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Abstract

Osteosarcoma is a primary malignant tumor of the skeleton with the morbidity of 2.5 in 1 

million. The regularly on-set is in the epiphysis of the extremities with a high possibility 

of early metastasis, rapid progression, and poor prognosis. The survival rate of patients with 

metastatic or recurrent osteosarcoma remains low, and novel diagnostic and therapeutic methods 

are urgently needed. Exosomes are extracellular vesicles 30–150 nm in diameter secreted by 

various cells that are widely present in various body fluids. Exosomes are abundant in biologically 

active components such as proteins, nucleic acids, and lipids. Exosomes participate in numerous 

physiological and pathological processes via intercellular substance exchange and signaling. This 

review presents the novel findings of exosomes in osteosarcoma in diagnosis, prognosis, and 

therapeutic aspects.
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Introduction

Osteosarcoma (OS) is a primary malignant bone tumor originating from primitive 

osteogenic mesenchymal in adolescents and young adults under 20[1]. Although the 

quality of life of patients affected by osteosarcoma has significantly improved over 

the last few decades, its etiology remains obscure. Studies aiming to determine the 

causes of osteosarcoma have classically focused on multiple factors, including genetics, 

epidemiology, and the environment[2]. Research has identified associations with secondary 

osteosarcoma in patients with Paget disease, electrical burns, trauma, exposure to beryllium, 

exposure to alkylating agents, FBJ virus, osteochondromatosis, enchondromatosis, fibrous 

dysplasia, orthopedic prosthetics as well as bone infarction and infection. Additionally, 

osteosarcoma reportedly correlates with exposure to ionizing radiation, radium, and archaic 

contrast agents such as thorotrast[3]. Besides, research has identified several genetic 

aberrations in cases of primary osteosarcoma, including Hereditary Retinoblastoma, Li-

Fraumeni Syndrome, Rothmund-Thompson Syndrome, Bloom Syndrome, and Werner 

Syndrome[4]. Radiographs of osteosarcoma present osteogenic, osteolytic, or mixed bone 

destruction at the lesion. The “Codman’s triangle” and sun-exposed periosteal reaction[5] 

are typical radiographic features. MRI provides an accurate picture of osteosarcoma 

based on tumor cell differentiation and proliferation[6]. Radionuclide scans can determine 

whether bone metastases occur in osteosarcoma[7]. Frozen biopsies are used for rapid 

intraoperative diagnosis, and paraffin sections are used for obtaining accurate histological 

findings postoperatively[8]. High levels of serum alkaline phosphatase (ALP) and lactate 

dehydrogenase (LDH) predict a poor prognosis[9]. Treatment for osteosarcoma includes 

neoadjuvant chemotherapy, surgical resection, chemotherapy, and interventional therapy[10]. 

In addition, cellular immunotherapy, gene therapy, and stem cell therapy have also made 

some progress in recent years[11]. However, these methods are still in the experimental 

stage. Approximately 18% of patients present micrometastases at the diagnosis, and the 5-

year survival rate stays gloomy for patients with metastasis and recurrent[12]. Osteosarcoma 

treatment outcomes remain suboptimal due to the asymptom, early onset of metastasis, and 

high malignancy. The 5-year survival rate of patients with osteosarcoma is less than 30% 

without chemotherapy. The leading cause of death was lung metastasis[13]. The 2-year 

survival rate of patients with osteosarcoma with pulmonary metastases is less than 25%, 

and the survival period after treatment enters a plateau, making it challenging to obtain 

breakthrough efficacy with traditional treatment regimens[14]. Therefore, it is essential to 

reveal the underlying mechanisms of osteosarcoma development and metastasis and discover 

novel markers for clinical detection and effective therapeutic targets.

Currently, exosomes have been reported to be involved in regulating cellular behavior by 

transferring cargoes (proteins, DNA, RNA, and lipids) intercellularly. Increasing evidence 

shows that exosomes have significant potential in promoting osteosarcoma progression 

and development, the therapeutic potentials of exosomes in osteosarcoma is gaining 

attention. Exosomes are membranous vesicles 30–100 nm in diameter originating from 

endonuclease[15]. The first double-layered lipid structure containing no organelles was 

identified in blood erythrocytes and named exosomes[16]. Exosomes contain various nucleic 

acids and evolutionarily conserved proteins[17], which transmit biological information 
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through cellular communication for biological processes and disease progression[18]. 

Exosomal LINC00273 transfer to lung adenocarcinoma (LUAD) in M2 macrophages, 

recruits NEDD4 to promote LATS2 ubiquitination, which inhibits the Hippo pathway 

and YAP-induced RBMX transcription, resulting in malignancy of LUAD[19]. Anlotinib-

resistant NSCLC cells promote the proliferation of parental NSCLC cells by transferring 

functional miR-136–5p from anlotinib-resistant non-small-cell lung cancer (NSCLC) cells 

to parental NSCLC cells via exosomes. Exosomal miR-136–5p can lead to anlotinib 

resistance in NSCLC cells by targeting PPP2R2A and promoting activation of the AKT 

pathway[20]. Exosomes secreted by different cells in the osteosarcoma enable intercellular 

communication of ncRNAs and protein components, effectively regulating the tumor 

microenvironment to activate proliferation and metastasis. In addition, exosomes are stable 

in the circulatory systems with diagnostic and therapeutic potential. This article reviews 

the biological properties of exosomes and their role in the diagnosis and treatment of 

osteosarcoma.

1. Exosome Formation and Biological Characteristics

Extracellular vesicles (EVs) are universal in cells and carry proteins, genetics, and 

metabolites[21]. Based on the size and release mechanism, EVs are classified into 

exosomes (30–150 nm in diameter); microvesicles/extranuclear granulosomes (100–1000 

nm in diameter); and apoptotic vesicles (50–1500 nm in diameter)[22]. Exosome 

formation involves dual invagination of the protoplasmic membrane and the formation of 

intracellular multivesicular bodies (MVBs), which contain intraluminal vesicles (ILVs)[23]. 

The endoplasmic reticulum also contributes to early endonucleosome formation[24]. The 

maturity of intranucleosomes eventually forming MVBs, which fuse with lysosomes or 

autophagosomes for degradation or fuse with the plasma membrane to release the contained 

ILVs as exosomes[25]. Exosomes are present in almost all body fluids, including plasma, 

urine, ascites, and breast milk[26].

1.1 Exosome Formation—Exosome formation is activated at the endosomal 

endocytosis, where the endosomal limiting membrane undergoes multiple deformation 

and outgrows inward to generate ILVs. The ILVs transform into MVBs with dynamic 

subcellular structures. MVBs are generated at the endosomal limiting membrane either by 

the endosomal sorting complex required for transport (ESCRT) or by a non-dependent 

ESCRT mechanism[27]. The ESCRT mechanism functions through the recognition of 

cytoplasmic protein complexes with ubiquitinylated modified membrane proteins. As the 

ubiquitin marker, ESCRT-0 is enriched in the endosomal membrane. The ESCRT-I complex 

recognizes and passes ESCRT-0 to ESCRT II. TSG101 in ESCRT I identifies disulfide bonds 

to induce endosomal membrane depression, which shears the bud neck via ESCRT III to 

form MVBs[28]. MVBs formation is initiated in the absence of ESCRT as the accessory 

protein ALG-2 interacting protein X (AIix), which binds directly to the intracellular bridging 

protein syntenin to participate in exosome formation[29]. The abundant tetratransmembrane 

protein can facilitate the production of these ESCRT-nondependent MVBs CD63-α on 

MVBs by ceramide-induced membrane outgrowth[30]. MVBs fusion with lysosomes will 

induce the degradation and recirculation of their contents. Cholesterol levels in MVBs play 

an essential role in regulating their sorting, with cholesterol-rich MVBs being targeted to 
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the cell membrane for release as exosomes and low-cholesterol MVBs being targeted for 

transport to lysosomes[31].

1.2 Exosomes Mechanism in Biological Function—Exosome-mediated 

intercellular transmission relies on membrane receptors. Exosomes activate receptors on 

recipient cells to activate the take-up exosomes through cytokinesis[32]. The mechanism 

is related not only to the origin of exosomes and receptor cells but also to downstream 

responses. Current studies have focused on exploring the function of some cell-derived 

exosomes and the use of exosomes for disease treatment[33]. Target cell specificity 

may be determined by specific interactions between proteins enriched on the surface of 

exosomes and receptors on the membrane of recipient cells[34]. Known mediators include 

transmembrane tetraspanins, integrins, and extracellular matrix components[35].

1.3 Exosomes Potential in Tumor Diagnosis and Treatment—Exosomes 

primarily exclude redundant and nonfunctional cellular components[36]. Exosomes are 

intercellular linkers that transport proteins, lipids, and nucleic acids to target cells 

in various biological processes, such as angiogenesis, antigen presentation, apoptosis, 

and inflammation[37]. The specific component captured by the exosome reflects the 

cellular origin and physiological state, with significant disease specificity, making them 

ideal biomarkers. Exosomes are involved in various cancer-related processes, including 

proliferation, apoptosis, angiogenesis, and metastasis, suggesting noninvasive biomarkers for 

cancer diagnosis[38, 39]. The miR-21, miR-222, and miR-124–3p in serum exosomes are 

detectable early tumor progression during postsurgical treatment of patients with high-grade 

gliomas (HGG)[40]. The miR-21, miR-451, and miR-636 in urinary exosomes of prostate 

cancer patients were closely correlated with preoperative prostate-specific antigen (PSA) 

levels, the urinary exosomal miRNAs potentially function as noninvasive markers to predict 

prostate cancer metastasis and prognosis [41]. Plasma exosomal miR-363–5p had a high 

diagnostic performance in discriminating against LN (+) and LN (−) breast cancer patients. 

Increasing miR-363–5p expression levels were intensely indicating a lower overall survival.

[42]. The therapeutic potentials of exosomes are concentrated on targeted drug delivery 

and biomedical regeneration. Exosomes have great potential in treating diseases due to 

their nontumorigenic, bactericidal, and lower immunogenicity characteristics[43]. Ligand 

enrichment on engineered exosomes can induce or inhibit signaling in receptor cells or 

target exosomes to specific cells[44]. The chemotherapeutic agents loaded exosomes are 

promising for antineoplastic drugs with low toxicity and high tolerance[45].

2. Exosomes in Osteosarcoma Progression

Exosomes can transmit intercellular signals to regulate proliferation and metastasis. 

Exosomes promote tumor proliferation and metastasis by inducing epithelial-mesenchymal 

transition (EMT) of related cells and accelerating tumor neovascularization and 

immunosuppression through regulating the microenvironment and transformation of cancer-

associated fibroblasts[46, 47]. Exosomes are dominant in regulating proliferation, invasion 

metastasis, and osteosarcoma angiogenesis by participating in intercellular contacts and 

controlling cellular signaling.
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2.1 Exosomes in Osteosarcoma Proliferation—The potential to proliferate 

indefinitely is the fundamental feature of cancer cells[48]. Osteosarcoma cells express 

growth factor receptors and achieve rarely negative feedback regulation, manifesting as 

continuous activation of signal stimulation and unlimited division and proliferation[49]. 

Exosomes participate in various processes in the proliferation of osteosarcoma (Table 1). 

The miR-208a from BMSC-derived exosomes promoted osteosarcoma cell proliferation and 

inhibited apoptosis by suppressing PDCD4 expression and activating the ERK1/2 and Hippo 

pathways. BMSC-derived exosomal miR-206 could inhibit cell proliferation by targeting 

TRA2B[50]. In addition, BMSC-derived exosomes could encapsulate PVT1 and translocate 

it into osteosarcoma cells. PVT1 could promote tumor growth and metastasis by binding 

to miR-183–5p to promote ERG expression[51]. The MALAT1/miR-143/NRSN2/Wnt/β-

catenin axis is another vital target for BMSE-EVs to promote proliferation[52]. ADSC 

exosomes could deliver COLGALT2 to osteosarcoma cells, leading to the malignancy 

of osteosarcoma[53]. BMSC-derived exosomes promote OS proliferation and metastasis 

via the LCP1/JAK2/STAT3 pathway. Meanwhile, targeting the miR-135a-5p/LCP1 axis 

could inhibit osteosarcoma progression[54]. MG-63 cell-derived exosomes promoted the 

proliferation of osteosarcoma and inhibited apoptosis. The Hic-5 from MG-63 cell-derived 

exosomes interacts with smad4 and regulates Wnt/β-catenin signaling by decreasing 

TCF/LEF activity[55]. Osteosarcoma cell-derived exosomal miR-1307 could promote OS 

cell proliferation by inhibiting AGAP1 expression, indicating that the miR-1307-AGAP1 

axis could be a potential therapeutic target for OS[56]. In osteosarcoma patients, exosomal 

miR-15a expression decreased in plasma exosomes. The exosomal miR-15a inhibited the 

GATA2/MDM2 axis via the p53 signaling pathway, thereby inhibiting the proliferation and 

invasion of OS cells in vitro[57].

2.2 Exosomes in Osteosarcoma Metastasis—Epithelial-mesenchymal transition 

(EMT) is a biological phenomenon in which epithelial cells lose their epithelial properties 

and acquire a mesenchymal phenotype. In this process, epithelial features reduce, changing 

from polygonal to spindle-shaped fibroblast-like morphology, with loss of cell polarity 

and reduced adhesion, acquiring the ability to invade and metastasize[58]. Exosomes 

are essential in the invasive metastasis of osteosarcoma (Table 1). The miR-143 could 

transfer to osteosarcoma cells via exosomes and significantly inhibit tumor invasiveness[59]. 

Highly invasive OS cells could secret exosomal miR-675 into recipient cells and suppress 

CALN1 expression. The expression level of exosomal miR-675 in the serum of patients 

with osteosarcoma was strongly correlated with prognosis[60]. Mazumdar et al. found that 

both highly metastatic 143-B cells and low metastatic SAOS-2 cell-derived EVs could 

induce the recruitment of bone marrow cells to the lung, the components in exosomes 

may inhibit remote metastasis of osteosarcoma[61]. In osteosarcoma, the Rab22a-NeoF1 

fusion protein could be assimilated into exosomes. The exosomal Rab22a-NeoF1 fusion 

protein promotes the formation of premetastatic lung niche by recruiting bone marrow-

derived macrophages[62]. OS cell-derived exosomal miR-1307 promotes proliferation, 

migration, and invasion by regulating AGAP1 expression, indicating the inhibitive features 

of miR-1307 in the malignant progression of osteosarcoma[56].
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2.3 Exosomes in Osteosarcoma Angiogenesis—Proangiogenic and 

antiangiogenic factors are dominant in the formation of blood vessels[63]. Tumor cells 

require nutrient supply and metabolite excretion for survival and development[64]. Tumor-

derived exosomes are critical mechanisms that promote angiogenesis (Table 1). The 

miR-25–3p increased in osteosarcoma tissues to promote tumor proliferation, metastasis, 

and drug resistance by inhibiting DKK3. EWSAT1 promoted OS angiogenesis by wrapping 

it into the exosome-driven vascular endothelial cell to increase the secretion and the 

sensitivity/responsiveness of angiogenic factors[65]. Osteosarcoma cells with high exosome 

abundance could regulate OS tumor angiogenesis and autophagy through miR-153 and 

ATG5 by secreting exosomal lnc-OIP5-AS1 into adjacent osteosarcoma cells[66].

2.4 Exosomes in Osteosarcoma Immunol Response—Exosomes participate in 

the immune response and regulate immunocompetence[67]. Tumor cell-derived exosomes 

carry tumor-associated antigens and stimulate the immune cells to generate antitumor 

immune responses. However, they can interfere with immune recognition, and inhibit 

T cells and immune-related cells, thereby accelerating tumor cells’ immune escape 

and metastasis [17]. Immune cells derived from the tumor microenvironment regulate 

proliferation and metastasis through exosomes[68]. Exosomes also have a critical role in 

the tumor immune microenvironment of osteosarcoma (Table 1). The exosomal miR-1228 

secreted by cancer-associated fibroblasts (CAFs) could promote osteosarcoma invasion 

and migration by targeting SCAI. The mir-1228 functions as a potential therapeutic 

target for osteosarcoma[42]. Exosomes enhanced tube formation in endothelial cells 

and increased the expression of angiogenic markers. The second-generation sequencing 

reveals that specific miRNAs, such as miR-148a and miR-21–5p, have essential roles in 

the tumor microenvironment[69]. The exosomes of metastatic osteosarcoma cells secrete 

TGFβ2 into tumor-associated macrophages, promoting the M2 phenotype and contributing 

to immunosuppression and tumorigenesis[70]. Osteosarcoma cell-derived EVs promote 

myofibroblast/cancer-associated fibroblast differentiation, smooth muscle actin expression, 

and fibronectin production. In addition, they significantly promoted the invasiveness of 

human lung fibroblasts[71]. Osteosarcoma-derived exosomes induced M2 polarization of 

macrophages via Tim-3, promoting osteosarcoma invasion and metastasis[72]. Exosomal 

Col6a1 converts normal fibroblasts into CAFs by secreting proinflammatory cytokines. 

Activated CAFs promote OS cell invasion and migration by mediating the TGF-β/

COL6A1 signaling pathway[73]. Macrophage-derived exosomal lncRNA LIFR-AS1 could 

promote the malignant progression of osteosarcoma by binding miR-29a to promote NFIA 

expression[74].

3. Exosomes Potentials in Osteosarcoma

Exosomes contain various biologically active molecules in circulation and mediate remote 

intercellular interaction[75]. Tumor-derived exosomes contain multiple proteins, genetics, 

lipids, and other molecules that reflect the physiological and pathological status of the 

tumor[76]. The specific lipid bilayer structure of exosomes protects their RNA molecules 

from degradation[77]. Therefore, detecting tumor exosomes has become a significant 

advantage of liquid biopsy. Exosomes show good application potential in the early 
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diagnosis, efficacy, and prognosis monitoring of various diseases. They have become new 

and ideal biomarkers and possible targeted drug carriers in clinical diagnosis and treatment.

3.1 Exosomes Potientials for Osteosarcoma Diagnosis—Exosomes are essential 

in the early diagnosis and prognostic assessment of osteosarcoma. Eight novel miRNAs 

were identified by NGS in three distinct osteosarcoma cell lines, and five are present in 

circulating exosomes of osteosarcoma patients[57]. EV-miR-101 expression levels were 

significantly lower in osteosarcoma patients. In plasma from patients with osteosarcoma 

metastases, EV-miR-101 was even lower than those without metastases, indicating a 

potential diagnostic marker for osteosarcoma[78]. Ye et al. revealed that the expression 

levels of miR-92a-3p, miR-130a-3p, miR-195–3p, miR-335–5p, and let-7i-3p were 

significantly upregulated in exosomes of osteosarcoma patients, which may be potential 

diagnostic markers for osteosarcoma[79]. The HSATI, HSATII, LINE1-P1, and Charlie 3 

were overexpressed at the DNA level but not at the RNA level in OS patients’ serum 

exosomes with potential use as biomarkers for OS[80]. Exosome-derived SENP1 in patients 

with osteosarcoma was closely correlated with tumor size, location, necrosis rate, lung 

metastasis, and surgical staging. The higher plasma exosome-derived SENP1 levels indicate 

poorer disease-free survival (DFS) and overall survival [81]. Seven exosomal proteins are 

identified as potential biomarkers of osteosarcoma lung metastasis[82]. In addition, SERS 

and MALDI-TOF MS exosomes have shown great potential for the rapid diagnosis of 

osteosarcoma[83].

3.2 Exosomes Potentials for Osteosarcoma Treatment—Exosomes have great 

potential in the treatment of osteosarcoma. Multidrug-resistant osteosarcoma cells secrete 

exosomes containing MDR-1 mRNA and P-glycoprotein to promote doxorubicin resistance 

in sensitive cells. Exosomes targeting drug-resistant osteosarcoma cells may inhibit the 

malignant progression of osteosarcoma[84]. Compared to normal osteoblasts, osteosarcoma-

derived exosomes contain immunomodulatory substances that significantly reduce T cell 

proliferation rates and promote T regulatory phenotypes, thereby promoting osteosarcoma 

progression[10, 85]. The miR-135b, miR-148a, miR-27a, and miR-9 were highly expressed 

in serum exosomes of osteosarcoma patients and could potentially be reliable biomarkers 

of chemotherapy sensitivity[16, 86]. Exosome-loaded doxorubicin (Exo-Dox) enhanced 

cellular uptake efficiency and antitumor effects in the osteosarcoma MG63 cell line with low 

cytotoxicity, which may be a good targeting regimen for osteosarcoma[87]. Osteosarcoma 

cells could promote osteosarcoma lung metastasis by releasing exosomes containing PD-L1 

and N-calcineurin. In addition, the expression levels of exosomal PD-L1 and N-calcineurin 

in the serum of OS patients could predict the progression of pulmonary metastasis in OS 

patients[88]. Exosomes from CDDP-resistant osteosarcoma cells decreased the expression 

of multidrug resistance-associated protein 1 and P-glycoprotein in MG63 and U2OS 

cells, increased cellular sensitivity to CDDP and inhibited apoptosis through exosomal-

hsa_circ_103801[89]. Moreover, exosomes from drug-resistant HMPOS-2.5R cell lines 

transferred drug resistance to drug-sensitive HMPOS cells, thereby reducing the therapeutic 

sensitivity of osteosarcoma[90].
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Conclusions

The dominant to promote the prognosis and survival of tumor patients lies in early 

diagnosis[91]. Exosomes are stable and widespread in all tissues, organs, and body fluids, 

and these nanosized vesicles can be released by all types of cells (Figure 1) [92]. Tumor 

exosomes can also regulate tumor progression, angiogenesis, metastasis, and immune escape 

by interacting with other cells in the tumor microenvironment[93]. We need a standard 

method for liquid biopsy to isolate exosomes quickly, easily, and specifically. Exosomes 

are a promising biomarker for the diagnosis of osteosarcoma, predicting prognosis, and 

monitoring treatment response in real-time, large multicenter studies are needed to develop 

the validity of liquid biopsies. For biological functions study, it is impossible to determine 

whether exosomes have similar regulatory functions in vivo as they do in vitro. For 

therapeutic purposes, exosome-derived cells should be carefully selected to ensure the 

safety of the treatment. Erythrocytes are the most promising exosome-producing cells 

because they are readily available in blood banks, do not contain a nucleus, and lack 

genetic material. In addition to their great potential as biomarkers, exosomes offer new 

research directions for the precision treatment of tumors[87]. To improve the effectiveness of 

antitumor drug therapy, a drug-loading system is a key challenge. As a natural therapeutic 

carrier, exosomes contain their bioactive molecules and avoid immune rejection[94], in 

addition to loading exogenous drugs to maintain drug stability in vivo. These advantages 

make exosomes an ideal loading system to break the traditional drug delivery model and 

will be an important tool for the development of precision medicine for tumors. Han et al. 

constructed fusion gene iRGD-Lamp2b-modified MSCs to isolate and purify exosomes and 

loaded anti-miRNA-221 oligonucleotides into exosomes. AMO-loaded exosomes effectively 

inhibited the proliferation and clonal formation of colon cancer cells in vitro[51].

This review discusses the biological functions of exosomes in the progression of 

osteosarcoma and clinical applications. Exosomes from osteosarcoma promote malignant 

progression by regulating tumor metastasis, angiogenesis, tumor immunity, and drug 

resistance. Exosomes provide us with a new potential therapeutic target.
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ABBREVIATIONS

OS Osteosarcoma

ALP alkaline phosphatase

LDH lactate dehydrogenase

miRNAs microRNAs

lncRNA long noncoding RNA

mRNA messenger RNA

LUAD lung adenocarcinoma

NSCLC non-small-cell lung cancer

EVs extracellular vesicles

MVBs multivesicular bodies

ILVs luminal vesicles

ESCRT endosomal sorting complex required for transport

Aiix ALG-2 interacting protein X

HGG high-grade gliomas

PSA prostate-specific antigen

MSCs mesenchymal stem cell

EMT epithelial-mesenchymal transition

BMSCs bone marrow-derived mesenchymal stem cells

CAFs cancer-associated fibroblasts

NGS next-generation sequencing

DFS disease-free survival

CDDP cisplatin-resistant
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Figure 1. The interaction of osteosarcoma and related cells through exosomes.
The MSCs, CAFs, and CSCs secrete exosomes containing specific proteins and genetic 

materials to promote the proliferation, metastasis, and invasion of osteosarcoma. Meanwhile, 

osteosarcoma cells generate exosomes targeting specific cells to promote angiogenesis, 

osteoclastogenesis, and immunomodulation of the supporting cells. Osteosarcoma promotes 

drug resistance, proliferation, and metastasis through exosome secretion. (Created in 

Biorender.com)
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