight (guilty by association)
on the possible function of many hypothetical core proteins, which can be directly trans-
lated to other species.

The second study applied CRISPRi gene suppression in M. smegmatis to specifically inhibit
263 essential genes with direct orthologs in M. tuberculosis (38). Single cells were visualized fol-
lowing induction of the CRISPRi system and the impact of essential gene suppression on cell
morphotypes captured by high-throughput quantitative imaging, which generated a morpho-
logical atlas of phenotypes (cell length, curvature, bulging). Strikingly, suppression of genes
with related biological function (e.g., cell division, cell wall synthesis) clustered together accord-
ing to their morphology, allowing an educated prediction of gene function of hypothetical
proteins. The conservation of these essential genes throughout the genus allows their charac-
terization in M. smegmatis to provide a more directed experimental approach in the less exper-
imentally amenable mycobacteria.
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NOTABLE DISCOVERIES DRIVEN BY M. SMEGMATIS

Studies with M. smegmatis have revealed many unusual features of the genus. In this sec-
tion, we highlight a few examples of notable discoveries, while acknowledging the countless
other remarkable contributions, which cannot be included due to space limitations.

Distributive conjugal transfer and genome evolution. Distributive conjugal transfer
(DCT) is a novel form of horizontal gene transfer (HGT) first described in M. smegmatis
(39, 40). DCT is conceptually equivalent to conjugation in that it requires direct contact
between a donor and recipient cell, but the products of DCT are distinct from that of any
other form of HGT; the progeny genomes are mosaic blends of the parental genomes (41).
Mosaicism results from a single DCT event, dramatically shortening the time to combine pa-
rental traits that could confer a competitive evolutionary advantage (42). DCT is not limited
to laboratory strains and conditions, as the genomes of independent environmental isolates
of M. smegmaitis also exhibit the hallmark genome mosaicism (43).

In the past, the concept of HGT within the MTBC was considered almost heretical. While
there are abundant mycobacteriophages, no plasmids have been described within the
MTBC, and given the pathogen'’s intracellular “solitary” lifestyle, it was not surprising there
was little evidence for HGT (44). Members of the MTBC are very closely related (>99.9% ge-
nome identity), with speciation reflecting host adaptations (e.g., M. bovis causes TB in cattle)
(45-47). That concept was challenged when the comparative analysis of multiple genome
sequences of Mycobacterium canettii (a smooth colony outlier of the MTBC) revealed thou-
sands of SNPs: the striking similarity to the experimentally produced mosaic genomes of M.
smegmatis provided the first indication that HGT had occurred in the MTBC (48-51).
Subsequently, direct evidence for DCT between 2 isolates of M. canettii was demonstrated
by isolating transconjugant progeny that contained the hallmark, blended parental
genomes (52). These studies provided experimental support for the proposal that DCT was
a major evolutionary driving force among M. canettii, which ultimately led to the evolution
of a progenitor M. tuberculosis species and subsequent speciation into the animal-adapted
MTBC (41). Thus, DCT in M. smegmatis has forced a rethinking on HGT and genome evolu-
tion among mycobacteria and provided a novel mechanism of bacterial HGT (42).

Type VII (ESX) secretion systems are found in all mycobacteria and are encoded, primarily,
in a large, multi-gene locus, esx (53-57). Mycobacteria can contain multiple esx loci (up to 5),
which are functionally non-redundant. Functions for most ESX systems and their secreted
substrates remain poorly defined, but ESX-1- and ESX-5-mediated secretion is essential for
pathogenesis and survival during infection. Remarkably, DCT has provided alternative roles
for ESX secretion systems. RNA-seq analysis demonstrated that donor and recipient cells
have specific transcriptional responses to direct contact with the opposite mating type.
Notably, the ESX-4 secretion system is transcriptionally activated in the recipient on donor
contact and is essential for DCT (58). This contact-dependent activation of ESX-4 in the re-
cipient is regulated by ESX-1 activity in the donor providing the first direct evidence for
mycobacterial cell-cell communication (58). ESX-4 has since been shown to be important
for macrophage infection in M. abscessus (59) and contributes to phagosome permeabili-
zation and protein trafficking in M. tuberculosis (60). Thus, DCT in M. smegmatis has pro-
vided the first model system for mycobacterial communication and indicates that ESX sys-
tems are likely to mediate unexpected functions beyond virulence.

Leaderless gene expression and small proteins in mycobacteria. The application
of RNA-profiling techniques (RNA-seq and Ribo-seq) in M. smegmatis, M. tuberculosis,
and M. abscessus (61-64) has emphasized a startling difference in the gene architecture of
mycobacteria compared with the textbook model organisms; the presence of leaderless
MRNAs (LLmRNA). LLmRNAs lack a 5'-UTR; the 5’ end of the mRNA begins at the start codon
of the gene and, thus, the mRNA lacks a ribosome-binding site (RBS) (65). In E. coli LLmRNAs
are extremely rare (3 have been characterized) and poorly expressed (66), but they are abun-
dant in Actinobacteria (25 to 30% of mRNAs in mycobacteria) and Archaea (65, 67-69). M.
smegmatis was used in its “model” role, using lacZ and luciferase-gene reporters to demon-
strate that: (i) these LLmRNAs were robustly expressed in M. smegmatis but not E. coli; (i) the
level of gene expression was comparable to that of leadered mRNA (LDmRNA); and (iii) any
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MRNA beginning with a 5" AUG or GUG (RUG) is translated (64, 70). The consequences of this
fundamental difference in gene architecture are many. First, the rationale behind genome
annotations in mycobacteria had to be reevaluated. The assumed requirement for a gene to
have a promoter and RBS resulted in many mis-annotations. For example, of the 1,285 genes
transcribed as LLmRNAs in M. tuberculosis, 338 were incorrectly annotated and required (in-
frame) modifications of the start sites, and a further 370 were not annotated (64, 70). In addi-
tion, most of the novel genes identified by transcriptional profiling (from both LDmRNAs and
LLmRNAs) encoded small proteins (sproteins, <<50 amino acids). In the past, small ORFs
(sORFs) encoding sproteins had been overlooked by genome annotation pipelines, which use
“50 codons” as a cut off to ensure confidence in gene prediction. However, growing experi-
mental evidence in mycobacteria and other prokaryotes has shown that many sproteins are
functional, requiring a rethinking of gene definitions (71-75). The addition of hundreds of
novel sproteins to the mycobacterial proteome will demand new genetic, biochemical, and
proteomic studies to determine their function and M. smegmatis is the ideal organism for
those studies, especially for conserved sproteins. As an example, a subclass of conserved spro-
teins encode 2 to 8 consecutive cysteine residues. These poly-cysteine sORFs act as cis-acting
attenuators of downstream genes required for cysteine uptake and biosynthesis (76). Finally,
ribosomes must recognize LLmRNAs by a mechanism fundamentally different from that of
LDMRNAs. The abundance of LLmRNA indicates that efficient translation mechanisms for
both LDmRNAs and LLmRNAs have evolved in-parallel in mycobacteria. Thus, the best bacte-
rial model for the mechanistic study of leaderless translation is M. smegmatis.

Virulence factor secretion. One prominent example of an M. smegmatis discovery
enlightening host-pathogen interactions involves virulence factor secretion. Secretion
analyses in M. smegmatis revealed a non-essential, but non-redundant SecA2 pathway, in
addition to the housekeeping SecA1 (77). SecA2 is found in all species of Mycobacterium,
other Actinobacteria, and also in several Gram-positive pathogens (78, 79). SecA1 interacts
with the SecYEG complex, the membrane-spanning channel that translocates nascent
unfolded polypeptides into the periplasm. Mycobacteria do not encode an additional secY
paralog, in contrast to other bacteria with a second SecA. Instead, structural studies in M. tu-
berculosis have revealed that SecA2 likely interacts with the canonical SecYEG channel to
mediate secretion of SecA2-specific proteins (80, 81).

M. tuberculosis AsecA2 is attenuated in SCID and C57BL/6 mice (82, 83). Attenuation of
the AsecA2 strain stemmed from its inability to export two proteins involved in blocking
phagosome maturation: PknG and SapM (84-86). PknG is one of 11 serine-threonine protein
kinases (STPK) encoded by M. tuberculosis (87); most of the SPTKs are membrane proteins,
are not SecA2 substrates, and function as mediators of trans-membrane signaling. PknG is
an exception; it is secreted in a SecA2-dependent manner (88, 89), in addition to having
cytoplasmic roles regulating metabolism, redox balance, and biofilm formation (90-94).
The first evidence suggesting PknG was a secreted virulence factor was obtained by hetero-
logously expressing M. tuberculosis PknG in M. smegmatis. This M. smegmatis strain secreted
PknG and was more resistant to macrophage killing than the wild-type parent (95). This was
subsequently validated in M. tuberculosis where PknG, in conjunction with the SapM phos-
phatase (86), blocks host phagosome maturation and modulates the host immune response
(88, 96-98), establishing PknG and SapM as bona fide virulence factors.

Cell envelope, polar elongation, and asymmetric division. Mycobacterial enve-
lopes are unlike those of any other bacteria. The unusually lipid-rich diderm structure of the
mycobacterial cell envelope, initially proposed by Minnikin in 1982 (99), was visualized in
2008 by cryo-electron microscopy of M. smegmatis and M. bovis BCG, indicating a conserved
outer membrane (termed the mycomembrane) (100, 101). While some early studies used
Mycobacterium phlei, mc2155 inevitably became the preferred model to determine the struc-
ture, biosynthesis, and function of the mycobacterial cell envelope (see reviews [102-105]).
Here, we discuss the roles M. smegmatis has played in uncovering the spatiotemporal coor-
dination of mycobacterial cell envelope elongation and division, which are distinct from
other rod-shaped model bacteria.

Pathogenic mycobacteria persist in the host for decades in chronic infections. Thus, it is im-
portant to understand how growth and division are regulated and how cell envelope integrity
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is maintained in hostile host environments. Early genome analyses revealed that mycobacteria
lack conserved cell division proteins, such as MreB and the Min-family proteins, implying fun-
damental differences in the mechanisms of cell envelope elongation and division compared
with other bacteria (106). Using fluorescein-labeled vancomycin, it was shown that de novo
growth of the mycobacterial cell occurred at the cell poles and not along its length, unlike
other rod-shaped bacteria (107). While mycobacteria lack MreB, they do encode a bacterial
homolog of the eukaryotic cytoskeletal protein tropomyosin, named DivIVA (Wag31). DivIVA is
localized to the poles where it has been shown to promote peptidoglycan biosynthesis and
cell elongation in M. smegmatis (108-111). Intriguingly, the M. smegmatis plasma membrane
partitions into two domains. One, termed the intracellular membrane domain (IMD), contains
many envelope synthases that localize to sub-polar regions (i.e, regions directly adjacent to
the growing poles) (112, 113). There is a positive-feedback loop between IMD formation and
peptidoglycan biosynthesis: IMD formation promotes polar-peptidoglycan synthesis, and the
synthesized peptidoglycan maintains the IMD (114, 115). These cytoskeletal proteins, envelope
synthases, and specialized membrane domains are proposed to form a mycobacterial “elonga-
some” that coordinates polar growth. As expected for a process fundamental to cell growth,
the elongasome is conserved in M. tuberculosis, as evidenced by the polar localization of
DivIVA (109), peptidoglycan biosynthesis (109, 116), and the subpolar enrichment of the IMD
(117). Proteomic analysis of the M. tuberculosis IMD indicates that it serves as the biosynthetic
site of pathogen-specific lipid virulence factors, including phthiocerol dimycolate (117).

Mycobacteria divide asymmetrically by a fast, mechanical-snapping mechanism
(107, 118-121). While the mechanism of asymmetric septal placement is unknown, studies
largely performed in M. smegmatis have revealed that FtsZ and other cell division proteins
assemble a protein complex at the new division site similar to other bacteria (for review
[122, 123]). Strikingly, asymmetric division is an actively regulated process, not the result of
random septal placement; a mutant of M. smegmatis lacking lamA elongates and divides
symmetrically (124). LamA is a mycobacteria-specific, membrane protein of unknown func-
tion. Though the physiological significance of asymmetric cell division is not fully under-
stood, loss of asymmetry in lamA-deficient M. tuberculosis was accompanied by increased
sensitivity to rifampicin (RIF) (102). A second study that tracked single cells through multi-
ple rounds of asymmetric cell divisions in a microfluidic system also demonstrated that
long-birth length and mature-growth poles are associated with RIF tolerance (125), inde-
pendently supporting the role of asymmetric cell division in producing heterogenous pop-
ulations of cells with different drug susceptibilities. Stress and antibiotics were later shown
to influence cell length heterogeneity in M. tuberculosis clinical isolates, reinforcing the
evolutionarily conserved link between morphological heterogeneity and mycobacterial fit-
ness first characterized in M. smegmatis (126).

APPLICATIONS OF M. SMEGMATIS FOR DRUG DISCOVERY AND DEVELOPMENT
Elucidating mechanisms of action for Isoniazid, Ethionamide, and Ethambutol.
Chemotherapy of mycobacterial infections is a lengthy process requiring a cocktail of drugs,
usually including Isoniazid (INH), RIF, Ethambutol (EMB), and Pyrazinamide. Of these, M.
smegmatis has played a central role in determining the mechanisms of action for INH and
EMB. An INH-resistant strain of mc2155 was shown to become sensitive upon expression of
the M. tuberculosis catalase-peroxidase gene, katG, suggesting that susceptibility to INH
requires the expression of katG (127). KatG was subsequently discovered to modify INH into
its active form, demonstrating that INH is a prodrug and explaining why katG mutations are
a prevalent mechanism of INH resistance in M. tuberculosis (128). inhA was identified as the
target of activated INH by an M. smegmatis missense mutation that conferred co-resistance
to both INH and Ethionamide (ETH) (129). inhA encodes an NADH-specific enoyl-acyl carrier
protein (ACP) reductase (130, 131). The ability of M. smegmatis to grow at 30°C enabled the
discovery of mutants that elucidated the mechanisms of action of INH and ETH (reviewed in
[132]). Briefly, when M. smegmatis mutants were isolated for co-resistance to INH and ETH
on rich media, half of the mutants were temperature-sensitive. These mutations mapped
to ndh, which encodes an NADH oxidase (133). Altered NADH/NAD™ ratios of these mutants
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were consistent with a model that INH- or ETH-NAD* adducts inhibit InhA. This model was
later verified by X-ray crystallography of an INH-NAD* or ETH-NAD* adduct bound to the
active site of InhA (134-136). To our knowledge, this is the first example of a prodrug that
can be activated to form adducts with an enzyme co-factor (NADH).

The first attempts to determine the mechanism of EMB-mediated anti-mycobacterial activ-
ity were carried out using M. smegmatis as far back as the 1960s (e.g., [137, 138]), but more
than 2 decades were needed to elucidate the correct mechanism of action. EMB-treated M.
smegmatis cells were defective in incorporating radioactive p-glucose into arabinogalactan
(139), and accumulated decaprenyl-P-arabinose (140), demonstrating that EMB blocks the
transfer of arabinose from its lipid carrier to arabinogalactan in the cell wall. The targets of
EMB were discovered through an overexpression screen using M. smegmatis. A plasmid
library of M. avium chromosomal fragments were screened for clones exhibiting resistance
to EMB. This screen identified 2 arabinosyltransferases, EmbA and B, as mediating resistance
to EMB (141). Genetic studies in M. tuberculosis corroborated these results (142, 143). Cryo-
EM and X-ray crystallography structures of M. tuberculosis and M. smegmatis EmbA and
EmbB complexed with either substrate or EMB confirmed that EMB inhibits arabinosyltrans-
ferase activity by binding a region adjacent to the catalytic site (144). Mutations in genes
such as katG, inhA, embA, and embB, that confer drug resistance are now rapidly detected
by whole-genome sequencing, reducing time to diagnose multidrug-resistant and exten-
sively drug-resistant TB (145, 146).

Drug discovery and development. Early efforts to screen TB drugs were inefficient
due to the use of slow-growing M. tuberculosis. In more recent years, the generalizability of
most anti-TB drugs across all mycobacteria has led to the appreciation of M. smegmatis as
a pragmatic model organism for initial drug screening and further drug optimization. M.
smegmatis was used for the initial compound screening that identified diarylquinoline
(later named Bedaquiline) as a specific inhibitor of mycobacterial ATP synthase in 2005,
which ended a 40-year dearth in anti-TB drug discovery (147). Furthermore, a cryo-EM study
determined the binding site of Bedaquiline in the M. smegmatis ATP synthase (148). WHO
recommended the use of Bedaquiline for the treatment of RIF-resistant and multidrug-resist-
ant adult TB in 2013 and, more recently, recommended replacement of injectable second-line
drugs with Bedaquline for oral, short-course regimens (149). Bedaquiline has also been
included in newer combination regimens in several ongoing clinical trials.

M. smegmatis has been instrumental in the development of inhibitors of the essential
mycolic acid transporter protein, MmpL3. Knockdown of the mmpL3 gene in M. smegmatis is
lethal, and results in reduced levels of outer membrane mycolic acids and the accumulation of
the mycolate carrier, trehalose monomycolate (TMM), suggesting a role in mycolic acid trans-
port (150, 151). Early inhibitors of MmpL3 were discovered by screening chemical libraries for
activity against M. tuberculosis growth and mapping resistance mutations back to the mmpL3
gene (151). Using a novel M. smegmatis spheroplast assay, one inhibitor was used to show
MmpL3 is a “floppase,” that flips TMM from the cytoplasmic to the periplasmic leaflet of the
inner membrane (152). While this study established the first, specific platform for validating
other potential MmpL3 inhibitors, the technical difficulty involved with creating spheroplasts
prompted development of a more high-throughput approach (153). M. smegmatis was used
as a surrogate to express different drug-resistant M. tuberculosis mmpL3 alleles. Unexpectedly,
the mmpL3 mutations conferred cross-resistance to different drugs, suggesting that most
inhibitors bind a common active site, and predicting that undiscovered inhibitors would most
likely bind this same site. Inspired by this insight, the authors developed fluorescent MmpL3
probes based on known inhibitors, which were successfully used in a competitive-binding
assay in M. smegmatis to identify new MmpL3 inhibitors (153). This live M. smegmatis-based
platform has extraordinary potential for both new drug discovery and drug optimization.

To gain a molecular view of the MmpL3 floppase and the mechanism of drug inhibition,
X-ray crystallography structures of M. smegmatis MmpL3 alone and complexed with its
ligand TMM and known inhibitors were solved (154, 155). These structures revealed the
mechanism by which the protein utilizes a proton gradient to drive TMM translocation
and how inhibitors block this proton translocation channel to arrest TMM translocation.
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As expected, the cryo-EM structure of M. tuberculosis MmpL3 (61% amino acid identity)
closely matched that of M. smegmatis MmpL3 (156). The recent discovery of 2 conserved
accessory proteins in M. smegmatis, which stabilize MmpL3, add further insight on the
mechanisms of MmpL3 function (157). Thus, our increased understanding of the MmpL3-
drug mechanism of action promises to accelerate development of second-generation
MmpL3 inhibitors, improving upon first-generation inhibitors such as SQ109, which is in
phase 2 clinical trials (158). The application of M. smegmatis to isolate inhibitors of ATP syn-
thase and MmpL3 demonstrates many of the key attributes M. smegmatis offers as a model
for M. tuberculosis drug-target research.

M. SMEGMATIS WILL CONTINUE TO BE A MODEL FOR ALL MYCOBACTERIA

The development of genetic tools and resources over the past 3 decades has made
M. smegmatis the model organism for mycobacterial pathogens, fast- and slow-growing.
Here, we highlight the potential of some new tools and technologies, the limitations of
M. smegmatis as a model and its creative use in education.

M. smegmatis will inevitably continue serving as a primary incubator space for mycobac-
terial tool development. Determining the functions of the many unannotated small (and large)
proteins will be a priority. Identifying protein-protein interactions can provide enormous insight
on protein function, as demonstrated by new in vivo proximity-labeling technologies. These
use photo-cross-linking of unnatural amino acids incorporated into mycobacterial proteins
(159, 160), or fuze the test protein to peroxidase to mediate biotinylation of nearby proteins
(161). The interacting proteins are then identified by quantitative proteomics (160). The contin-
ued growth of these technologies requires improved specificity of cross-linking combined with
robust proteome-wide MS approaches that encompass small proteins, protein modifications,
and protein functions. The optimization of proteomics and metabolomics in M. smegmatis will
establish systems-level approaches for high-throughput assignment of protein functions that
can be subsequently extrapolated to less biochemically amenable mycobacteria (162).

Reporting metabolic reactions at the subcellular scale is crucial for correlating subcellular
localizations of proteins with their activities. Genetic tools are less effective in manipulating
and visualizing non-proteinaceous cellular structures such as lipids and glycans, but non-
genetic approaches are challenging due to the low permeability and unusual architecture
of the mycobacterial envelope. Nevertheless, there are emerging efforts to apply modern
(click chemistry) approaches of bioorthogonal metabolic labeling in both M. smegmatis
and M. tuberculosis, allowing the biosynthesis of trehalose-containing molecules, peptido-
glycans, and arabinan to be visualized in situ (116, 163-165). These chemical reporters can
document activities of different metabolic pathways in M. smegmatis (e.g., de novo pepti-
doglycan synthesis versus remodeling reactions [111]), which can be correlated with sub-
cellular enzyme localizations. These chemical-biology reporters can also be used to deter-
mine the metabolic state of cells and have potential as diagnostic and therapeutic tools
for mycobacterial infections.

Mpycobacterium species are ubiquitous in the soil and include the disease-causing
NTMs (e.g., M. abscessus and M. avium) (166). As many of these environmental mycobacteria
are poorly characterized and difficult to culture, M. smegmatis provides the model system to
characterize their gene products. For example, Tn-seq, recombineering and CRISPR tools
applied to M. abscessus have begun to define those genes that make M. abscessus intrinsically
resistant to many antibiotics (167-170). Not surprisingly as a soil saprophyte, M. smegmatis
encodes novel enzymes, which allow it to survive environmental stress. Mycobacteria are obli-
gate aerobes and, thus, need strategies to combat hypoxia, antimicrobials and toxins, such as
carbon monoxide, that inhibit terminal oxidases. Studies using the M. smegmatis toolbox have
shown that mycobacteria can metabolize hydrogen gas, detoxify carbon monoxide, and
encode multiple flavin/deazaflavin oxidoreductases and hydride transferases to survive these
stresses (171-174). These genes are conserved among many mycobacteria and other actino-
bacteria, indicating the usefulness of M. smegmatis as a model for environmental microbiology.

M. smegmatis has been a favorite host for isolating mycobacteriophages. Although it is
beyond the scope of this review, isolated phages have provided many important genetic tools
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such as site-specific integration systems, gene delivery by transduction, and recombineering
(175, 176). Phages have also been explored as diagnostic tools, and successfully used to treat
chronic, drug-resistant infections of M. abscessus (177-179). The genomes of bacteriophages
are filled with genes of unknown functions, foretelling more surprises, and new tools. Notably,
M. smegmatis has also become a prominent educational tool for the future of science; as a
host for isolating mycobacteriophages. Through the Science Education Alliance-Phage
Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program, high school
and college students engage in isolating mycobacteriophages from their local environment,
characterizing the phage, and sequencing and annotating its genome (180, 181). It is an inclu-
sive, community-oriented, course-based research experience that has served the education of
thousands of students worldwide, while also providing the research community with a cornu-
copia of novel genes and functions. The collective efforts of students around the world have
demonstrated that mycobacteriophages and, thus, mycobacteria, are ubiquitous.

M. smegmaitis, like other model organisms, has limitations; it is more distantly related to

the slow-growing species and is a poor model for host-pathogen interactions and pathoge-
nesis. Two alternative, slow-growing mycobacteria that are more closely related to M. tuber-
culosis and used in a BSL-2 laboratory are M. bovis BCG, the attenuated vaccine strain, and
M. marinum, a fish pathogen, each with advantages for host infection studies over M. smeg-
matis (182, 183). Unfortunately, M. bovis BCG has a complex genealogy with lineage-specific
mutations (184), making it a problematic model for systematic genetic studies. To address
this drawback, genetically defined, attenuated mutants of virulent M. tuberculosis have been
created by deleting 2 or more genes (185-187). These attenuated strains can be used safely
in a BSL-2 lab, providing a more feasible alternative for M. tuberculosis genetics and bio-
chemistry. Obviously, in vivo studies require virulent strains and here we rely on the M. tuber-
culosis-mouse and M. marinum-zebrafish models among others as the appropriate platforms
to study the process of pathogenesis caused by mycobacterial pathogens (188). The M. mar-
inum-zebrafish is particularly amenable to in vivo studies because of the translucent nature
of the fish and the ability to genetically manipulate both the host and the bacterium (thanks
to M. smegmatis!) (189-191).

M. smegmatis has been at the vanguard of mycobacterial research, not only revealing

new strategies to tackle mycobacterial diseases but also contributing unexpected processes
and methods that other model bacteria and textbooks fail to offer. Why and how do myco-
bacteria conjugate through DCT; translate proteins from leaderless transcripts; elongate
from the polar ends; and divide asymmetrically? Mycobacteria rely on machineries and mol-
ecules that are more commonly found in eukaryotes, such as STPKs for signaling, protea-
somes for protein degradation, and phosphatidylinositols as a major component of the
plasma membrane. Why? These unique and unexpected characteristics will surely continue
to spark the curiosities of microbiologists and inspire the mycobacterial research community
and we foresee that mc2155 will continue its place at the front of this research.
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