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Abstract

How do we find what we are looking for? Fundamental limits on visual processing mean that even 

when the desired target is in our field of view, we often need to search, because it is impossible 

to recognize everything at once. Searching involves directing attention to objects that might be 

the target. This deployment of attention is not random. It is guided to the most promising items 

and locations by five factors discussed here: Bottom-up salience, top-down feature guidance, scene 

structure and meaning, the previous history of search over time scales from msec to years, and the 

relative value of the targets and distractors. Modern theories of search need to specify how all five 

factors combine to shape search behavior. An understanding of the rules of guidance can be used 

to improve the accuracy and efficiency of socially-important search tasks, from security screening 

to medical image perception.

How can a texting pedestrian walk right into a pole, even though it is clearly visible 1? At 

any given moment, our attention and eyes are focused on some aspects of the scene in front 

of us, while other portions of the visible world go relatively unattended. We deploy this 

selective visual attention because we are unable to fully process everything in the scene at 

the same time. We have the impression of seeing everything in front of our eyes, but over 

most of the visual field we are probably seeing something like visual textures, rather than 

objects 2,3 Identifying specific objects and apprehending their relationships to each other 

typically requires attention, as our unfortunate texting pedestrian can attest.

Figure 1 illustrates this point. It is obvious that this image is filled with Ms and Ws in 

various combinations of red, blue, and yellow, but it takes attentional scrutiny to determine 

whether or not there is a red and yellow M.

The need to attend to objects in order to recognize them raises a problem. At any given 

moment, the visual field contains a very large, possibly uncountable number of objects. 

We can count the Ms and Ws of Figure 1, but imagine looking at your reflection in the 

mirror. Are you an object? What about your eyes or nose or that small spot on your chin? 

Jeremy M Wolfe, PhD, Visual Attention Lab, Department of Surgery, Brigham & Women’s Hospital, 64 Sidney St. Suite. 170, 
Cambridge, MA 02139-4170, Phone: 617-768-8818, Fax: 617-768-8816, jwolfe@partners.org. 

Competing Interests:
JMW occasionally serves as an expert witness or consultant for which this article might be relevant. TSH has no competing interests to 
declare.

HHS Public Access
Author manuscript
Nat Hum Behav. Author manuscript; available in PMC 2023 January 26.

Published in final edited form as:
Nat Hum Behav. 2017 March ; 1(3): . doi:10.1038/s41562-017-0058.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



If object recognition requires attention, and if the number of objects is uncountable, how do 

we manage to get our attention to a target object in a reasonable amount of time? Attention 

can process items at a rate of, perhaps, 20-50 items per second. If you were looking for 

a street sign in an urban setting containing a mere 1000 possible objects (every window, 

tire, door handle, piece of trash, etc.), it would take 20-50 seconds just to find that sign. 

It is introspectively obvious that you routinely find what you are looking for in the real 

world in a fraction of that time. To be sure, there are searches of the needle-in-a-haystack, 

Where’s Waldo? variety that take significant time, but routine searches for the saltshaker, the 

light switch, your pen, and so forth, obviously proceed much more quickly. Search is not 

overwhelmed by the welter of objects in the world because search is guided to a (often very 

small) subset of all possible objects by several sources of information. The purpose of this 

article is to briefly review the growing body of knowledge about the nature of that guidance.

We will discuss five forms of guidance:

1. Bottom-up, stimulus-driven guidance in which the visual properties of some 

aspects of the scene attract more attention than others.

2. Top-down, user-driven guidance in which attention is directed to objects with 

known features of desired targets.

3. Scene guidance in which attributes of the scene guide attention to areas likely to 

contain targets.

4. Guidance based on the perceived value of some items or features.

5. Guidance based on the history of prior search.

Measuring Guidance

We can operationalize the degree of guidance in a search for a target by asking what fraction 

of all items can be eliminated from consideration. One of the more straight-forward methods 

to do this is to present observers with visual search displays like those in Figure 2 and 

measure the reaction time (RT) required for them to report whether or not there is a target 

(here a “T), as a function of the number of items (set size). The slope of the RT x set size 

function is a measure of the efficiency of search. For a search for a T among Ls (Fig 2A), 

the slope would be in the vicinity of 20-50 msec/item 4. We believe that this reflects serial 

deployment of attention from item to item 5 though this need not be the case 6.

In Fig. 2B, the target is a red T. This search would be faster and more efficient 7 because 

attention can be guided to the red items. If half the items are red (and if guidance is perfect), 

the slope will be reduced by about half, suggesting that, at least in this straightforward case, 

slopes index the amount of guidance.

The relationship of slopes to guidance is not entirely simple, even for arrays of items like 

those in Fig 2 8 but see 9. Matters become far more complex with real world scenes where 

the visual set size is not easily defined 10,11. However, if the slope is cut in half when half 

the items acquire some property, like the color red in 2B, it is reasonable to assert that search 

has been guided by that property 9.
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The problem of distractor rejection

As shown in Figure 2, a stimulus attribute can make search slopes shallower by limiting the 

number of items in a display that need to be examined. However, guidance of attention is 

not the only factor that can modulate search slopes. If observers are attending to each item 

in the display (in series or in parallel), the slope of the RT x set size function can also be 

altered by changing how long it takes to reject each distractor. Thus, if we markedly reduced 

the contrast of Figure 2A, the RT x set size function would become steeper, not because of a 

change in guidance but because it would now take longer to decide if any given item was a T 

or an L.

Bottom-up guidance by stimulus salience

Attention is attracted to items that differ from their surroundings, if those differences are 

large enough and if those differences occur in one of a limited set of attributes that guide 

attention. The basic principles are illustrated in Figure 3.

Three items ‘pop-out’ of this display. The purple item on the left differs from its neighbors 

in color. It is identical to the purple item just inside the upper right corner of the image. That 

second purple item is not particularly salient even though it is the only other item in that 

shade of purple; its neighbors are close enough in color that the differences in color do not 

attract attention. The bluish item to its left is salient by virtue of an orientation difference. 

The square item a bit further to the left is salient because of the presence of a ‘closure’ 

feature 12 or the absence of a collection of line terminations 13. We call properties like color, 

orientation, or closure basic (or guiding) features, because they can guide the deployment 

of attention. Other properties may be striking when one is directly attending to an item, 

and may be important for object recognition, but they do not guide attention. For example, 

the one ‘plus’ in the display is not salient, even though it possesses the only X-intersection 

in the display, because intersection type is not a basic feature 14. The ‘pop-out’ we see 

in Figure 3 is not just subjective phenomenonology. Pop-out refers to extremely effective 

guidance, and is diagnosed by a near-zero slope of the RT x set size function; though there 

may be systematic variability even in these ‘flat’ slopes 15.

There are two fundamental rules of bottom-up salience 16. Salience of a target increases 

with difference from the distractors (target-distractor – TD- heterogeneity) and with the 

homogeneity of the distractors (distractor-distractor –DD- homogeneity) along basic feature 

dimensions. Bottom-up salience is the most extensively modeled aspect of visual guidance 

nicely reviewed in 17. The seminal modern work on bottom-up salience is Koch and 

Ullman’s 18 description of a winner-take-all network for deploying attention. Subsequent 

decades have seen the development of several influential bottom-up models e.g. 19,20–22. 

However, bottom-up salience is just one of the factors guiding attention. By itself, it does 

only modestly well in predicting the deployment of attention (usually indexed by eye 

fixations). Models do quite well predicting search for salience, but not as well predicting 

search for other sorts of targets 17. This is quite reasonable. If you are looking for your cat in 

the bedroom, it would be counterproductive to have your attention visit all the shiny, colorful 

objects first. Thus, a bottom-up saliency model will not do well if the observer has a clear 

top-down goal 23. One might think that bottom-up salience would dominate if observers 
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free-viewed a scene in the absence of such a goal, but bottom-up models can be poor at 

predicting fixations even when observers “free view” scenes without specific instructions 24. 

It seems that observers generate their own, idiosyncratic tasks, allowing other guiding forces 

to come into play. It is worth noting that salience models work better if they are not based 

purely on local features but acknowledge the structure of objects in the field of view 25. For 

instance, while the most salient spot in an image might be the edge between the cat’s tail and 

the white sheet on the bed, fixations are more likely to be directed to middle of the cat 26,27.

Top-down Feature Guidance

Returning to Figure 1, if you search for Ws with yellow elements, you can guide your 

attention to yellow items and subsequently determine if they are Ws or Ms 7. This is feature 

guidance, sometimes referred to as feature-based attention 28. Importantly, it is possible to 

guide attention to more than one feature at a time. Thus, search for a big, red, vertical 

item can benefit from our knowledge of its color, size, and orientation 29. Following the 

TD heterogeneity rule, search efficiency is dependent on the number of features shared by 

targets and distractors 29, and observers appear to be able to guide to multiple target features 

simultaneously 30. This finding raises the attractive possibility that search for an arbitrary 

object among other arbitrary objects would be quite efficient because objects would be 

represented sparsely in a high-dimensional space. Such sparse coding has been invoked to 

explain object recognition 31,32. However, search for arbitrary objects turns out not to be 

particularly efficient 11,33. By itself, guidance to multiple features does not appear to be an 

adequate account of how we search for objects in the real world (see the section on scene 

guidance, below).

What are the guiding attributes?

Feature guidance bears some metaphorical similarity to your favorite computer search 

engine. You enter some terms into the search box and an ordered list of places to attend 

is returned. A major difference between internet search engines and the human visual 

search engine is that human search uses only a very small vocabulary of search terms (i.e., 

features). The idea that there might be a limited set of features that could be appreciated 

“preattentively” 34 was at the heart of Treisman’s “Feature Integration Theory” 35. She 

predicted that targets defined by unique features would pop-out of displays. Subsequent 

theorists modified this proposal to suggest that features could guide the deployment of 

attention 7 36.

There are probably only a couple dozen attributes that can guide attention. The visual system 

can detect and identify a vast number of stimuli, but it cannot use arbitrary properties to 

guide attention the way that Google or Bing can use arbitrary search terms. A list of guiding 

attributes is found in Table 1. This article does not list all of the citations that support each 

entry. Many of these can be found in older versions of the list 37,38. Recent changes to the 

list are marked in color in Table 1 and citations are given for those.

Attributes like color are deemed to be “undoubted” because multiple experiments from 

multiple labs attest to their ability to guide attention. “Probable” feature dimensions may be 
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merely probable because we are not sure how to define the feature. Shape is the most notable 

entry here. It seems quite clear that something about shape guides attention 49. It is less 

clear exactly what that might be, though the success of deep learning algorithms in enabling 

computers to classify objects may open up new vistas for understanding human search for 

shape 50.

The attributes described as “possible” await more research. Often these attributes only have 

a single paper supporting their entry on the list, as in the case of numerosity: Can you direct 

attention to the pile with “more” elements in it, once you eliminate size, density, and other 

confounding visual factors? Perhaps 51, but it would be good to have converging evidence. 

Search for the magnitude of a digit (e.g. “find the highest number”) is not guided by the 

semantic meaning of the digits but by their visual properties 52

The list of attributes that do not guide attention is, of course, potentially infinite. Table 1 

lists a few plausible candidates that have been tested and found wanting. For example, there 

has been considerable interest recently in what could be called “evolutionarily motivated” 

candidates for guidance. What would enhance our survival if we could find it efficiently? 

Looking at a set of moving dots on a computer screen, we can perceive that one is “chasing” 

another 53. However, this aspect of animacy does not appear to be a guiding attribute 47. Nor 

does “threat” (defined by association with electric shock) seem to guide search 48.

Some caution is needed here because a failure to guide is a negative finding and it is always 

possible that, were the experiment done correctly, the attribute might guide after all. Thus, 

early research 54 found that binocular rivalry and eye-of-origin information did not guide 

attention, but more recent work 55,56 suggests that it may be possible to guide attention to 

interocular conflict, and our own newer data 57 indicates that rivalry may guide attention 

if care is taken to suppress other signals that interfere with that guidance. Thus, binocular 

rivalry was listed under “doubtful cases & probable non-features” in 37, but is now listed 

under “possible guiding attributes” in Table 1.

Faces remain a problematic candidate for feature status, with a substantial literature yielding 

conflicting results and conclusions. Faces are quite easy to find among other objects 58,59 

but there is dispute about whether the guiding feature is “face-ness” or some simpler 

stimulus attribute 60,61. A useful review by Frischen et al. 62 argues that “preattentive search 

processes are sensitive to and influenced by facial expressions of emotion”, but this is one 

of the cases where it is hard to reject the hypothesis that the proposed feature is modulating 

the processing of attended items, rather than guiding the selection of which items to attend. 

Suppose that, once attended, it takes 10 msec longer to disengage attention from an angry 

face than from a neutral face. The result would be that search would go faster (10 msec/item 

faster) when the distractors were neutral than when they were angry. Consequently, an 

angry target among neutral distractors would be found more efficiently than a neutral face 

among angry. Evidence for guidance by emotion would be stronger if the more efficient 

emotion searches were closer to pop-out than to classic inefficient, unguided searches, e.g., 

T among Ls,63. Typically, this is not the case. For example, Gerritsen et al 64 report that 

“Visual search is not blind to emotion” but, in a representative finding, search for hostile 
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faces produced a slope of 64 msec/item, which is quite inefficient, even if somewhat more 

efficient than the 82 msec/item for peaceful target faces (p1054).

There are stimulus properties that, while they may not be guiding attributes in their 

own right, do modulate the effectiveness of other attributes. For example, apparent depth 

modulates apparent size, and search is guided by that apparent size 65. Finally, there 

are properties of the display that influence the deployment of attention. These could be 

considered aspects of “scene guidance” (see the next major section, below). For example, 

attention tends to be attracted to the center of gravity in a display 66. Elements like arrows 

direct attention even if they, themselves do not pop-out 67. As discussed by Rensink 68, these 

and related factors can inform graphic design and other situations where the creator of an 

images wants to control how the observer consumes that image.

There have been some general challenges to the enterprise of defining specific features, 

notably the hypothesis that many of the effects attributed to the presence or absence 

of basic features are actually produced by crowding in the periphery 3. For example, is 

efficient search for cubes lit from one side among cubes lit from another side evidence for 

preattentive processing of 3D shape and lighting 69, or merely a by-product of the way these 

stimuli are represented in peripheral vision 41? Resolution of this issue requires a set of 

visual search experiments with stimuli that are “uncrowded”. This probably means using low 

set sizes; for example, see the evidence that material type is not a guiding attribute 70.

A different challenge to the preattentive feature enterprise is the possibility that too many 

discrete features are proposed. Perhaps many specific features form a continuum of guidance 

by a single, more broadly defined attribute. For instance, the cues to the 3D layout of the 

scene include stereopsis, shading, linear perspective and more. These might be part of a 

single attribute describing the 3D disposition of an object. Motion, onsets, and flicker might 

be part of a general dynamic change property 71. Most significantly, we might combine 

the spatial features of line termination, closure, topological status, orientation, and so forth 

into a single shape attribute with properties defined by the appropriate layer of the right 

convolutional neural net (CNN). Such nets have shown themselves capable of categorizing 

objects, so one could imagine a preattentive CNN guiding attention to objects as well 72. 

At this writing, such an idea remains a promissory note. Regardless of how powerful CNNs 

may become, humans cannot guide attention to entirely arbitrary/specific properties in order 

to find particular types of object 73 and it is unknown if some intermediate representation in 

a CNN could capture the properties of the human search engine. If it did, we might well find 

that such a layer represented a space with dimensions corresponding to attributes like size, 

orientation, line termination, vernier offset, and so forth, but this remains to be seen.

Guidance by scene properties

While the field of visual search has largely been built on search for targets in arbitrary 

2D arrays of items, most real world search takes place in structured scenes, and this 

structure provides a source of guidance. To illustrate, try search for any humans in Figure 

4. Depending on the resolution of the image as you are viewing it, you may or may not be 

able to see legs poking out from behind the roses by the gate. Regardless, what should be 
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clear is that the places you looked were strongly constrained. Biederman, Mezzanotte, and 

Rabinowitz 74 suggested a distinction between semantic and syntactic guidance.

Syntactic guidance has to do with physical constraints. You don’t look for people on the 

front surface of the wall or in the sky because people typically need to be supported against 

gravity. Semantic guidance refers to the meaning of the scene. You don’t look for people 

on the top of the wall, not because they could not be there but because they are unlikely 

to be there given your understanding of the scene, whereas you might scrutinize the bench. 

Scene guidance would be quite different (and less constrained) if the target were a bird. The 

use of the terms “semantic” and “syntactic” should not be seen as tying scene processing 

too closely to linguistic processing, nor should the two categories be seen as neatly non-

overlapping 75 76. Nevertheless, the distinction between syntactic and semantic factors, as 

roughly defined here, can be observed in electrophysiological recordings: scenes showing 

semantic violations (e.g., a bar of soap sitting next to the computer on the desk) produce 

different neural signatures than scenes showing syntactic violations (e.g., a computer mouse 

on top of the laptop screen) 77. While salience may have some influence in this task 78, 

it does not appear to be the major force guiding attention here 24,79. But note that feature 

guidance and scene guidance work together. People certainly could be on the lawn, but you 

do not scrutinize the empty lawn in Figure 4 because it lacks the correct target features.

Extending the study of guidance from controlled arrays of distinct items to structured scenes 

poses some methodological challenges. For example, how do we define the set size of a 

scene? Is “rose bush” an item in Figure 4, or does each bloom count as an item? In bridging 

between the world of artificial arrays of items and scenes, perhaps the best we can do is 

to talk about the “effective set size” 80 10, the number of items/locations that are treated as 

candidate targets in a scene give a specific task. If you are looking for the biggest flower, 

each rose bloom is part of the effective set. If you are looking for a human, those blooms are 

not part of the set. While any estimate of effective set size is imperfect, it is a very useful 

idea and it is clear that, for most tasks, the effective set size will be much smaller than the set 

of all possible items 11.

Preview methods have been very useful in examining the mechanisms of scene search 
81. A scene is flashed for a fraction of a second and then the observer searches for a 

target. The primary data are often eye tracking records. Often, these experiments involve 

searching while the observer’s view of the scene is restricted to a small region around the 

point of fixation (“gaze-contingent” displays). Very brief exposures (50-75 msec) can guide 

deployment of the eyes once search begins 82. A preview of the specific scene is much more 

useful than a preview of another scene of the same category, though the preview scene does 

not need to be the same size as the search stimulus 81. Importantly, the preview need not 

contain the target in order to be effective 83. Search appears to be more strongly guided by 

a relatively specific scene ‘gist’ 80 84, an initial understanding of the scene that does not 

rely on recognizing specific objects 85. The gist includes both syntactic (e.g., spatial layout) 

and semantic information, and this combination can provide powerful search guidance. 

Knowledge about the target provides an independent source of guidance 86,87. These sources 

of information provide useful ‘priors’ on where targets might be (“If there is a vase present, 
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it’s more likely to be on a table than in the sink”), that are more powerful than memory for 

where a target might have been seen 88 89,90 in terms of guiding search.

Preview effects may be fairly limited in search of real scenes. If the observer searches 

a fully visible scene rather than being limited to a gaze-contingent window, guidance by 

the preview is limited to the first couple of fixations 91. Once search begins, guidance 

is presumably updated based on the real scene, rendering the preview obsolete. In gaze-

contingent search, the effects last longer because this updating cannot occur. This updating 

can be seen in the work of Hwang et al. 76, where, in the course of normal search, the 

semantic content of the current fixation in a scene influences the target of the next fixation.

Modulation of search by prior history

In this section, we summarize evidence showing that the prior history of the observer, 

especially the prior history of search, modulates the guidance of attention. We can organize 

these effects by their time scale, from within a trial (on the order of 100s of ms) to lifetime 

learning (on the order of years).

A number of studies have demonstrated the preview benefit: when half of the search array is 

presented a few hundred msec before the rest of the array, the effective set size is reduced, 

either because attention is guided away from the old “marked” items (visual marking 92) 

and/or toward the new items (onset prioritization 93).

On a slightly longer timescale, priming phenomena are observed from trial to trial within 

an experiment, and can be observed over seconds to weeks. The basic example is “priming 

of pop-out” 94, in which an observer might be asked to report the shape of the one item 

of unique color in a display. If that item is the one red shape among green on one trial, 

responses will be faster if the next trial repeats red among green as compared to a switch to 

green among red; though the search in both cases will be a highly efficient, color pop-out 

search. More priming of pop-out is found if the task is harder 95. Note that it is neither 

the response nor the reporting feature which is repeated in priming of pop-out, but the 

target-defining or selection feature.

More generally, seeing the features of the target makes search faster than reading a word 

cue describing the target, even for overlearned targets. This priming by target features takes 

about 200 msec to develop 96. Priming by the features of a prior stimulus can be entirely 

incidental; simply repeating the target from trial to trial is sufficient 97. More than one 

feature can be primed at the same time 97,98 and both target and distractor features can be 

primed 97,99. Moreover, it is not just that observers are more ready to report targets with the 

primed feature; priming actually boosts sensitivity (i.e., d’) 100. Such priming can last for at 

least a week 101.

Observers can also incidentally learn information over the course of an experiment that 

can guide search. In contextual cueing 102, a subset of the displays are repeated across 

several blocks of trials. While observers do not notice this repetition, RTs are faster for 

repeated displays than for novel, unrepeated displays 103. The contextual cueing effect is 

typically interpreted as an abstract form of scene guidance: just as you learn that, in your 
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friend’s kitchen, the toaster is on the counter next to the coffeemaker, you learn that, in this 

configuration of rotated Ls, the T is in the bottom left corner. However, evidence for this 

interpretation is mixed. RT x set size slopes are reduced for repeated displays 102 in some 

experiments, but not in others 104. Contextual cueing effects can also be observed in cases 

such as pop-out search and 105, attentionally-cued search, 106, where guidance is already 

nearly perfect. Kunar et al. 104 suggested that contextual cueing reflects response facilitation, 

rather than guidance. Again, the evidence is mixed. There is a shift towards a more liberal 

response criterion for repeated displays 107, but this is not correlated with the size of the 

contextual cueing RT effect. In pop-out search, sensitivity to the target improves for repeated 

displays without an effect on decision criterion 105. It seems likely that observed contextual 

cueing effects reflect a combination of guidance effects and response facilitation, the mix 

depending on the specifics of the task. Oculomotor studies show that the context is often 

not retrieved and available to guide attention until a search has been underway for several 

fixations 108,109. Thus, the more efficient the search, the greater the likelihood that the target 

will be found before the context can be retrieved. Indeed, in simple letter displays, search 

does not become more efficient even when the same display is repeated several hundred 

times 110, presumably because searching de novo is always faster than waiting for context to 

become available. Once the task becomes more complex (e.g., searching for that toaster) 111, 

it becomes worthwhile to let memory guide search 112 113.

Over years and decades, we become intimately familiar with, for example, the characters 

of our own written language. There is a long-running debate about whether familiarity 

(or, conversely, novelty) might be a basic guiding attribute. Much of this work has been 

conducted with overlearned categories like letters. While the topic is not settled, semantic 

categories like “letter” probably do not guide attention 114,115, though mirror-reversed letters 

may stand out against standard letters 116 117. Instead, items made familiar in LTM can 

modulate search 42,118 though there are limits on the effects of familiarity in search 119 120.

Modulation of search by the value of items

In the past few years, there has been increasing interest in the effects of reward or value on 

search. Value proves to be a strong modulator of guidance. For instance, if observers are 

rewarded more highly for red items than for green, they will subsequently guide attention 

toward red, even if this is irrelevant to the task 121. Note, color is the guiding feature; 

value modulates its effectiveness. The learned associations of value do not need to be task 

relevant or salient in order to have their effects 122 and learning can be very persistent with 

value-driven effects being seen half a year after acquisition 123. Indeed, the effects of value 

may be driving some of the long-term familiarity effects described in the previous paragraph 
42.

Visual search is mostly effortless. Unless we are scrutinizing aerial photographs for hints 

to North Korea’s missile program, or hunting for signs of cancer in a chest radiograph, 

we typically find what we are looking for in seconds or less. This remarkable ability is 

the result of attentional guidance mechanisms. While thirty-five years or so of research has 

given us a good grasp of the mechanisms of bottom-up salience, top-down feature-driven 

guidance and how those factors combine to guide attention 124,125, we are just beginning 
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to understand how attention is guided by the structure of scenes and the sum of our past 

experiences. Future challenges for the field will include understanding how discrete features 

might fit together in a continuum of guidance and extending our theoretical frameworks 

from two-dimensional scenes to immersive, dynamic, three-dimensional environments.
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Figure 1: 
On first glimpse, you know something about the distribution of colors and shapes but not 

how those colors and shapes are bound to each other. Find ‘M’s that are red and yellow.
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Figure 2: 
The basic visual search paradigm. A target (here a ‘T‘) is presented amidst a variable 

number of distractors. Search ‘efficiency’ can be indexed by the slope of the function 

relating reaction time (RT) to the visual set size. If the target in 2B is a red T, the slope for 

2B will be half of that for 2A because attention can be limited to just half of the items in 2B.
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Figure 3: 
Which items ‘pop-out’ of this display, and why?
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Figure 4: 
Scene Guidance: Where is attention guided if you are looking for humans? What if the target 

was a bird?
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Table 1:

The guiding attributes for feature search

Undoubted Guiding Attributes

Color Motion Orientation Size (incl. length, spatial freq., 
and apparent size 39)

Probable Guiding Attributes

Luminance onset (flicker) but see 
40

Luminance polarity Vernier offset Stereoscopic depth & tilt

Pictorial depth cues But see 41. Shape Line termination Closure

Curvature Topological status

Possible Guiding Attributes

Lighting direction (shading) Expansion / Looming Number Glossiness (luster)

Aspect ratio eye of origin / binocular rivalry

Doubtful cases

Novelty Letter Identity Alphanumeric 
Category

Familiarity – over-learned 
sets, in general 42

Probably Not Guiding Attributes

Intersection Optic flow Color change 3-D volumes (eg. geons)

Luminosity Material type Scene Category Duration

Stare-in-crowd 43,44 Biological motion Your name Threat

Semantic Category (Animal, 
artifact, etc)

Blur 45 Visual rhythm 46 Animacy/Chasing 47

Threat 48

Faces are a complicated issue

Faces among other objects Familiar Faces Emotional faces Schematic Faces

Factors that modulate search

Cast shadows Amodal Completion Apparent Depth
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