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Abstract 

Background  Extracting relevant information about infectious diseases is an essential task. However, a significant 
obstacle in supporting public health research is the lack of methods for effectively mining large amounts of health 
data.

Objective  This study aims to use natural language processing (NLP) to extract the key information (clinical factors, 
social determinants of health) from published cases in the literature.

Methods  The proposed framework integrates a data layer for preparing a data cohort from clinical case reports; an 
NLP layer to find the clinical and demographic-named entities and relations in the texts; and an evaluation layer for 
benchmarking performance and analysis. The focus of this study is to extract valuable information from COVID-19 
case reports.

Results  The named entity recognition implementation in the NLP layer achieves a performance gain of about 
1–3% compared to benchmark methods. Furthermore, even without extensive data labeling, the relation extraction 
method outperforms benchmark methods in terms of accuracy (by 1–8% better). A thorough examination reveals the 
disease’s presence and symptoms prevalence in patients.

Conclusions  A similar approach can be generalized to other infectious diseases. It is worthwhile to use prior knowl-
edge acquired through transfer learning when researching other infectious diseases.

Keywords  Natural language processing, Data cohort, COVID-19, Named entity, Relation extraction, Transfer learning, 
Artificial intelligence

Introduction
The COVID-19 pandemic has generated massive 
amounts of clinical, behavioral, social, and epidemiologi-
cal data. As of August 2, 2022, COVID-19 has infected 
more than 578 million people, with over 6.4 million 

deaths [1]. There are serious concerns regarding the 
impact of the infectious disease on society, global health, 
and the economy [2–4]. It is necessary to develop an 
efficient surveillance system that can track the spread of 
infectious diseases by collecting, analyzing, and reporting 
data to those responsible for preventing and controlling 
the disease.

Despite significant advances in informatics, some hur-
dles to studying infectious diseases remain unresolved. 
First, the conventional methods are typically trained on 
limited data [5]. In real-world scenarios, a substantial 
amount of clinical data is available as free-text [6] data, 
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such as electronic health records (EHRs), or published 
literature [7]. Second, the existing methods mainly rely 
on manually labeled structured datasets for predictive 
modeling. Although governments and organizations can 
always collect data on real-world pandemic events, it 
is highly costly and time-consuming. Also, when these 
datasets are made available to the research community, 
reporting lags behind the current number of COVID-19 
cases.

Given the aforementioned challenges, we propose a 
NLP framework that uses deep neural networks and 
transfer learning to automatically extract valuable infor-
mation from texts for analyzing COVID-19 and other 
infectious diseases. Transfer learning [8] is a technique 
that allows models trained on one task to be applied to 
another related task, making it a powerful tool for NLP 
tasks. The main objective of this research is to bridge the 
gap that exists between NLP techniques and their appli-
cations in public health (PH). The specific contributions 
of this work are:

1.	 A data cohort is created by curating published 
COVID-19 case reports from the National Institutes 
of Health (NIH) source between March 1, 2022, and 
June 30, 2022. The data is parsed to create a COVID-
19 database. A portion of the data is prepared for 
gold annotations, and the technique of active learn-
ing [9] is applied for corpus re-annotation.

2.	 A deep learning-based named entity recognition 
(NER) algorithm is proposed to learn the clinical 
(disease, condition, symptom, drug) and non-clinical 
(social determinants of health) concepts from the 
case reports data. Additionally, a relation extraction 
(RE) model for predicting relationships (such as dis-
ease-brings-complications, treatment-improve-con-
dition, and drug-and-adverse effect) between entities 
is proposed. The performance of these approaches is 
evaluated through an extensive comparison with sev-
eral baseline methods, including ML, deep learning, 
and Transformer-based models on various datasets. 
The results are discussed in the context of public 
health surveillance and monitoring. An empirical 
analysis of the proposed approach in extracting key 
information from the texts, along with a discussion 
of the benefits and limitations of this approach is also 
presented.

The current study improves upon previous efforts by 
extracting clinical and non-clinical entities from the 
case report data. The key contribution of this work is 
the integration of various NLP components into a pipe-
line structure, which enables the efficient extraction of 

valuable information from texts. The research ques-
tion that guides this study is “How effective is transfer 
learning in enhancing the performance of NLP tasks 
for identifying and extracting information about infec-
tious diseases in the clinical and public health domain?” 
Through this study, we aim to provide solutions that 
can assist policymakers in their decision-making pro-
cesses and accelerate research on the subject.

Related work
Named entity recognition (NER) [10] is a subtask of 
NLP that involves identifying and classifying named 
entities in text into predefined categories such as per-
son names, organizations, locations, medical codes, 
etc. Biomedical NER [11] is a specialized NER task that 
focuses on identifying and classifying biomedical enti-
ties, such as genes, proteins, and diseases, in unstruc-
tured text. State-of-the-art biomedical NER models 
include BiLSTM-based [12] and Transformer-based 
[13–15] models, which can capture contextual depend-
encies and are robust to noise and variations in the 
input data. They can also be combined with other tech-
niques such as attention mechanisms [16] and convolu-
tional neural networks (CNN) [12] to further improve 
their performance. Recent developments in biomedical 
NER include the use of transfer learning [17], BERT-
like [13], attention-based [18], multi-task learning [19], 
and hybrid models [20] to improve the performance of 
these models.

Relation extraction (RE) [21, 22] is the process of 
identifying and classifying relationships between enti-
ties in text. Statistical and machine learning (ML) 
methods [23], such as rule-based systems, SVMs, and 
decision trees, can be used for RE tasks, although they 
may struggle with more complex relationships. Deep 
learning models, such as CNN [24] and recurrent neu-
ral networks (RNN) [25], can be used for RE tasks and 
can handle complex relationships. These deep neural 
network-based models usually require a large amount 
of labeled training data and computational resources.

Zero-shot learning (ZSL) [26] is an ML problem in 
which a learner observes samples from classes that 
were not observed during training and must predict 
which class they belong to. The topic of ZSL and RE in 
combination has received relatively little research to 
date. One such study [27] manually creates templates 
of new-coming unseen relations, while the other study 
[28] treats the zero-shot prediction as the text entail-
ment task. Some other works [29] consider ZSL by lev-
eraging knowledge gained from BERT-like models [30] 
to predict unseen relations without manual labeling, 
which is also a motivation in this research.
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Comparison with related works
Several works focus on extracting clinical information, 
particularly related to COVID-19, from unstructured 
text data. For example, Lybarger et al. [31] present a cor-
pus of EHRs from COVID-19 patients with annotations 
for diagnoses, symptoms, and other clinical events. They 
propose a neural event extraction framework using a 
BiLSTM-CRF model for identifying and classifying these 
events. Luo et al. [32] propose a Transformer architecture 
trained on a large annotated dataset of COVID-19 symp-
toms. CORD-19 [33] is another large dataset of COVID-
19 research papers compiled by Kaggle that can be used 
for tasks such as information extraction and text classi-
fication. Silverman et al. [34] present a NER model based 
on a BiLSTM-CNN architecture for extracting symptoms 
from unstructured COVID-19 data. These works have 
the potential to be used for tasks such as public health 
surveillance and monitoring. In recent works, relations 
from texts are typically extracted using statistical meth-
ods such as decision trees [35]. Recently, deep neural 
networks such as BiLSTM-based models CRF [12, 36, 37] 
and BERT-like methods [13, 38] have also been used to 
extract relations, which are both very robust and accurate 
but require a large amount of labeled data.

In contrast to earlier studies [39–41], our NER method 
also identifies non–clinical factors like social determinants 
of health (SDOH) [38] in addition to a variety of clinical 
factors. This is significant because SDOH factors have a 
significant impact on health outcomes, particularly during 
a pandemic like COVID-19. Additionally, our RE method 
extracts relationships from clinical texts without the need 
for labeled data, which sets it apart from existing works 
[13, 42] that require labeled data. We have combined ZSL, 
transfer learning, and RE in the context of COVID-19 to 
offer a comprehensive approach to understand the impact 
of the pandemic on population health. We have thoroughly 
tested and optimized our method through ablation studies 
to ensure maximum effectiveness.

Materials and methods
In this study, we propose an NLP architecture for extract-
ing key information from case reports data. This architec-
ture has three layers: a data layer, which is responsible for 

preprocessing, preparing, and annotating the text data; 
an NLP layer, which includes a NER module to extract 
named entities (e.g. diseases, symptoms, conditions, 
social determinants of health) from the data and a RE 
module to infer relationships between the entities (such 
as disease-symptoms relationships, etc.); and an evalua-
tion layer, which is used to evaluate the performance of 
the NLP modules and to assess the effectiveness of the 
proposed methods through empirical analysis.

Data cohort preparation
In this study, we create a data cohort from electronic case 
reports of COVID-19 patients. A case report [43] is a 
published article describing a patient’s disease, diagnosis, 
treatment, symptoms, or therapy. We curated the case 
reports using a search query (Additional file 1: Table S1) 
using the NIH National Library of Medicine (NLM) [44] 
API that allowed us to get case reports from various 
journals. These case reports comply with CARE (CAse 
REports) principles [45], which specify that case reports 
should not contain any patient-identifiable information.

Inclusion and exclusion criterion
We consider the case reports to meet the eligibility crite-
ria in Table 1. The exclusion criteria for this study are as:

•	 Grey literature, preprints, and clinical trials are 
excluded.

•	 Non-English content is excluded. Evidence suggests 
that excluding non-English publications from evi-
dence synthesis does not bias conclusions [46].

After applying these filtrations, we obtained 4338 case 
reports

Proposed framework
The proposed framework is shown in Fig. 1 and explained 
next.

Data layer
We began by gathering the biomedical data, which are 
COVID-19-related case reports from NIH sources (data 

Table 1  Selection criteria of the data

Criteria Description

Population Child: 6–12 years, Adolescent: 13–18 years, Adult: 19–44 years, Middle Aged: 45–64 years, Aged: 65 + years

Concept Any approaches related to clinical classification or interventions, including screening, diagnosis, treat-
ments, and therapies for COVID-19 with a focus on long-COVID conditions

Study design Case reports

Timeframe 1st March 2021–30th June 2022

Language English
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cohort discussed above). The biomedical data goes into 
the scientific parser. We used the Spark OCR [47] to 
parse the case reports’ PDFs and extracted the content 
in a data frame format, with each row corresponding 
to a case report (document) and a column containing 
extracted text from the PDF texts. The parsed documents 
were indexed using Elasticsearch [48], which helps with 
speedy document retrieval, to create a reference-stand-
ard dataset. A reference-standard dataset [49], generally, 
refers to the collection and compilation of primary and 
secondary data sources that can be re-used and cited for 
various purposes, such as biomedical data retrieval.

Gold-standard data A random portion of the data (200 
case reports) was issued to create a gold-standard dataset 
(manually annotated corpus) [50]. We draw inspiration 
from a previous work [51] on case reports annotations 
and consider only the case report texts rather than 

complete manuscript texts for this data preparation. Four 
experts from a biomedical domain annotated around 200 
case reports with the clinical and non-clinical named 
entities. We use the Spark NLP annotation tool [52] to 
annotate the chosen case reports with the named enti-
ties. These named entities are given in Additional file 1: 
Table S2.

We have drawn inspiration from the guidelines for 
annotating named entities in literature sources [53, 54]. 
For Inter-annotator agreement (IAA) [55], we employ the 
simple agreement method, which calculates the percent-
age of annotations that match among all annotators with-
out considering random chance (as in Cohen and Fleiss’ 
kappa statistics). The guidelines for our annotation task 
are provided in Table S2. We save these annotations into 
the CONLL-2003 [56] format, a prototypical data format 

Fig. 1  Proposed framework for pandemic surveillance
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for NER tasks. At the end of this step, we found approxi-
mately 500 sentences and 3048 gold labels.

Active learning Since our models are based on deep 
neural networks, it is best to train with more labeled 
data. We used the active learning [57] technique (shown 
in Additional file  1: Figure S1) for more data labeling. 
We began this active learning loop with 500 sentences 
(from the gold-standard dataset) and added batches of 
100 samples (reports) until it reached around 1000 sam-
ples, with the best accuracy of approximately 92.80%. By 
the end of this task, we obtained 47,888 sentences with 
approximately 387,899 named entities. We used this data 
to train our NER model.

Task-specific Transformer model We fine-tuned the 
Bidirectional Encoder Representations from Transform-
ers (BERT) for Biomedical Text Mining (BioBERT) [13] 
using our annotated dataset to prepare a task-specific 
model, which is more lightweight than a typical task-
agnostic model [58]. We release the weights of our 

fine-tuned model here [59] and show our task-specific 
transformer model in Additional file 1: Figure S2.

NLP layer
We develop two NLP models in this layer, which are (1) a 
NER module to produce named entities; (2) a RE module 
to define relationships between the named entities.

Named entity recognition model This model is 
inspired by bi-directional (Bi) long short-term memory 
(LSTM) model with a conditional random field (CRF) 
layer [60], but we add a Transformer layer to produce 
a variant of the model. We show our Transformer-BiL-
STM-CRF model in Fig. 2 and explain its working next. 
The notations in formulae are given in Additional file 1: 
Table S3.

Transformer layer The input text sequence (shown in 
the bottom layer of Fig.  2) goes into the Transformer 
layer. In this layer, we adapt the BERT architecture 
for the embedding. The core of BERT is implemented 

Fig. 2  Proposed model for named entity recognition
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by multi-layer Transformer encoders [61] which is 
dependent on the self-attention mechanism. The self-
attention information in this layer is obtained by for-
mula (1) [61]:

The output of this layer is word embeddings in the 
form of word vectors, which are fed into the next layer, 
the BiLSTM layer, to learn context features. Our tech-
nical contribution here entails the use of our task-spe-
cific Transformer model for extracting these entities.

BiLSTM layer The Transformer output vector is input 
to the BiLSTM layer. The BiLSTM units receive a dynamic 
sequence of word vectors as input and learn to extract 
local features from the sentence. The forward LSTM 
model generates hidden state sequences, and the backward 
LSTM model combines them to produce the complete hid-
den state sequence for the sentence sequence. The related 
information is obtained by the formula (2) [62].

The input x to the BiLSTM layer is the output of the 
Transformer. The BiLSTM layer uses both a forward 
and backward LSTM to capture contextual information 
and obtain global features for each moment in the input 
sequence. This allows the BiLSTM to effectively process 
the input sequence and extract useful features from it. 
The output of the BiLSTM layer is a sequence of hidden 
states, one for each input word.

CRF layer The input to the CRF layer is the output 
sequence of the BiLSTM layer. The CRF layer captures 
the dependency relationship between the named tags 
and constrains them to the final predicted labels [63]. 
The conditional probability distribution in CRF is rep-
resented by P(Y |X) and shown in formula (3) [64].

(1)attention(Q,K ,V ) = softmax QKT√
dk

V

(2a)it = σ(Wixt +Whiht−1 + bi)

(2b)ft = σ
(

Wf xt +Whf ht−1 + bf
)

(2c)ot = σ(Woxt +Whoht−1 + bo)

(2d)C̃t = tanh(WCxt +WhCht−1 + bC)

(2e)Ct = ft ⊗ Ct−1 + it ⊗ C̃t

(2f )ht = ot ∗ tanh (Ct−1)

(3)p
(

y|x
)

∝ exp

(

K
∑

k=1

ωk fk
(

y, x
)

)

The output of the CRF layer is the Inside–Outside–
Before (IOB) format, a scheme for tagging tokens in NER 
chunking tasks [65]. We convert the IOB representation 
of our model to a user-friendly format by associating 
chunks (recognized named entities) with their respec-
tive labels, as shown in Additional file  1: Figure S3. We 
also filter out the NER chunks with no associated entity 
(tagged as ‘O’). The model’s output is the named entities 
given in Additional file 1: Table S2.

We note a case report on long-COVID, titled: “Case 
report: overlap between long covid and functional neu-
rological disorders” [66], and show the named entities 
extracted by our model in Additional file 1: Table S4. We 
also show the visual representation of named entities 
from the snippet of the case report in Additional file  1: 
Figure S4. This approach can also detect information 
from a non-COVID-19 case report [67], as shown in an 
example in Additional file 1: Table S5.

Relation Extraction A relation can be defined as a triple 
(shown in formula 4) with indices in s1 and s2 that delimit 
a named entity mentioned in x (sequence of tokens).

The RE task can identify a specific relation between 
two co-occurring entities [22], such as symptom-disease, 
disease-disease, and drug-effects associations. Prior to 
the RE, there is a dependency parsing (DP) task (exam-
ple shown in Additional file  1: Figure S5), which refers 
to examining the dependencies between the words of a 
sentence to analyze its grammatical structure [68]. For 
instance, to identify the subjects and objects of a verb 
and the terms that modify (describe) the subject. These 
dependencies go as input to the RE module.

Taking inspiration from recent NLP works on RE [27, 
69], we employ zero-shot learning (ZSL) [26] to infer 
relations from the texts. ZSL is an ML technique in 
which a model observes samples from classes which has 
not been explicitly observed before during training. We 
already our NERT model as a base for the RE model. The 
RE model can predict relations between named entities 
without any additional training through ZSL.

Figure  3 shows the working of our ZSL-based Trans-
former model for Relation Extraction (ZSL-TRE). Our 
ZSL-TRE consists of a BERT encoder (Transformer 
layer) and a classifier layer, as shown in Fig. 3. The BERT 
encoder takes an input sequence of text and produces a 
fixed-length encoding that captures the contextual infor-
mation in the input. This encoding is then passed to 
the classifier layer, which uses it to predict the relation 
expressed by the input. We use the softmax function in 
the classifier layer.

The BERT encoder is already trained on a large data-
set of input–output pairs where the inputs are text 

(4)r = (x, s1, s2)
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sequences, and the outputs are class labels for a set of 
predefined relations. The trained model can classify a 
new input as expressing one of these relations, even if it 
has not seen that specific relation before, as long as the 
input is similar enough to the examples the model was 
trained on. The classifier layer is then trained to predict 
the relation based on the output of the BERT encoder, 
which encodes contextual information about the input. 
When presented with a new input, the BERT encoder 
encodes it and passes the encoding to the classifier, which 
then predicts the most likely relation based on the infor-
mation it has learned from the training data. We show an 
example of RE from our corpus in Additional file 1: Fig-
ure S6.

Evaluation layer
The evaluation layer receives the NLP layer’s output 
(named entities and relations) and evaluates the results 
of the proposed NER and RE methods. This research 
uses a two-fold evaluation approach: quantitative analy-
sis and qualitative analysis. We compare the proposed 
tasks’ accuracy to baseline methods across benchmark 
datasets (including our test set for NER) for the quantita-
tive analysis. We also perform the ablation study to show 
the effectiveness of each part of our proposed model. To 
show how effective our proposed approach is for pan-
demic surveillance, we carried out a qualitative analysis 

using case report data. We demonstrate the use of differ-
ent named entities and specify the unseen relations on 
the run. We show the summary of some data statistics of 
our reference dataset in Additional file 1: Table S6.

Evaluation protocol We randomly split each dataset 
into 70% train, 15% validation, and 15% test set for evalu-
ation. We used 30% of our annotated data for the NER 
task test set. For the RE task, we used benchmark datasets 
as we don’t have a test set. The details of the benchmark 
datasets and the baseline methods used in the evaluation 
are given in Additional file 1: Table S7. Similar to related 
works [12], we also employ the micro-average F1-score 
metric to evaluate NER and RE tasks. All the baselines 
are optimized to their optimal settings, and we report the 
best results for each method. The BERT encoder layers 
are implemented using the PyTorch BERT implementa-
tion available from Huggingface [70]. The general hyper-
parameters used during training are given in Additional 
file 1: Table S8.

Training setup We set the experimental environment as: 
Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz, 1.99 GHz, 
16.0 GB RAM, 64-bit operating system, × 64-based pro-
cessor; GPU: Google Colab Pro with cloud-based GPUs 
(K80, P100, or T4), 32  GB RAM and training capabili-
ties. We connect the Google Colab to Google Drive to get 
enough storage for transfer learning.

Fig. 3  Zero-shot learning-based transformer model for relation extraction
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Results
Overall performance comparison
The NER model performance is compared against the 
baseline methods using different benchmark datasets, 
including our own test set.

Our proposed method outperforms all the baseline 
methods on all of the datasets in Table  2. We observe 
that the BERT-based methods generally perform better 
than the BiLSTM-based methods, but the performance 
difference between the two sets of methods is relatively 
small, indicating that BiLSTM models can achieve a high 
level of accuracy if trained properly. We adopt a hybrid 
approach where we use the BERT-based model with 
the BiLSTM. Our approach to NER achieves a higher 
F1 score of 90.58% on the NCBI-disease dataset with 
significantly less feature engineering. On the BC5CDR 
dataset, our method obtains a micro-averaged F1 score 
of 89.90% for both chemical and disease entities. On the 
BC4CHEMD dataset with chemical entities, BERT-based 
methods, our method and Att-BiLSTM-CRF achieve 
scores above 90%. When evaluating the performance on 
the BC2GM and JNLPBA datasets for protein and gene 
names, our approach and the BERT-based methods per-
form well, with the overall performance on the JNLPBA 
dataset being relatively lower. This trend (of the lower 
performance of JNLPBA) is also observed in most related 
works [13] for these datasets. For the i2b2 datasets that 
are trained on clinical named entities, we find that clini-
cal embeddings like those provided by BioBERT signifi-
cantly improve the performance of clinical NER tasks, 
suggesting that a method performance is closely tied to 
the entity types it was trained on.

In the following experiments, we compare the perfor-
mance of our proposed RE model with that of baseline 
methods using benchmark datasets. Since we do not have 
a specific labeled test set for the RE task, we evaluate the 
performance of our RE model on benchmark datasets 
and provide a detailed analysis of our approach on case 
reports in later sections. Our RE model utilizes a ZSL 
approach, in which we do not utilize the provided rela-
tion labels from the benchmark datasets. Instead, we 
attempt to infer these relations using the knowledge from 
our fine-tuned Transformer model. The baseline meth-
ods, on the other hand, are run using the relation labels 
provided by the benchmark dataset providers.

As shown in Table  3, our approach outperforms the 
other methods on all seven datasets. These other models 
employ various techniques to extract relationships from 
the input sentences and make predictions, and they have 
achieved strong performance with full supervision. How-
ever, our model can predict these relationships, which it 
has not seen before, with a higher level of accuracy. The 
superior performance of our method is attributed to its 
use of a transfer learning mechanism, where the relation-
ship attributes are generated using zero-shot learning 
predictions.

Ablation study
To verify the validity of each part of our proposed NER 
and RE models, we conducted the ablation experiment. 
To keep it concise and avoid presenting repetitive test 
results, we have focused the ablation experiment on the 
i2b2-clinical and our own test set. The ablation experi-
ment settings are as follows:

Table 2  Test results in biomedical NER task using the micro-averaged F1-score

Bold means best score, italic second-best score

Model/Dataset NCBI BC5 CDR BC4 CHEMD BC2 GM JNL PBA i2b2-clinical i2b2-2012 Our data

BiLSTM-based

BiLSTM-CRF [63] 85.80 85.92 89.48 80.60 74.29 85.66 86.10 88.10

BILSTM-CNN-Char [71] 89.73 87.73 88.06 87.51 77.29 84.08 83.10 89.20

BiLSTM-CRF-MTL [72] 88.85 84.93 89.42 82.12 77.03 83.25 83.24 87.10

Att-BiLSTM-CRF [73] 84.50 88.93 91.08 84.37 77.10 88.60 85.83 88.10

Doc-Att-BiLSTM-CRF [16] 88.60 87.30 85.10 81.80 76.23 85.18 85.17 86.94

BiLSTM-contextualized [74] 85.17 87.83 87.12 80.51 73.52 85.26 84.22 85.18

CollaboNet [75] 84.08 84.08 87.12 79.73 78.58 85.61 84.29 86.70

BERT-based

SciBERT [76] 86.88 87.94 88.06 84.08 75.77 79.19 79.10 81.95

BLUE [77] 86.37 86.60 90.19 80.93 75.27 84.06 83.45 89.95

BioBERT-Base v1.0 [13] 87.71 85.80 90.77 84.72 77.59 85.64 86.00 90.10

BioBERT-Base v1.1 [13] 88.30 84.67 90.78 88.41 77.21 86.73 86.23 90.39

BioBERT-Base v1.2 [13] 88.15 86.70 92.20 88.72 79.10 88.95 87.40 92.34

Our approach 90.58 89.90 91.58 89.15 79.92 89.10 90.10 94.78
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•	 Full: Proposed Transformer-BiLSTM-CRF model.
•	 BiLSTM-CRF: Remove the Transformer layer. Equiv-

alent to BiLSTM-CRF [63] with character-level 
embedding via the CNN layer.

•	 BiLSTM: Remove the Transformer and CRF layers, 
equivalent to the BiLSTM model with a softmax layer 
to predict NER labels.

•	 Transformer-BiLSTM: Remove the CRF layer only, a 
softMax layer to predict NER labels.

•	 Transformer: Remove the BiLSTM and CRF layers.

According to the results presented in Table 4, the full 
proposed model has the highest micro-average F1 score 
among the model variants on both test sets. The BiL-
STM-CRF model can capture global features, but its 
performance is decreased by 4–6% compared to the full 
model, probably because it lacks contextualized repre-
sentations by missing Transformer input. The model 
variants with a Transformer layer outperform those with-
out it. The CRF layer, which is added after the BiLSTM 
and is used to correct the named entity tag sequence, is 
not present in the Transformer variants. Despite this, 
the Transformer variants still perform well with a simple 
enhancement function applied to the IOB representation 

of the output. Overall, this result suggests that transfer 
learning has improved the performance of the model 
variants.

We again perform the ablation experiment on the pro-
posed RE model. We present the results for the i2b2-clin-
ical dataset in this report, as we do not have our test set 
for this task. The model variants are:

•	 Full: Proposed RE model without any labeled data, 
and task-specific model weights.

•	 Without fine-tuning step: BERT-based layer without a 
task-specific model.

•	 Without full Transformer layer: BILSTM-CRF model 
without the Transformer layer.

Overall, the results in Table 5 show that the full model 
with task-specific fine-tuning performed the best. This 
is because the fine-tuning process adjusts the model 
weights to be more suitable for the specific task, lead-
ing to better performance. When the fine-tuning step is 
skipped and only the Transformer layer is retained, the 
model is not as effective at the task, resulting in lower 
performance. When the full transformer layer is missing, 
the model performs even worse, likely because the model 
is unable to predict the relations in the test set effectively.

Table 3  Test results of relation extraction task on benchmark datasets using micro-averaged F1-score

Bold means best score, italic second-best score

Method/Dataset ADE BioInfer i2b2-clinical i2b2-2012 CHEMPROT JNLPBA N2C2

C4.5 DT [35] 71.30 64.17 69.61 69.32 77.24 67.97 65.59

BiLSTM-CRF [36] 80.13 82.10 76.93 73.60 78.14 76.09 71.35

BiLSTM-CNN [78] 79.74 74.40 68.91 72.13 73.44 72.41 70.10

RNNs [36] 80.10 82.20 80.15 78.04 77.00 78.14 75.57

CMAN [37] 81.10 73.10 68.44 74.32 73.70 66.65 68.50

Adversial [37] 75.50 79.60 69.19 78.10 72.94 69.34 69.57

Multi-att-CNN [79] 79.24 84.35 70.43 78.80 77.50 71.62 70.15

BLUE BERT [77] 80.39 82.09 72.32 79.10 79.98 80.56 79.10

BioBERT [13] 82.03 86.90 81.20 80.23 81.46 83.41 79.18

Our approach 90.00 88.88 90.12 85.03 88.95 84.50 84.10

Table 4  Ablation experiment results of the proposed NER model 
on i2b2-clinical and our test set using micro-averaged F1-score

Bold means best score, italic second-best score

Model i2b2-clinical Our data

Full 90.10 94.78
BiLSTM-CRF 86.10 88.10

BiLSTM 85.13 87.63

Transformer-BiLSTM 88.12 90.28

Transformer 87.10 90.23

Table 5  Ablation experiment results of the proposed NER model 
using micro-averaged F1-score on the relations provided in the 
i2b2-clinical testset

Bold means best score

Model i2b2-clinical

Full: proposed RE model 90.12
Without fine-tuning step 82.35

Without a full Transformer layer 78.9
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Evaluation outcomes
Effectiveness of named entity recognition approach
We evaluated the effectiveness of our proposed 
approach in practical use cases.

We observe in Fig.  4 that fever/chills, nasal conges-
tion, pains, and running nose are the most frequent 
COVID-19 symptoms, which are reported by the CDC 
[80]. Next, we show the most frequent medical condi-
tions in COVID-19 patients in Fig.  5 and find pneu-
monia and respiratory disorders as the most frequent 
among others.

We also show the prevalence of conditions in 
COVID-19 patients based on the most occurring dis-
ease disorder (occurring more than 70%). The results 
are shown in Fig. 6.

According to Fig.  6, stroke appears to be the most 
common condition among patients with the cerebro-
vascular syndrome, chest pain is the most common 
condition among those with cardiovascular disease, 
and shortness of breath is the most prevalent condition 
among those with pulmonary disease. These findings 
highlight the serious nature of these conditions among 
patients with COVID-19. Additionally, we see that 
psychological conditions such as anxiety, depression, 
and post-traumatic stress disorder (PTSD) are present 

in COVID-19 patients, which may be the result of the 
impact of COVID-19 on their mental health.

Figure  7 depicts COVID-19 hospitalization by race, 
revealing that Hispanics are the most affected (37%), fol-
lowed by blacks (35%), Asians (17%), and whites (11%). 
This finding is based on a sample of the population and is 
not representative of the whole population.

In Additional file 1: Table S9 we show that named enti-
ties occur frequently in 1000 random case reports. We 
also show the hospitalization, ICU admission, and mor-
tality in COVID-19 patients of various ages in Additional 
file 1: Figure S7.

Effectiveness of relation extraction approach
We demonstrate the effectiveness of our ZSL-TRE 
approach by specifying relationships on the run. Table 6 
displays the ’after’ relationships—condition/symptom 
followed by a disease disorder.

Table 6 shows that certain symptoms are followed by a 
specific disease; for example, the symptoms of COVID-19 
are visible once a patient has the disease. We also specify 
the temporal relation: before, after, and overlap relations 
[81], as defined in the 2012 i2b2 challenge in Fig. 8. We 
observe that conditions (fever and cough) are seen after 
the vaccine (treatment).

Fig. 4  Frequency of COVID-19 symptoms
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Next, we specify the relationship between “DRUG 
AND [EFFECT]” and show the top 3 effects for a com-
monly mentioned drug (Oral amoxicillin) in Table 7. The 
result shows that abdominal pain and diarrhea are some 
of the effects associated with amoxicillin and Pirfenidone.

We also show the adverse drug effect (ADE) associ-
ated with the Paxlovid drug, which is most frequently 
for treating COVID-19, in Fig.  9 and see the associated 
effects with this drug are hives, trouble breathing, skin 
and swelling.

Discussion
Principal findings
We have observed that pneumonia, respiratory infec-
tions, and acute respiratory distress syndrome (ARDS) 
are common symptoms among COVID-19 patients, 
which is consistent with the reports from the WHO 
[82]. We have also noted the prevalence of various con-
ditions among patients with multiple comorbidities and 
how different symptoms and conditions become more 
prominent in these patients. Our findings on psychologi-
cal conditions and their potential relationship with Long-
COVID and mental health sequelae [83] may be useful 
for practitioners to consider when treating patients. We 
have also identified relationships between certain drugs 

and side effects such as headache, nausea, and dizzi-
ness, which can help healthcare providers quickly iden-
tify potential adverse effects in patients without having to 
manually review EHRs.

Impact of transfer learning for predicting COVID‑19 
patients’ outcomes
In the context of detecting COVID-19 named entities and 
relationships, transfer learning can be used to leverage 
existing models and knowledge about NLP to improve 
the performance of a new model on a specific task. This 
can be particularly useful when there is a limited amount 
of annotated data available for the specific task, and the 
model can use the knowledge acquired from other tasks 
to better understand the data and make more accurate 
predictions. In our experiments, we found that our meth-
ods, BioBERT, and BLUE, which all use transfer learning, 
performed very well in detecting named entities and rela-
tionships, suggesting that this approach can be effective 
in this domain (addressing RQ stated above).

Generalizability of the proposed approach
Our proposed framework has the potential to be applied 
to other domains and tasks with some adjustments to the 
data and possibly minor code modifications. The extent 

Fig. 5  Distribution of most frequent medical complications in the population
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to which this framework can be generalized to other 
domains and tasks depends on the specific characteris-
tics of the domain and task at hand. Some adjustments 
will likely need to be made to the data and possibly to the 
code to apply the framework to other domains and tasks.

Active learning experience
In our study, we discovered that active learning has the 
potential to reduce annotation costs for building NER 

models. Our current experience with active learning is 
based on a simple use case, but the overall goal with 
this method was to show that it is worth considering, 
particularly in applications where the data domain 
is limited (such as COVID-19 or a specific use case). 
We suggest further investigation into different active 
learning techniques for large-scale re-annotation.

Fig. 6  Condition prevalence related to different disease syndromes (Cerebrovascular, Cardiovascular, Pulmonary, Psychological). Bars represent the 
number of respondents who experienced each symptom at any point in their illness
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Predicting unseen relations in the texts using NLP
In this work, we attempted to infer relationships in text 
using NLP techniques. While this approach allows us to 

identify relationships between entities, it is not the same 
as the causal relationship extraction task that is com-
monly used in epidemiological studies. Most existing 

Fig. 7  COVID-19 hospitalization by race

Table 6  ‘After’ relation—disease disorder—condition/symptom

Disease disorders are chosen based on the frequency of prevalence (occurring > 70%)

Disease disorder Following conditions/symptoms

COVID-19 Fever, cough, respiratory symptoms, anosmia, ageusia, tachypneic, long COVID, acute respiratory failure, extensive pul-
monary fibrosis, high-grade fever, severe gastrointestinal

Coronary artery disease Hypertension, dyslipidemia

Acute kidney injury Hyperkalemia, severe metabolic acidosis, hyperlactatemia

Acute respiratory failure Extensive pulmonary fibrosis, mixed venous oxygen saturation, SARS-CoV-2

Chest pain Myalgia, headache, pressure, palpitations, shortness of breath

Dry cough Rhinorrhea, nausea, vomiting

Episodic shortness of breath Nocturnal tachycardia, chest pain, nocturnal tachycardia, chest pain

Hypertension Shortness of breath, cough, gout, heart failure, reduced ejection fraction, chronic kidney disease, asthenia, weight loss, 
anosmia, ageusia

Fig. 8  Temporal relations in a text

Table 7  Relations type: DRUG -EFFECT

Drug Effect Drug Effect Drug Effect

Oral amoxicillin Abdominal pain, loose stools, 
worsening rash, new-onset 
painful joint swelling

Pirfenidone Skin rash, swelling, ulcer, diar-
rhea

BNT162b2 vaccine Acute headache, fever, nausea, 
vomiting, oral aphthous, ulcers
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relationship extraction techniques in ML require labeled 
data for supervised learning tasks, and this can be a sig-
nificant challenge. However, our approach does not 
require labeled data, making it a potential alternative for 
extracting relationships in the texts.

Limitations and ethical implications of associations 
and relations with NLP extraction tools
NLP techniques are often used to extract and analyze 
relationships and associations from text data [23, 84], 
but like any analytical method, they have limitations 
and potential biases that should be carefully considered. 
Association analysis can be a useful tool for identifying 
patterns and relationships in data [85], but it is impor-
tant to recognize that the presence of an association does 
not necessarily indicate a causal relationship. There may 
be other factors at play that contribute to the observed 
association, and it is important to consider those factors 
when interpreting the results. For example, in the case 
of hospitalization by race discussed above, there may be 
other factors that contribute to the association between 
race and hospitalization [86], such as socio-economic 
status, access to healthcare, or pre-existing health con-
ditions. If these factors are not taken into account, the 
analysis of the data could be misleading and potentially 
perpetuate harmful stereotypes or biases. It is important 
for researchers and analysts to be mindful of these limi-
tations in text-based analysis and to consider potential 
alternative explanations for observed associations.

The source data we used is focused on published case 
reports. As a result, the sample is likely biased toward 
sicker patients, those hospitalized, those who had Long-
COVID, and those who were seen by academic phy-
sicians who would write them up for publication. It 
excludes minor cases, those who were not hospitalized, 
and those who were not cared for by these providers, 
who were likely poorer, lived-in remote areas, did not 
receive proper care and were less likely to see academic 
physicians so on.

Deploying a language model on a large dataset, par-
ticularly in the clinical text domain, requires powerful 
computing resources to process and analyze the data 

efficiently. Insufficient hardware such as lack of mem-
ory and graphics processing units can impede the speed 
and accuracy of the analysis and decision-making pro-
cess. Furthermore, it is vital to ensure patient privacy 
and comply with regulatory requirements, such as the 
Health Insurance Portability and Accountability Act 
(HIPAA) [87], when working with clinical text. Therefore, 
it is essential to include measures such as implementing 
secure protocols and ensuring compliance with Protected 
Health Information (PHI) regulations throughout the 
NLP pipeline to ensure the success of the deployment.

Future directions
We propose leveraging the Bradford Hill criteria [88] 
in the RE task. The Bradford Hill criteria are a tool that 
can be used to assess the causal relationship between an 
exposure and an outcome, and by leveraging these cri-
teria and coordinating PH initiatives with the RE task, it 
may be possible to identify and address potential health 
risks and issues within a population more effectively.

The integration of additional data sources, such as 
real-time EHRs and pathologic reports, is important in 
effectively utilizing AI in the fight against the COVID-
19 pandemic. Not only will this provide a more com-
prehensive understanding of the disease, but it will also 
aid in the development of more accurate and effective 
treatment plans. Furthermore, it is essential that we 
address specific aspects of the pandemic, such as mis-
information spread, as this can greatly impact the effec-
tiveness of our efforts.

In terms of Inter-Annotator Agreement (IAA), it is 
imperative that we utilize additional statistical meas-
ures [55], such as Cohen Kappa, Fleiss Kappa, and 
Krippendorff Alpha. These measures provide a more in-
depth understanding of the reliability and consistency 
of annotations made by different annotators and can 
help identify any areas of disagreement or confusion 
that may require attention. By using various measures, 
we can ensure the highest level of accuracy and preci-
sion in our AI-assisted efforts to combat the pandemic.

Fig. 9  Adverse drug effect with Paxlovid drug
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Conclusion
This study has shown that NLP-based methods can be 
used to detect the presence of diseases, symptoms, and 
risk characteristics. Transfer learning shows promise 
for developing predictive disease models with limited 
data, and our proposed methodology offers a use-
ful way to identify named entities and relationships in 
clinical texts. In comparison to state-of-the-art meth-
ods, our proposed methods achieve a higher micro-
averaged F1 score for both the NER and RE tasks. The 
analysis of the case report data shows that the proposed 
approach can be an effective tool for pandemic surveil-
lance. Overall, this study demonstrates the potential of 
NLP-based methods for detecting and understanding 
diseases and other clinical concepts in text data.
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