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Abstract

Ferroptosis is a cell death form that has been reported to be involved in the progression of

gastric cancer (GC). However, the underlying mechanism of ferroptosis in GC still needs to

be further explored. This study conducted a survey regarding the biological functions of fer-

roptosis-related gene AKR1C2 in GC. Multiple bioinformatic platforms were applied to indi-

cate that the expression level of AKR1C2 was downregulated in GC tissues, which

displayed good prognostic value. Clinical statistics proved that AKR1C2 expression was

correlated with several tumor characteristics of GC patients, such as characteristics of N-

stage tumor or residual tumor. Additionally, LinkedOmics was employed to explore the co-

expression network and molecular pathways of AKR1C2 in GC. Eventually, AKR1C2 was

found to be involved in several immune-related signatures, such as immunostimulators,

immunoinhibitors, chemokines and chemokine receptors. To sum up, these results may pro-

vide a novel insight into the significance and biological functions of ferroptosis-related gene

AKR1C2 in GC tumorigenesis.

Introduction

Gastric cancer (GC), as one of the most common malignant tumors in the world, ranks the

fifth most diagnosed cancer worldwide [1]. Nowadays, several therapeutic strategies have been

reported to be effective in the treatment of GC patients, including surgical treatment, chemo-

therapy, and immunotherapy [2]. However, the survival rate of GC is still low. Therefore, it is

high time that we should explore a new biomarker for predicting the prognosis of GC.

Ferroptosis is a regulated cell death form that is strongly related to the accumulation of fer-

rous iron and the peroxidation of lipid, and it ends up with mitochondrial dysfunction and
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toxic peroxidation of lipid [3]. Ferroptosis-related treatment could be a promising therapeutic

strategy for cancer cells [4]. Emerging studies reported that ferroptosis plays a significant role

in eliminating cancer cells. A study identified that P53RRA-G3BP1 could be a new mechanism

of promoting the ferroptosis of lung adenocarcinoma [5]. Furthermore, the combination of

ferroptosis induction with anti-PDL1 therapy may have synergistic effects on antitumor activi-

ties [6]. Additionally, the effects of radiation treatment may be partially correlated with ferrop-

tosis. However, the detailed mechanism of ferroptosis in GC should be further explored and

verified.

The aldo-keto reductases family 1 member C2 (AKR1C2) has been reported to cause the

mutual translation between sex hormones and associated inactive metabolites. As a member of

AKR1C subfamily, the substrate specificity of AKR1C2 is quite different from other AKR1C

members [7]. Recently, the significance of AKR1C2 in malignant tumors has been explored. A

study demonstrated that the higher expression level of AKR1C2 is correlated with better prognosis

in patients with thyroid carcinoma [8]. AKR1C2 combined with SOCS1 could exert synergistic

effects on predicting the prognosis in patients with acute myeloid leukemia (AML) [9]. Another

study identified that the upregulation of AKR1C2 is strongly correlated with the pathological

stage and has worse prognosis in patients with esophageal squamous cell carcinoma (ESCC) [10].

However, few studies have reported the correlation between AKR1C2 and GC patients.

This study will further explore and elucidate the underlying mechanism of AKR1C2 in GC.

By using some bioinformatics tools, we found that downregulated AKR1C2 could be a prog-

nostic prediction tool of GC. Additionally, this study investigated the correlation between clin-

ical characteristic parameters and AKR1C2 expression. Then, gene-set enrichment analysis

(GSEA) was performed to reveal the biological functions and signaling pathway. To further

explore the vital roles of AKR1C2 in immune regulation, we evaluated the correlation between

AKR1C2 and tumor-infiltrating immune cells (TIICs) of GC. The above investigations uncov-

ered that AKR1C2 may be taken as a potential predictive prognostic biomarker and it plays a

vital role in immunotherapy of GC patients.

Materials and methods

Data collection

We searched three GC datasets from Gene Expression Omnibus (GEO) database [11], includ-

ing GSE26942 [12], GSE112369 [13] and GSE33651 [14] (Table 1). Additionally, the differen-

tial expressed genes (DEGs) between the normal gastric tissues and GC tissues were analyzed.

The cut-off value was set up as follows: p-value < 0.05 and | logFC|� 0.8. Later, Venn analysis

was applied to investigate the co-differentially expressed genes (co-DEGs) between ferropto-

sis-related gene dataset and the above three GEO datasets. As a public database, TCGA data-

base has provided the clinical information concerning 33 types of cancer [15]. Both the gene

Table 1. The characteristics of three GEO datasets about gene expression profiling by array.

GEOa datasets Platform Sample size DEGsb References

cancer normal

GSE26942 GPL6947 202 12 105 up-regulated genes and 588 down-regulated genes [12]

GSE112369 GPL15207 36 8 710 up-regulated genes and 1140 down-regulated genes [13]

GSE33651 GPL2895 40 12 959 up-regulated genes and 143 down-regulated genes [14]

a GEO, Gene Expression Omnibus datasets.
b DEGs, differentially expressed genes.

https://doi.org/10.1371/journal.pone.0280989.t001
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expression profiles and clinical information of GC patients were retrieved from TCGA data-

base, including 32 adjacent-tumor samples and 375 GC samples.

Bioinformatics analysis

Kaplan-Meier plotter was adopted to analyze the prediction value of prognosis of co-DEGs in GC

patients. The overall survival (OS), first-progression (FP), post progression survival (PPS) of co-

DEGs were downloaded from Kaplan-Meier plotter [16]. Then, we utilized TNMplot [17],

GEPIA2.0 [18] combined with the Cancer Genome Atlas (TCGA) to further explore the AKR1C2

gene expression in normal and tumor groups. The TNMplot database could be used to analyze

differential gene expression in tumor, normal and metastatic tissues, and it includes RNA-

sequence data from TCGA database and gene chip data from GEO database. Then, the correlation

between the expression level of AKR1C2 and clinical characteristic parameters, such as T stage,

pathologic stage, gender and age, were also identified. Furthermore, we applied LinkedOmics

algorithm [19] to analyze the correlation between co-expressed genes and AKR1C2. We down-

loaded the co-expressed molecules of AKR1C2 in GC samples from cBioPortal database [20] (S1

Table). After that, we used Xiantao tool (https://www.xiantao.love/products) to analyze the Gene

ontology (GO) enrichment of AKR1C2 co-expressed genes. Furthermore, we have utilized the

STRING [21] to analyze the protein-protein network of AKR1C2. Next, the single-sample GSEA

(ssGSEA) [22] was conducted to explore the correlation between AKR1C2 level and 24 types of

TIICs in GC. Moreover, the TISIDB [23] and TIMER [24] were employed to further verify the

correlation between immune infiltration cells and AKR1C2. Finally, we explored the correlation

between AKR1C2 and the immune checkpoints, such as CTLA4 and VSIR.

Immunohistochemical (IHC) analysis

The GC tissues and normal stomach tissues were collected from the Department of Pathology,

Xiangya Hospital, Central South University. IHC technique was used to explore the expression

levels of AKR1C2 and VSIR in the tumor group and normal group. The personal data of sub-

jects (such as date of birth, gender, race, ethnicity, health information, etc.) were replaced by

coding to protect their privacy and rights. The appropriateness of the design of the study was

approved by the Ethical Committee of Xiangya Hospital, Central South University, with the

approval number of 202201019.

Statistical analysis

We utilized SPSS 19.0 software to conduct the statistical analysis. P-value<0.05 was considered

to be statistically significant. The survival analysis was developed by using Kaplan-Meier analy-

sis. The expression levels of GC group and normal group were evaluated with t-test. The corre-

lation between AKR1C2 expression and clinical characteristics was analyzed by using R

package and logistic regression.

Results

Differentially expressed genes between normal and GC groups

We searched the GEO database and downloaded three datasets from it. The p value was set as

follows: p-value<0.05 and | logFC|� 0.8, which was used to identify the differentially

expressed genes (DEGs) between the GC group and normal tissue group. There are 105 up-

regulated genes and 588 down-regulated genes in GSE26942, 710 up-regulated genes and

1,140 down-regulated genes in GSE112369, and 959 up-regulated genes and 143 down-regu-

lated genes in GSE33651 (S2 Table).
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Moreover, a recent study found that ferroptosis may participate in the development and

progression of certain types of tumors [25]. Therefore, it is necessary for us to further explore

whether ferroptosis plays a significant role in the process of GC patients. Then, Venn analysis

was established to identify co-DEGs between the ferroptosis-related gene dataset and the three

GEO datasets. The plot shows that two down-regulated genes AKR1C2 and MUC1 have

potential significance in GC patients (Fig 1). However, no up-regulated co-DEGs exist

between the three GEO datasets and ferroptosis-related gene dataset (S1 Fig).

AKR1C2 offering good prognosis in patients with gastric cancer

Kaplan-Meier plotter was employed to identify the correlation between the expression levels of

AKR1C2 and MUC1 and the prognosis of GC patients, including OS, FP and PPS. The results

demonstrated that higher expression level of AKR1C2 was correlated to better OS (HR = 0.7,

95% CI = 0.58–0.84, p = 0.00015), FP (HR = 0.67, 95% CI = 0.54–0.84, p = 0.00034) and PPS

(HR = 0.65, 95% CI = 0.52–0.82, p = 2e-04) in all GC patients (Fig 2A–2C). Inversely, lower

expression level of MUC1 was correlated to better OS (HR = 1.62, 95% CI = 1.35–1.94,

p = 2.4e-07), FP (HR = 1.61, 95% CI = 1.31–1.99, p = 6.9e-06) and PPS (HR = 2.08, 95%

CI = 1.65–2.62, p = 3.1e-10) in all GC patients (Fig 2D–2F). These results indicated that

AKR1C2 expression may predicate a good prognosis in GC patients.

AKR1C2’s lower expression in GC group than normal group and the

correlation between AKR1C2 and clinical characteristics

The three GC datasets (GSE26942, GSE112369 and GSE33651) were downloaded from the

GEO database. The diagraphs demonstrated that AKR1C2 was expressed much more highly in

normal tissues than in GC groups (p<0.05) (Fig 3A–3C). Furthermore, the pictures

Fig 1. Venn analysis depicted the downregulated co-DEGs between the ferroptosis related gene dataset and the

three GEO datasets. There are two downregulated genes in the four datasets, named as AKR1C2 and MUC1.

https://doi.org/10.1371/journal.pone.0280989.g001
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downloaded from the TNMplot database showed that AKR1C2 expression was higher in nor-

mal tissues compared to GC tissues from gene chip data (p = 1.09e-32) and RNA-seq data

(p = 2.57e-03) (Fig 3D and 3E). The GEPIA2.0 database identified that AKR1C2 was expressed

highly in normal group (Fig 3F). Additionally, the statistics obtained from TCGA database

further verified that the expression levels of AKR1C2 in GC tissues and the normal tissues

exhibited a difference (p = 1.1e-03) (Fig 3G).

Next, we investigated the correlation between AKR1C2 expression and clinical characteristic

parameters in GC patients via TCGA database. We found that the mRNA expression level of

AKR1C2 was correlated with N stage tumor (p = 0.014) and residual tumor (p = 0.025) (Table 2).

AKR1C2 co-expression network in gastric cancer

LinkedOmics was employed to explore the co-expression gene and biological functions of

AKR1C2 in GC patients. As shown in the picture, red dots represent the genes positively asso-

ciated with AKR1C2 and green dots represent the genes negatively associated with AKR1C2

(p<0.05) (Fig 4A). In addition, the heatmap showed that 29 genes were positively correlated

with AKR1C2 (Fig 4B). S3 Table illustrated the top 25 genes that were positively correlated

with AKR1C2. There are 39 genes that were negatively correlated with AKR1C2 (Fig 4C). Fur-

thermore, S4 Table listed the top 20 genes that were negatively correlated with AKR1C2. In

addition, among the top 25 positive-correlated genes, AKR1C2 was reported to have signifi-

cant results in SERPINE1, STAT5A and TTF-1. Among the 20 negatively-correlated genes,

AKR1C2 was found to have significant results in ERCC1(Fig 4D). The GO enrichment analy-

sis illustrated that the co-expressed genes of AKR1C2 mainly participated in several immune-

related pathways, such as chemokine-mediated signaling pathway and somatic diversification

Fig 2. Kaplan-Meier Plotter depicting the prognostic values of AKR1C2 and MUC1 in gastric cancer. (A-C) The prognostic values of

AKR1C2 in GC patients. (D-F) The prognostic values of MUC1 in GC patients. OS: overall survival, FP: first-progression, PPS: post

progression survival.

https://doi.org/10.1371/journal.pone.0280989.g002
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Fig 3. The expression levels of AKR1C2 in GC patients. (A-C) In the three GEO datasets, the expression level of AKR1C2

was lower in GC tissues than normal gastric tissues. (D-E) The TNMplot database illustrating the expression level of AKR1C2

was lower in GC tissues than normal gastric tissues from gene chip data and RNA-seq data. (F-G) The GEPIA 2.0 database and

TCGA database depicting AKR1C2 expressed differently in GC group and non-cancerous group. �P< 0.05.

https://doi.org/10.1371/journal.pone.0280989.g003

Table 2. The correlation between the expression of AKR1C2 and clinical characteristic parameters in GC patients

from TCGA.

Characteristics Total(N) Odds Ratio (OR) P value

T stage (T3&T4 vs. T1&T2) 367 0.855 (0.538–1.356) 0.506

N stage (N2&N3 vs. N0&N1) 357 1.702 (1.115–2.610) 0.014

M stage (M1 vs. M0) 355 1.756 (0.769–4.256) 0.191

Pathologic stage (Stage III&Stage IV vs. Stage I&Stage II) 352 1.312 (0.863–1.999) 0.205

Gender (Male vs. Female) 375 0.877 (0.574–1.338) 0.543

Age (>65 vs. < = 65) 371 0.907 (0.602–1.367) 0.642

Residual tumor (R2 vs. R0&R1) 329 4.306 (1.356–19.045) 0.025

Reflux history (Yes vs. No) 214 1.264 (0.630–2.556) 0.510

Barretts esophagus (Yes vs. No) 208 2.063 (0.706–6.830) 0.201

H pylori infection (Yes vs. No) 163 0.747 (0.271–1.999) 0.561

Histologic grade (G3 vs. G1&G2) 366 1.023 (0.673–1.555) 0.915

https://doi.org/10.1371/journal.pone.0280989.t002
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of immune receptors, and ferroptosis-related pathways, such as response to oxidative stress

and fatty acid metabolic process (Fig 4E and 4F). In addition, the STRING database indicated

the important association between AKR1C2 and several malignant disease-associated mole-

cules, such as DHDH, SRD5A1 and SRD5A2 (Fig 4G).

Fig 4. The co-expressed genes of AKR1C2 in GC. (A) The LinkedOmics portraying the AKR1C2-related genes in GC. (B) The heatmap

indicated the top 29 genes that possessing positive correlation with AKR1C2 in GC. (C) The heatmap indicated the top 39 genes that

possessing negative correlation with AKR1C2 in GC. (D) Survival heatmaps illustrating the top 50 genes possessing positive and negative

relationship with AKR1C2 in GC. (E-F) GO enrichment analysis of AKR1C2 co-expressed molecules in GC patients. (G) The protein-

protein network of AKR1C2 via STRING database.

https://doi.org/10.1371/journal.pone.0280989.g004
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Correlation between AKR1C2 and immune regulation

In order to investigate the relationship between the expression level of AKR1C2 and immune

infiltration, we applied the ssGSEA with Spearman correlation. As shown in Fig 5A, AKR1C2

expression was positively correlated with the infiltration of Mast cells, T helper type 17 (Th17)

cells, Eosinophils, B cells and T follicular helper (Tfh) cells (p< 0.05). AKR1C2 expression was

found to have negative correlation with infiltration of T helper type 2 (Th2) cells, NK

CD56dim cells, activated DC (aDC), Treg, cytotoxic cells T helper type 1 (Th1) cells and T

cells (p< 0.05). At the same time, by using TISIDB database, we further identified that

AKR1C2 expression was positively correlated with Th17 cells infiltration and negatively corre-

lated with infiltration of Th2 cells and Treg (Fig 5B). Also, the plot downloaded from TIMER

database reflected that the expression level of AKR1C2 had positive correlation with B cells

(Fig 5C). Moreover, through exploring the expression correlation between AKR1C2 and

immune checkpoints, we found that AKR1C2 expression had positive correlation with VSIR

(Fig 5D and 5E). In addition, IHC analysis was employed to explore the expression levels of

AKR1C2 and VSIR in GC tissues and normal gastric tissues. Fig 6A portrayed the hematoxy-

lin-eosin (HE) data of the normal and malignant gastric tissues. AKR1C2 and VSIR were both

down-regulated in GC tissues (Fig 6B and 6C).

On the other hand, the correlation between AKR1C2 and immune regulation were further

explored via some immune signatures of TISIDB database, like immunostimulators, immu-

noinhibitors, chemokines and receptors. The diagram indicated the correlation between

Fig 5. The link between AKR1C2 expression and immune infiltration of GC. (A) The correlation between AKR1C2 expression and 24 types of immune

cells in TCGA database. (B) The scatterplot depicting the correlation between AKR1C2 and tumor-infiltrating lymphocytes (TILs). (C) The TIMER

database showing the relationship between AKR1C2 and B cell. (D-E) The heatmap and scatterplot showing the correlation between the AKR1C2 and

VSIR.

https://doi.org/10.1371/journal.pone.0280989.g005
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AKR1C2 expression and immunostimulators of GC patients (S2A Fig). The top four positively

correlated immunostimulators were HHLA2 (Spearman r = 0.296, p = 9.31e-10), C10orf54

(Spearman r = 0.229, p = 2.51e-06), RAET1E (Spearman r = 0.187, p = 0.000132) and

TNFRSF13B (Spearman r = 0.119, p = 0.0157) (S2B Fig). The top four negatively AKR1C2-re-

lated immunoinhibitors included CTLA4 (Spearman r = −0.225, p = 1.6e-07), LAG3 (Spear-

man r = −0.223, p = 4.88e-06), CD274 (Spearman r = −0.217, p = 8.33e-06) and IDO1

(Spearman r = −0.203, p = 3.3e-05) (S2C and S2D Fig). In addition, S3A Fig demonstrated

the correlation between AKR1C2 expression and chemokines. The top positively correlated

molecules were CXCL14 (Spearman r = 0.302, p = 4.1e-10), CCL28 (Spearman r = 0.295,

p = 1.01e-09), CXCL17 (Spearman r = 0.234, p = 1.52e-06) and CCL14 (Spearman r = 0.201,

p = 3.96e-05) (S3B Fig). Furthermore, the correlation between AKR1C2 and receptors was

exhibited in S3C Fig. Among all the related receptors, CCR8 (Spearman r = −0.212, p = 1.41e-

Fig 6. The expression levels of AKR1C2 and VSIR in the normal gastric tissues and GC tissues. (A) The picture

showing the hematoxylin-eosin (HE) staining of the normal gastric tissues and GC tissues. (B-C) The

immunohistochemical (IHC) analysis depicting upregulated AKR1C2 and VSIR in normal tissues.

https://doi.org/10.1371/journal.pone.0280989.g006
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05), CCR1 (Spearman r = −0.16, p = 0.00111), CCR5 (Spearman r = −0.153, p = 0.00177) and

CXCR6 (Spearman r = −0.142, p = 0.00366) were receptors strongly negatively correlated with

AKR1C2 (S3D Fig). Consequently, the results indicated that AKR1C2 was involved in the

immune regulation of GC.

Discussion

We investigated the new biomarkers involved in the process of ferroptosis in GC patients by

using some bioinformatics tools. Through identifying the co-DEGs of ferroptosis-related gene

dataset and three GEO datasets, we found two down-regulated genes AKR1C2 and MUC1

after analyzing the correlation between the two down-regulated genes and the prognosis of GC

patients. The results revealed that the high expression levels of AKR1C2 were followed by a

favorable prognosis in GC. We found that AKR1C2 was expressed higher in normal group

than in GC group. Then, the plots showed that AKR1C2 participated in the progression of GC.

Furthermore, this study paid more attention on whether AKR1C2 has the potential to be a pre-

dictive biomarker of GC progression. The LinkedOmics analysis demonstrated the co-

expressed genes positively and negatively correlated with AKR1C2. Through ssGESA analysis,

the figures exhibited that AKR1C2 participated in the biological functions of GC. Finally, the

related immune analysis identified that AKR1C2 was involved in the immune regulation of

GC patients.

Ferroptosis is a cell death form that is strongly correlated with lipid peroxidation and spe-

cial modulators [26]. The cysteine metabolism and GPX4 inactivation have been proved to

play important roles in ferroptosis [27]. Recent studies showed that it takes part in the process

of some human diseases and cancers [28]. Certainly, ferroptosis is also correlated with GC pro-

gression. The clinical statistics illustrated that cancer-related fibroblasts (CAFs) induced the

secretion of exosomal miR-522, thus inhibiting ferroptosis via ALOX15 and decreasing lipid-

ROS in GC. The upregulation of fatty acid desaturase 1 (FADS1) and elongation of very long-

chain fatty acid protein 5 (ELOVL5) in mesenchymal-type GC cells were found to cause fer-

roptosis sensitization. However, in intestinal-type GC cells, they may take part in the GC cells’

resistance to ferroptosis. SCD1 was identified to be able to induce cell proliferation and anti-

ferroptosis of GC in vivo and in vitro [29]. Furthermore, ferroptosis may be initiated by MiR-

375 through SLC7A11, which then causes the decrease of stemness of GC cells. Additionally,

CDO1 is modulated by c-Myb, and the CDO1 silence can inhibit ferroptosis in GC cells.

CDO1 suppression can prevent the generation of ROS and decrease malondialdehyde [30].

Moreover, perilipin2 facilitation plays a significant role in the cell growth and apoptosis of GC

by modulating ferroptosis-related genes, such as acyl-coa synthetase long-chain family mem-

ber 3, arachidonate 15-lipoxygenase, pr/set domain 11 and importin 7 [31]. These findings

have proven that ferroptosis is vital in the progress of GC. However, the correlation of ferrop-

tosis-related genes and the GC patients’ prognosis should be further explored and verified.

This study investigated the significance of AKR1C2 in GC patients for the first time, and the

results identified that high expression of this ferroptosis-related gene was correlated with a

good prognosis.

A study indicated that AKR1C2 expression is correlated with fat distribution of human

bodies [32], and AKR1C2 plays a vital role in the process of some cancers. A study also identi-

fied that AKR1C2 could be an oncogene in esophageal squamous cell carcinoma through

mediating PI3K/AKT pathway [33]. The down-regulated expression level of AKR1C2 com-

bined with upregulated expression of SRD5A1 and SRD5A3 may lead to the high levels of

DHT either in primary or metastatic prostate cancer [34]. Meantime, AKR1C2 expression

could be elevated by curcumin therapy to give play to the antitumor effects on prostate cancer
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[7]. These findings indicated that AKR1C2 expression was highly correlated with the cancer

treatment. Similarly, we verified that the ferroptosis-related gene AKR1C2 was down-regu-

lated in GC in this study.

Several statistics have identified that TIICs exert vital effects on the progression and clinical

features of cancer [35]. In the treatment of patients with malignant tumors, immunotherapy

has become a great strategy in the clinical employment. The delivery systems of immunother-

apy should overcome barriers of minimal systemic toxicity [36]. Although the incidence rate

of GC is decreasing these years, it still ranks third of all the cancer types. The prognosis of GC

is poor for patients during late stages of cancer [37, 38]. Therefore, we should work together to

investigate new therapies concerning GC patients. Immunotherapies of cancer include check-

point inhibitors and chimeric cellular therapies [39]. A study reported that CXCL8, secreted

by the macrophages, could trigger PD-L1+ macrophages and generate anticancer activity on

GC cells [40]. CTLA4 is an immune-related receptor capable of suppressing T cell function in

various types of cancers [41]. The mutations of CTLA4 are associated with lymphopenia and

the reductions of tumor-infiltrating T cells, B cells, and natural killer (NK) cells [42]. This

study evaluated the correlation between AKR1C2 and immune infiltration. The results

revealed that AKR1C2 expression had positive correlation with Th17 cells and negative corre-

lation with Th2 cells and Treg. Moreover, AKR1C2 was significantly associated with immu-

nostimulators (HHLA2, C10orf54, RAET1E and TNFRSF13B), immunoinhibitors (CTLA4,

LAG3, CD274 and IDO1), chemokines (CXCL14, CCL28, CXCL17 and CCL14) and chemo-

kine receptors (CCR8, CCR1, CCR5 and CXCR6). Accordingly, several studies have also con-

firmed the important roles of aberrant AKR1C2 levels in the regulation of immune response

in cancer patients. Lv et al. demonstrated that AKR1C2 could be served as an immune

response-associated biomarker involving in the patients’ outcomes and immunotherapeutic

effect [43]. To sum up, these results implied that AKR1C2 expression is significantly associated

with immune response, and it has the promising potential to serve as an immunotherapeutic

target for the treatment of GC.

Several studies reported that AKR1C2 has the prognostic values in some types of cancers. A

recent study demonstrated that a signature consisting of five genes (AKR1C2, NCAN, AHCY,

FBP2 and GALNT3) has potential prognostic values in neuroblastoma [44]. AKR1C2, as a

risky gene, is correlated with the biochemical recurrence in prostate cancer patients after radi-

cal prostatectomy [43]. Moreover, down-regulated AKR1C2 was found to be correlated with

the disease progression in patients with esophageal squamous cell carcinoma [45]. However,

using Kaplan-Meier Plotter, we concluded that GC patients with down-regulated AKR1C2

favorable prognosis. These inconsistent results might be caused by the difference of genetic

background or heterogeneity in patients with different tumors.

Conclusion

In summary, this study illustrated that AKR1C2 was strongly correlated with prognosis of GC

patients. Furthermore, the expression of AKR1C2 was correlated with immunostimulators,

immunoinhibitors, chemokines and receptors. Therefore, the ferroptosis-related gene

AKR1C2 has the potential to serve as a promising prognostic predictive biomarker for GC

patients.
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the ferroptosis-related gene dataset and the three GEO datasets.

(TIF)

S2 Fig. The relationship between AKR1C2 expression and immune signatures in GC. (A)

The relationship between AKR1C2 expression and immunostimulators. (B) The top four

immunostimulators that are positively associated with AKR1C2 expression. (C) The relation-

ship between AKR1C2 expression and immunoinhibitors. (D) The top four immunoinhibitors

that are negatively associated with AKR1C2 expression.

(TIF)

S3 Fig. The relationship between AKR1C2 expression and chemokines or receptors in GC.

(A) The relationship between AKR1C2 expression and chemokines. (B) The top four chemo-

kines that are associated with AKR1C2 expression. (C) The relationship between AKR1C2

expression and receptors. (D) The top four receptors that are associated with AKR1C2 expres-

sion.

(TIF)

S1 Table. The upregulated and downregulated genes of the three datasets obtained from

GEO database.

(XLS)

S2 Table. The top 25 genes positively related with AKR1C2 in GC.

(DOCX)

S3 Table. The top 20 genes negatively related with AKR1C2 in GC.

(DOC)

S4 Table. Bioinformatic tools using to evaluate the significance of AKR1C2 in GC.

(DOCX)
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