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Abstract

Osteoarthritis (OA) is a common musculoskeletal disease that leads to deterioration of artic-

ular cartilage, joint pain, and decreased quality of life. When OA develops after a joint injury,

it is designated as post-traumatic OA (PTOA). The etiology of PTOA remains poorly under-

stood, but it is known that proteoglycan (PG) loss, cell dysfunction, and cell death in cartilage

are among the first signs of the disease. These processes, influenced by biomechanical and

inflammatory stimuli, disturb the normal cell-regulated balance between tissue synthesis

and degeneration. Previous computational mechanobiological models have not explicitly

incorporated the cell-mediated degradation mechanisms triggered by an injury that eventu-

ally can lead to tissue-level compositional changes. Here, we developed a 2-D mechanobio-

logical finite element model to predict necrosis, apoptosis following excessive production of

reactive oxygen species (ROS), and inflammatory cytokine (interleukin-1)-driven apoptosis

in cartilage explant. The resulting PG loss over 30 days was simulated. Biomechanically trig-

gered PG degeneration, associated with cell necrosis, excessive ROS production, and cell

apoptosis, was predicted to be localized near a lesion, while interleukin-1 diffusion-driven

PG degeneration was manifested more globally. Interestingly, the model also showed pro-

teolytic activity and PG biosynthesis closer to the levels of healthy tissue when pro-inflam-

matory cytokines were rapidly inhibited or cleared from the culture medium, leading to

partial recovery of PG content. The numerical predictions of cell death and PG loss were

supported by previous experimental findings. Furthermore, the simulated ROS and inflam-

mation mechanisms had longer-lasting effects (over 3 days) on the PG content than local-

ized necrosis. The mechanobiological model presented here may serve as a numerical tool

for assessing early cartilage degeneration mechanisms and the efficacy of interventions to

mitigate PTOA progression.
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Author summary

Osteoarthritis is one of the most common musculoskeletal diseases. When osteoarthritis

develops after a joint injury, it is designated as post-traumatic osteoarthritis. A defining

feature of osteoarthritis is degeneration of articular cartilage, which is partly driven by car-

tilage cells after joint injury, and further accelerated by inflammation. The degeneration

triggered by these biomechanical and biochemical mechanisms is currently irreversible.

Thus, early prevention/mitigation of disease progression is a key to avoiding PTOA. Prior

computational models have been developed to provide insights into the complex mecha-

nisms of cartilage degradation, but they rarely include cell-level cartilage degeneration

mechanisms. Here, we present a novel approach to simulate how the early post-traumatic

biomechanical and inflammatory effects on cartilage cells eventually influence tissue com-

position. Our model includes the key regulators of early post-traumatic osteoarthritis:

chondral lesions, cell death, reactive oxygen species, and inflammatory cytokines. The

model is supported by several experimental explant culture findings. Interestingly, we

found that when post-injury inflammation is mitigated, cartilage composition can par-

tially recover. We suggest that mechanobiological models including cell–tissue-level

mechanisms can serve as future tools for evaluating high-risk lesions and developing new

intervention strategies.

1. Introduction

Joint injuries trigger biological cell signaling pathways implicated in articular cartilage degen-

eration [1–3]. Cartilage has a limited innate capacity for repair, so when joint injuries cause

loss of chondrocyte (cartilage cell) viability and extracellular matrix (ECM) components, it is

often irreversible. Ultimately, these sequelae of joint injury lead to post-traumatic osteoarthri-

tis (PTOA), a disease marked by pain in the affected joint [1,2]. The mechanisms of the onset

and progression of PTOA are poorly understood, but several intertwined factors have been

identified: chondrocyte death [4,5], mitochondrial dysfunction and the subsequent overpro-

duction of reactive oxygen species (ROS) [6,7], inflammation [2], and increased proteolytic

activity triggered by excessive mechanical loading [8,9].

Mechanical loading is an important factor in chondrocyte-regulated cartilage homeostasis

[10,11]. Injurious loading may initiate ECM degeneration [1,7,12] and cause cell death includ-

ing apoptosis and necrosis [11,13–16]. This degenerative pathway may be further promoted

locally by dynamic loading, even if compressive tissue-level mechanical strains remain within

physiological limits [17]. Necrosis is an acute form of cell death caused by direct mechanical

damage to cells such as injurious single-impact loading or high local strains and/or strain rates

[13,14,18]. Necrosis is also suggested to result in the release of damage-associated molecular

patterns (DAMPs) and pro-inflammatory cytokines [19–21] and lead to ECM degeneration

caused by proteolytic enzymes [22]. In addition, near the injury site, excessive local strains

may alter cell function. For instance, associated changes in mitochondrial activity and physiol-

ogy can culminate in the excessive production of ROS [23,24]. Apoptosis, the controlled sub-

acute form of cell death, has also been associated with excessive production of ROS [15,25].

Excessive ROS production has been suggested to promote ECM degeneration via decreased

matrix biosynthesis [26], increased release of proteolytic enzymes [27,28], and inhibition of tis-

sue inhibitors of metalloproteinases (TIMPs) [26,29].
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Inflammation is another important factor in cartilage homeostasis. During the early phases

of PTOA, pro-inflammatory cytokines such as interleukin-1 (IL-1), IL-6, IL-18, and tumor

necrosis factor-α (TNF-α) originating from the synoviocytes of the synovial lining are secreted

to the synovial fluid. These molecules then diffuse and advect into cartilage causing reduced

biosynthesis and predisposing the tissue to degeneration that is counter-balanced by anti-

inflammatory cytokines (e.g., IL-4, IL-10, IL-13) [30], TIMPs [31], and growth factors (e.g.,

insulin-like growth factor-1) [2,30,32]. Prolonged inflammation may shift cartilage homeosta-

sis to the catabolic state, in which the ECM is degraded via aggrecanases (e.g., a disintegrin and

metalloproteinase with thrombospondin motifs-4,5; ADAMTS-4,5) and collagenases (e.g.,

matrix metalloproteinases-1,3,13; MMP-1,3,13) [2,30,31].

The ability to predict cartilage degeneration via both biomechanical and inflammatory

mechanisms is critical to comprehending disease progression, evaluating the efficacy of medi-

cal treatments, and developing new intervention strategies. Previous computational finite ele-

ment models have introduced promising frameworks to simulate the biomechanics- and

inflammation-driven cartilage degeneration at joint, tissue, and cell-levels in both spatial and

temporal manner [17,33–36]. Previous biomechanics-driven computational models have tar-

geted the main cartilage injury mechanisms including necrosis, apoptosis, and pro-inflamma-

tory cytokine and DAMP-signaling but without including the subsequent degeneration of

different ECM components [35,37,38]. More recently, strain/stress threshold-based modeling

approaches have been developed to predict tissue-level proteoglycan (PG) loss without explic-

itly modeling the underlying chondrocyte-regulated mechanisms [33,39]. Yet, there are no

numerical approaches that would model both trauma-related cellular mechanisms and subse-

quent changes in cartilage composition.

Thus, we aimed to develop a new 2-D cell-and-tissue-level mechanobiological model of car-

tilage degeneration [17,34,36] to localize and predict injury- and inflammation-related chon-

drocyte responses and subsequent early-stage cartilage degeneration. We did not model the

injurious loading per se, but we instead concentrated on how cell death and compositional

changes evolve in injured cartilage that is possibly experiencing locally elevated strains post-

injury. We hypothesized that i) injury-related cell necrosis and apoptosis and PG loss occur at

early time points near lesions while ii) inflammation-mediated PG loss occurs later and in

more distant intact areas. To predict tissue-level cell death and PG loss in an injured environ-

ment, we simulated three different injury-related cell mechanisms separately and simulta-

neously. In the numerical model, excessive biomechanical shear strains trigger I) necrosis and

II) apoptosis following cell damage (e.g., mitochondrial dysfunction) and ROS overproduc-

tion, while IL-1 diffusing into the tissue trigger III) inflammatory responses. We qualitatively

compared the simulated cell death and PG content distributions with stained histological carti-

lage sections from previous in vitro experiments [17,40]. To address the lack of quantitative

experimental data, we conducted a sensitivity analysis for the most relevant parameters in the

model, which were selected based on preliminary simulations (necrosis/cell damage rate, ROS

production rate, rate of spontaneous apoptosis, and decay rate of IL-1 concentration). Our

approach is a novel step towards modeling PTOA progression through chondrocyte-driven

biological mechanisms triggered by both locally excessive biomechanical loading and

inflammation.

2. Materials and methods

A computational mechanobiological model, inspired by previous models [17,34,36,37], was

developed to simulate cartilage degeneration in experimental cartilage geometry after injurious

unconfined compression to explain biological tissue-level damage via cell-driven mechanisms
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[17,40]. The cartilage PG degeneration was controlled with three different adaptive mecha-

nisms (Fig 1): shear strain-induced I) immediate necrosis of a cell population and II) ROS

overproduction and subsequent cell apoptosis (Fig 1A). These injury-related mechanisms ulti-

mately resulted in an increased aggrecanase release. The last mechanism III) is associated with

the effects of IL-1 (Fig 1B), which can cause chondrocyte apoptosis as well as upregulation of

aggrecanase production in the remaining live cells. All three mechanisms were assumed to

lead to decreased PG biosynthesis after decreased cell viability. These mechanisms were mod-

eled separately and simultaneously in a combined model (Fig 1C). We simulated the evolution

Fig 1. Computational modeling framework and comparison against biological data. Delineation of the simulated

mechanisms I-III in the proposed computational model to predict temporal and spatial changes in cell viability and

proteoglycan (PG) loss over 30 days. (A) Unconfined compression (15% axial strain, 1 Hz loading frequency) of

injured cartilage was simulated to obtain maximum shear strain distributions. Two biomechanically-induced

degradation mechanisms were triggered locally in regions experiencing abnormal maximum shear strains;

chondrocyte necrosis (mechanism I) and chondrocyte damage-associated overproduction of reactive oxygen species

(ROS) followed by cell apoptosis (mechanism II). (B) Interleukin-1 (IL-1) diffusion (1 ng/ml of IL-1 in the culture

medium) in cartilage caused spatially more distributed inflammatory stimulus which led to chondrocyte apoptosis

(mechanism III). Moreover, all the mechanisms I-III accelerated the PG degradation by decreasing the PG biosynthesis

and increasing the proteolysis of PGs. (C) Finally, the combined model was developed to simulate the synergistic

effects of mechanisms I-III. (D) Simulated cell viability and PG content were also qualitatively compared against

experimentally measured cell viability and digital densitometry measurements (an estimate of PG content).

https://doi.org/10.1371/journal.pcbi.1010337.g001
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of the viable cell and matrix PG content distributions for 12 days, while also providing extrapo-

lated insights up to 30 days. Based on the simulated results, we quantitatively analyzed near-

lesion (0.1 mm from lesion edges [17,34]) and bulk (the whole cartilage geometry) cell viability

and PG loss at several time points. The simulated results in an injured cartilage explant model

were also qualitatively compared with previous explant culture experiments (Fig 1D) [17,40].

2.1. Comparative biological data

Predictions of our theoretical computational model were qualitatively compared against histo-

logical changes observed in the previous explant culture experiments (Fig 2) [17,40]. We

emphasize that the exact experimental protocol was not modeled, thus no quantitative com-

parison is provided. We find this qualitative comparison feasible since the goal of this study

was to gain an understanding of the possible underlying mechanisms to explain experimental

findings in PTOA-like conditions.

In the experiments (Fig 2) [17,40], cylindrical articular cartilage explants (diameter 3 mm,

thickness 1 mm) were prepared from patellofemoral grooves of freshly slaughtered 1–2-week-

Fig 2. Previous experiments. In the previous experiments conducted by Orozco et al. [17] and Eskelinen et al. [40], the injured, dynamically loaded, and IL-

1-challenged cartilage samples were analyzed at several time points during 12-day cultures. Cell viability and optical density (an estimate of proteoglycan (PG) content)

were measured with fluorescence microscopy and digital densitometry, respectively. (A) At day 0, PG loss in cartilage was minor. At day 12, the results showed (B)

substantial cell death and PG loss near lesions after dynamic loading in the injured cartilage. IL-1 challenge induced cell death and PG loss also in the intact areas (C)

without and (D) with dynamic loading post-injury. Red arrows highlight locally low optical density and white arrows locally high cell death.

https://doi.org/10.1371/journal.pcbi.1010337.g002
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old calves. The explants were subjected to injurious compression (50% strain, 100%/s strain

rate) with 1) compressive dynamic loading (15% strain amplitude, 1 Hz haversine waveform, 1

hour loading periods 4 times per day), 2) IL-1-challenge (1 ng/ml), or 3) a combination of

dynamic loading and IL-1 challenge. A free-swelling control group was also included for com-

parison. Cell viability and spatial optical density [41] were assessed at several time points up to

12 days with fluorescence microscopy and digital densitometry.

The experiments [17,40] showed minor PG loss between intact and injured sample regions

on the day of injury (Fig 2A, day 0). Qualitatively, cell death was high and PG content low in

the injured and dynamically loaded group mostly near lesions (Fig 2B, day 12 vs. day 0, white

and red arrows). After injury and IL-1 treatment, PG content was noticeably low near all edges

of the cartilage plug (Fig 2C, red arrows). Dynamically loaded injured and inflamed plugs also

showed markedly low PG content both away and near lesions (Fig 2D).

2.2. Simulation of abnormal biomechanical shear strains promoting

necrosis and cell damage

A finite element model of injured cartilage was subjected to physiologically relevant dynamic

loading as in a previous study [17]. The cartilage injury (lesion) and simplified dynamic load-

ing protocol (two loading–unloading cycles in unconfined compression instead of continuous

hour-long loading) in the simulations were implemented based on the experiments [17].

Importantly, we did not model the injurious loading itself, but rather the subsequent physio-

logically relevant dynamic loading of injured cartilage. The mechanical behavior of cartilage

was modeled using a fibril-reinforced porohyperelastic material with Donnan osmotic swelling

[42]. The material model input incorporated depth-dependent material properties including

water content, PG content, and collagen orientation and density [17] (see S1 Text and S1

Table). This material model has been shown to reliably capture cartilage mechanical behavior

[42,43]. The model output was maximum shear strain distribution, showing locally elevated

shear strains near the lesion, even though tissue-level loading remained within physiological

limits [17,39] (Fig 1A). The mechanical model was constructed in ABAQUS (v. 2021, Dassault

Systèmes, Providence, RI, USA), and solutions were obtained using ‘soil consolidation’ analy-

sis (transient analysis of fully saturated fluid-filled porous media) with the same model geome-

try and finite element mesh that was assured to converge in our previous work (918 linear

axisymmetric elements with pore pressure, element type: CPE4P) [17]. Boundary conditions

were assigned as in the previous model (see S2 Text). Since excessive shear strains have been

suggested to trigger necrosis and apoptosis in cartilage [18], we used the maximum shear strain

distribution as a driving parameter for the locally triggered cell death and PG loss (see section

2.3 for details). As a preliminary test, we conducted simulations with higher compressive strain

amplitude to estimate areas experiencing cell necrosis/damage triggered after dynamic high-

strain tissue level compression (40% unconfined axial compressions, 1 Hz loading frequency).

For more details related to mechanical modeling, please see Fig A in S3 Text.

2.3. Modeling cell death and PG loss

Diffusion of aggrecanases and decrease in PG biosynthesis. Injury-related cell death

and damage, as well as diffusing inflammatory cytokines, may lead to a release of aggrecanases

[8,22]. In our model, mechanisms I–III (Fig 1) regulated the amount of released aggrecanases

diffusing in cartilage and suppressed PG biosynthesis after decreased cell viability, both leading

to PG loss. Also, PGs may be transported out of the tissue through the cartilage–fluid-interface

via diffusion. These mechanisms were modeled with time-dependent reaction–diffusion
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partial differential equations [36]

@Ci

@t
¼ De;ir

2Ci þ Ri;syn � Ri;deg; ð1Þ

where t is time, Ci is the concentration of the biochemical species i (aggrecanases, PGs, IL-1,

viable/necrotic/damaged cells), De,i is the effective diffusivity (zero for cell populations, as we

assumed no cell migration), Ri,syn is the source (synthesis) term, and Ri,deg is the sink (degener-

ation) term of the species i. The source/sink terms utilized Michaelis–Menten kinetics to

model the production and degradation processes (see S4 Text) and binding of IL-1 to its recep-

tor as in the model by Kar et al. [36]. For example, an increase in the aggrecanase concentra-

tion increases the PG sink term, whereas cell death decreases the PG source term. The initial

PG content was obtained from the previous experiments [36,44]. In the current study, we did

not consider fluid flow-induced advective transport of IL-1, aggrecanases, or PG in Eq (1). For

more detailed information on the reaction–diffusion model, readers are referred to S4 Text.

Diffusion and reaction of species i were modeled in COMSOL Multiphysics (version 5.6, Bur-

lington, MA, USA) using a 2405-element triangular mesh (Fig A in S5 Text).

Mechanism I. Necrosis. First, regions presumed to experience early necrosis due to high

mechanical strain [14,18,45] were obtained from ABAQUS simulations using a custom-writ-

ten (see S6 Text) MATLAB script (R2018b, The MathWorks, Inc., Natick, MA, USA). Based

on earlier studies, we assumed that when the maximum shear strain in an element exceeded a

threshold of 50% [17], 40% of cells were assumed to become necrotic [46]. These live and

necrotic cell distributions were then imported into COMSOL.

The presence of necrotic cells was assumed to result in a rapid increase of local aggrecanase

concentration. The imported necrotic cell distribution then served as an initial condition for

the enzymatic (aggrecanase-induced) PG degradation. Acute necrosis-driven PG degeneration

via aggrecanases is supported by experimental findings showing rapid cell death within hours

after single impact loading [46], rapid release of aggrecanases near injured cartilage surfaces

[47], and necrosis-driven release or stimulation of proteolytic enzyme activity [22]. According

to our preliminary tests, this choice also resulted in early cell death and PG loss near cartilage

lesions as observed experimentally [17,40]. In addition, it has been suggested that high local

strains during repetitive dynamic loading in injured cartilage could lead to accumulated cell

death and possibly secondary necrosis in the superficial zone [48,49], promoting the localized

release of inflammatory factors [20–22] which could increase the proteolytic activity associated

with the surviving cells [30]. Thus, we assumed an acute aggrecanase release (concentration

Caga,init) from necrotic cells Cn,c at the beginning of the simulation:

Caga;init ¼ caga;n;cCn;c ¼ caga;n;cpn;cCh;c;0; ð2Þ

where caga,n,c is a calibration constant for the released aggrecanase (1.2×10−19 mol) based on a

visual comparison of simulated PG concentration and histologically observed PG content find-

ings [40], pn,c = 0.4 = 40% is the fraction of necrotic cells [46], and Ch;c;0 ¼ 1:5� 1014 1

m3 is the

initial concentration of healthy cells [50].

Mechanism II. Damaged cells, ROS release, and apoptosis. Similarly, as with necrosis,

we assumed that 40% of the cells experiencing the maximum shear strains > 50% will become

‘damaged cells’ Cd,c (e.g., experiencing mitochondrial dysfunction) [17]:

Cd;c ¼ pd;cCh;c;0; ð3Þ

where pd,c = 0.4 = 40% is the fraction of damaged cells [51]. Based on observations of increased

ROS production in response to excessive mechanical loading [15,24,51], we assumed that the
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localized ROS concentration CROS increases as a function of damaged cell concentration Cd,c

[37]:

@CROS

@t
¼ sROSCd;c � dROSCROS; ð4Þ

where dROS ¼ 6:9� 10� 4 1

s is the ROS decay rate [37] and sROS is the ROS synthesis rate

described as

sROS ¼ 0:05� smax ¼ 0:05�
10 nmol
1h � 106

� 1:4� 10� 19 mol
s
; ð5Þ

where smax is the estimated maximum oxygen consumption rate (5–21% oxygen tension)

[37,52]. Moreover, since the ROS production in healthy cartilage has been estimated to be

1–3% of the maximum oxygen consumption [25,37,53], we assumed 5% ROS production in

injured cartilage (overproduction). We assumed no diffusion of ROS since the approximate

half-life of the mitochondrial ROS is relatively short (< 1 ms) [54].

Excessive ROS production has been suggested to result in apoptosis and PG loss [15,55].

The former phenomenon was incorporated as damaged cells Cd,c turning apoptotic in an

exponential manner [56,57]:

@Cd;c

@t
¼ PROS ¼ � kd;ce

tROSCROSCd;c; ð6Þ

where PROS describes the rate of damaged cells turning apoptotic due to ROS, kd;c ¼
1:3� 10� 6 1

s is cell death rate for damaged cells [58], and τROS a calibration coefficient for

ROS-dependent cell death (0:7� 102 m3

mol).

Furthermore, PG loss was increased due to increased stimulus of aggrecanase production.

The stimulus was modeled with a stimulus equation originally introduced by Kar et al. [36]

(see S4 Text). Finally, PG degeneration was modeled based on Eq (1).

Mechanism III. Inflammation-induced apoptosis. Pro-inflammatory cytokine-mediated

apoptosis was implemented with IL-1 in the following exponential equation [59]

@Cl;c

@t
¼ PIL� 1 ¼ � k1e

tIL� 1CIL� 1Cl;c; ð7Þ

where Cl,c is the concentration of live cells (Cl,c = Ch,c,0, if only inflammation is considered or

Cl,c = Ch,c,0(1−pn,c−pd,c) if also necrosis and cell damage are considered in the cells experienc-

ing over 50% maximum shear strain), k1 ¼ 7:5� 10� 8 1

s is the rate of spontaneous apoptosis

(11% of cells are apoptotic after 17 days under free-swelling conditions without exogenous

cytokines) [32], tIL� 1 ¼ 5:7� 107 m3

mol is a calibration coefficient for experimentally observed

IL-1-induced depth-dependent apoptosis [32], and CIL−1 is IL-1 concentration. The chosen IL-

1 concentration was 1 ng/ml, implemented as a Dirichlet boundary condition on all the edges

except the bottom of the cartilage geometry [32,36]. Cytokine diffusion led to PG loss after loss

of cell viability and upregulation of aggrecanases via IL-1-mediated stimulus which were simu-

lated separately and simultaneously (for more details, see S4 Text).

Combining injury-related and inflammatory mechanisms. In the combined model, cell

death including injury-related I) necrosis, II) apoptosis via ROS overproduction in the dam-

aged cells, and III) IL-1-induced apoptosis were all considered simultaneously. Here, the live

cell concentration was affected as described in Eq (7). The damaged cells could turn apoptotic

due to ROS overproduction (PROS, Eq (6)) and inflammation (PIL−1, Eq (7)).
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2.4. Sensitivity analysis for the computational model parameters

To address the lack of quantitative experimental data needed to calibrate some model parame-

ters, we conducted a computational sensitivity analysis for the essential parameters affecting

cell death and PG loss. Based on our preliminary tests during model development, the chosen

parameters were necrosis fraction (pn,c), damaged cell fraction (pd,c), ROS production rate

(sROS, healthy and excessive levels), and rate of spontaneous apoptosis (k1; the IL-1-induced

aggrecanase stimulus was turned off to perceive the effect of altered PG biosynthesis due to cell

death on PG loss; Table 1).

Decreased IL-1 concentration. Previous clinical and pre-clinical studies have suggested

that inflammation may play a major role in PTOA progression. There is also evidence suggest-

ing that after acute inflammation, the concentration of the pro-inflammatory cytokines can

decrease exponentially in vivo [60,61]. Hence, to gain insights into the possible resolution of

acute inflammation and tissue recovery, we simulated time-dependent slow and fast exponen-

tial decreases of IL-1 concentration in the culture medium as

CIL� 1;b ¼ CIL� 1;b;0e
� mt; ð8Þ

where CIL−1,b,0 is the initial boundary concentration of IL-1 (1 ng/ml) and μ is the decay rate of

the IL-1 concentration.

3. Results

3.1. Necrosis

Simulated necrosis was localized near the cartilage lesion (Fig 1A) after dynamic loading (ini-

tial impact-loading was not modeled). At day 5, the computational reference model (pn,c = 0.4)

predicted that 10.8% of the viable cells would be necrotic and 21.6% of PGs would be cumula-

tively lost within 0.1 mm from the cartilage lesion compared to day 0 (Figs 3A and 4, red line).

The simulated PG content decreased rapidly and locally during the first day, followed by par-

tial recovery for the rest of the simulation. Sensitivity analysis revealed that, at day 5, a smaller

number of necrotic cells (pn,c = 0.2; Fig 4B, blue line) resulted in an average PG loss of 16.4%

while a greater number (Fig 4C, blue line) of necrotic cells (pn,c = 0.6; Fig 4B, purple line)

resulted in an average PG loss of 26.1% (Fig 4D, purple line).

3.2. Damaged cells, ROS release, and apoptosis

Cell damage was also observed near the lesion (Fig 1A). The computational reference model

(moderate ROS overproduction) showed cumulative cell apoptosis of 6.5% and PG loss of 21.2%

near the lesion at day 5 compared to day 0 (Figs 3B and 5, red line). An 80% decrease in ROS

Table 1. Parameters for the sensitivity analysis.

Parameters Range Description References

pn,c [–] 0.20, 0.40, 0.60 Necrosis fraction (Eq (2)) [46]

pd,c [–] 0.20, 0.40, 0.60 Damaged cell fraction (Eq (3)) [51]

sROS [mol/s] 0.01×smax, 0.05×smax, 0.09×smax
a Reactive oxygen species production rate (Eq (4)) [25,37,53]

k1 [1/s] 0, 7.5×10−8, 15×10−8 Rate of spontaneous apoptosis (Eq (7)) [32]

μ [1/s] 1.2×10−6, 0, 5.8×10−6 Decay rate of the interleukin-1 concentration (Eq (8)) [60]

Parameters and ranges chosen for the sensitivity analysis. Bolded values indicate reference values.

a smax � 2:8� 10� 18 mol
s [37]

https://doi.org/10.1371/journal.pcbi.1010337.t001
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production rate (low, healthy levels; Fig 5, blue line) showed simulated apoptosis of 5.0% and PG

loss of 13.0%, whereas increasing ROS production (high ROS overproduction; Fig 5, purple line)

to excessive levels led to apoptosis of 7.5% and PG loss of 26.4%. Higher fraction of damaged cells

led to higher apoptosis and lower PG content as did the increase of ROS production rate (Fig 6).

3.3. Inflammation-induced apoptosis

Diffusion of IL-1 resulted in extensive cell apoptosis and subsequent PG loss near the free sur-

faces (Figs 3C and 7). The model where PG degeneration via aggrecanases and loss of biosyn-

thesis (induced by apoptosis) was considered, showed PG loss of 50.4% near the cartilage

lesion at day 5 (Fig 3C). This rapid degradation masks the effect of IL-1 on PG loss through

changes in PG biosynthesis. Thus, in Fig 7, we present sensitivity analysis results with the effect

of aggrecanases turned off in the model. At day 5, the reference model (k1 ¼ 7:5� 10� 8 1

s) had

PG loss of 11.2% (apoptosis of 33.5%) compared to day 0 (Fig 7, red line). Corresponding

models without apoptosis (k1 = 0) exhibited PG loss of 10.2% (Fig 7, blue line; passive PG dif-

fusion) and models with a higher apoptosis rate (k1 ¼ 15� 10� 8 1

s, Fig 7, purple line; apoptosis

of 54.2%) showed a PG loss of 11.9% in the cartilage.

3.4. Synergistic effect of necrosis, ROS, and inflammation

Cartilage subjected simultaneously to the simulated effect of injury-related and inflammatory

mechanisms revealed vast cell death and PG loss near the free surfaces and the lesion (Figs 3D

Fig 3. Simulated proteoglycan degeneration. Comparison of the simulated spatial changes in proteoglycan (PG)

content after A) acute necrosis, B) cell damage, subsequent overproduction of reactive oxygen species and apoptosis,

C) inflammatory stimulus, and D) combined mechanisms I, II, and III at days 1, 5, and 12 showed different temporal

changes in PG distribution. Percentual changes in the proximity of the simulated lesion (0.1 mm from the lesion edge)

were computed relative to the PG content at day 0.

https://doi.org/10.1371/journal.pcbi.1010337.g003
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and 8A–8D). In the computational reference model (Fig 8A, red line), at day 5, cumulative

near-lesion cell death was 46.8% (Fig 8C and 8D, total (bulk) cell death of 11.0% in the whole

geometry) and PG loss was 64.2% (total PG loss of 18.9%) compared to day 0 (Fig 8E and 8F,

red line). When the IL-1 concentration was decreased slowly in the combined model

(m ¼ 1:2� 10� 6 1

s, Fig 8A, blue line), the simulated near-lesion cell death was 36.3% (Fig 8C

and 8D, blue line, total cell death of 8.1%) and PG loss was 62.0% at day 5 (Fig 8E and 8F, blue

line, total PG loss of 16.7%). Rapid decrease (m ¼ 5:8� 10� 6 1

s, Fig 8A, purple line) of IL-1 con-

centration in the culture medium led to near-lesion cell death of 25.6% (Fig 8C and 8D, total

cell death of 5.1% in the whole geometry) and PG loss of 50.8% at day 5 (Fig 8E and 8F, total

PG loss of 10.9%). Interestingly, notably less PG loss was observed in 12-day simulations com-

pared to the reference model (Fig 8B).

Fig 4. Sensitivity analysis of simulated necrosis rate pn,c. Comparison of temporal and spatial changes at day 5 (A)-(B) in cell viability and (C)-(D) in proteoglycan (PG)

content. (C) Higher necrosis rate led to fast PG degeneration at early time points (days 0–1) and partial recovery of the PG content (days 0–3) near the cartilage lesion.

Red line in (A) and (C) refers to the reference model (pn,c = 0.40).

https://doi.org/10.1371/journal.pcbi.1010337.g004
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Partial recovery of the PG content in cartilage. When the simulation was continued

until day 30, we observed that the greatest cumulative near-lesion PG loss of 98.5% and 58.2%

occurred at days 17 and 9 in the models with slow and fast decrease of IL-1 concentration,

respectively. Moreover, we observed that at day 30, the PG content had recovered by 9.4%-

points and 20.4%-points around the lesion (corresponding 4.0%-points and 3.9%-points bulk

tissue recovery) for the slow and fast decrease of IL-1 concentration when compared to the PG

content at days 17 and 9, respectively (Fig 8G).

4. Discussion

Previous computational models of early PTOA have not explicitly modeled physical lesions,

mechanical loading, and the underlying cell-regulated degradative mechanisms of cartilage. In

this study, we bridged this knowledge gap and presented a novel mechanobiological model

considering physical cartilage lesion, injury- and loading-related cell death, overproduction of

ROS, and diffusion of pro-inflammatory cytokines and their effect on cartilage PG content.

We compared the model results against previously measured optical density maps from

injured calf cartilage explants and noticed matching predictions of the PG content: extensive

and localized near the lesions, but more widely spread when IL-1 was added to the medium.

Predicted cell death followed the same pattern of damage localization, observed also in vitro.

The interesting computational findings are that 1) necrosis alone affects PG content rapidly

(0–3 days) in the vicinity of the lesion but its effect almost completely fades away over 5 days,

Fig 5. Sensitivity analysis of simulated reactive oxygen species (ROS) production rate sROS. Comparison of

temporal and spatial changes at day 5 (A)-(B) in cell viability and (C)-(D) in proteoglycan (PG) content. (C) Higher

simulated ROS production showed more intensive temporal PG loss and (A) cell death near the cartilage lesion

compared to moderate and low production rates. Red line in (A) and (C) refers to the reference model (sROS = 0.40).

https://doi.org/10.1371/journal.pcbi.1010337.g005
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leading to partial recovery of PG content (Figs 3A and 4C), 2) ROS overproduction and espe-

cially inflammation have longer-term (over 5 days) effects on PG content (Figs 3, 5C, 6C and

7C), and 3) rapid decrease of IL-1 concentration (leading to lower aggrecanase release and less

suppression of PG biosynthesis) facilitates the recovery of PG content even in injured cartilage

(Fig 8E). Comparison of the model simulations and biological data implies that our model can

pinpoint relevant underlying degradation mechanisms leading to the cartilage degeneration.

4.1. Necrosis

Injurious loading may cause rapid (within hours to days) necrotic and apoptotic cell death

[13,14,18,55]. The injury can also stimulate catabolic pathways in live cells and predispose

them to further harmful mechanical and inflammatory stimuli [62,63]. As a result of high

Fig 6. Sensitivity analysis for simulated damaged cell rate pd,c. Comparison of temporal and spatial changes at day 5 (A)-(B) in cell viability and (C)-(D) in

proteoglycan (PG) content. (A) Higher number of damaged cells led to more cell death and (C) more intensive PG degeneration near the cartilage lesion. Red line in (A)

and (B) refers to the reference model (pd,c = 0.40).

https://doi.org/10.1371/journal.pcbi.1010337.g006
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susceptibility to harmful stimuli, cells may die or express catabolic enzymes easier than

undamaged cells. Locally elevated shear strains near lesions due to mechanical loading could

be one such catabolic stimulus, assumed here to lead to localized necrosis and PG loss [17,39].

The cell viability assay with propidium iodide and fluorescein acetate as used by Orozco et al.

[17] and Eskelinen et al. [40] does not discern between necrosis and apoptosis, but other stud-

ies have shown that similar injurious loading may cause necrotic cell death [46]. Furthermore,

the assumption that necrotic cells would release DAMPs inducing inflammatory response

(such as IL-1 production, which later causes aggrecanase release [20]) is supported by several

studies [21,64]. In addition to necrosis, necroptosis (regulated necrosis) can be involved in the

release of DAMPs after injury stimulating the inflammatory response in chondrocytes [65]

and, thus, participate in accelerated degradation of cartilage post-injury [66].

Fig 7. Sensitivity analysis for the simulated pro-inflammatory cytokine-induced apoptosis rate k1. Comparison of temporal and spatial changes at day 5 (A)-(B) in cell

viability and (C)-(D) in proteoglycan (PG) content. (A) Loss of viable cells and, thus, a decrease of PG biosynthesis (aggrecanase-induced PG degeneration was not

considered), had (C) a negligible effect on the simulated PG content over 12 days. Red line in (A) and (B) refers to the reference model (k1 = 7:5� 10� 8 1

s).

https://doi.org/10.1371/journal.pcbi.1010337.g007
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Fig 8. Simulated decrease of cytokine concentration in the combined model. (A) Simulated time-dependent exponential decrease of the interleukin-1

concentration in the culture medium and B) comparison of changes in proteoglycan (PG) content with constant (μ = 0 1

s) and fast-decreasing cytokine
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On average, our model predicted necrotic cell death of 10.8% (40% local necrosis of the via-

ble cells in areas exceeding 50% maximum shear strain threshold, Fig 4A) within 0.10 mm

from the lesion at day 5 (compared to day 0) when collagen architecture was based on young

bovine cartilage [17,46]. For comparison, Philips et al. [46] reported a high loss of cell viability

around the superficial zone of mature bovine cartilage (0.15 mm from the surface), especially

in the vicinity of the surface fissures, 1 hour after impact-injury (unconfined compression with

~25 MPa peak stress, 100%/s loading rate). Similarly, human in vitro impact-models have also

shown necrotic cell death occurring near lesions and increased catabolic expression in carti-

lage after injury [67,68]. Albeit we did not consider necrosis caused by the initial impact injury,

our model could capture the early necrotic cell death near the lesion due to high strains result-

ing from dynamic loading of injured geometry as well as the following rapid PG degeneration

due to high catabolic activity in these areas.

In our simulated necrosis model, aggrecanases were released only at day 0 in response to

cell necrosis near the lesion (Fig 4A). We observed the substantial PG loss during day 1 near

the lesion (Fig 4C) and, as expected, simulating increased necrosis fraction led to higher PG

loss, a scenario that is feasible with high impact loads [12,13,55]. The predicted early burst of

enzymatic activity is supported by experiments showing increased aggrecanase expression in

injured bovine cartilage 1 day after experimental injury [8]. In addition, Merrild et al. [47]

reported localized aggrecanase activity near the lesion 1 day after cartilage injury which could

represent newly synthesized aggrecanase or that originating from the tissue reservoirs [9].

Since aggrecanases may be activated intracellularly [69], they may be capable of degrading the

ECM PGs when released after cell membrane rupture in necrosis. Moreover, studies about

other arthropathies similar to osteoarthritis [22,70] have suggested that the release of aggreca-

nases occurs in regions experiencing chondrocyte necrosis. Predicted PG degeneration within

day 1 and the PG recovery within the following 2 days is explained by rapid outflux of aggreca-

nases from highly necrotic regions (change of aggrecanase concentration over time is relative

to the aggrecanase concentration gradient) and relatively small effect of highly localized necro-

sis on total PG biosynthesis.

Interestingly, our results from necrosis-only model suggest that cartilage can recover its PG

content partially and reach a steady-state in 12 days. This implies that after acute PG degrada-

tion and loss, decrease in aggrecanase concentration and diffusion of PGs from deeper layers

of the cartilage can promote PG recovery. It has been suggested that early and localized PG

degeneration may be part of the repair process of minor cartilage injuries [47], but the contin-

ued expression of catabolic enzymes may lead to pathological degradation. However, in previ-

ous experiments (Fig 2B) [17,40], PG degeneration was still observed near the lesion at day 12.

This suggests that, in addition to the immediate necrosis, further subacute mechanisms associ-

ated with cell damage (e.g., oxidative stress and ROS overproduction) should be included in

the simulations to better catch the temporal changes in injured cartilage.

4.2. Cell damage, ROS, and apoptosis

Since maximum shear strains were excessive near the lesion, the damaged cells producing

large amounts of ROS leading to apoptosis were located in the same areas as necrosis. This

modeling approach is supported by biological experiments where the amount of ROS was

concentration (μ = 5.8×10−6 1

s). C) Temporal changes in cell viability in 30-day simulation near the cartilage lesion (within 0.1 mm from the lesion) and D) spatial

changes at day 5. D) Temporal changes in the PG content near the cartilage lesion and (F) spatial changes in the whole cartilage geometry (total) at day 5.

Decreased exogenous cytokine concentration decreased cell death and PG loss substantially and (G) showed partial recovery of the PG content (here, simulation

continued until day 30). Red line in the figure refers to the reference model (decay rate of interleukin-1 concentration μ = 0 1

s).

https://doi.org/10.1371/journal.pcbi.1010337.g008
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proportional to the deformation of the chondrocytes [51]. While the simulated necrosis indi-

cated rapid early PG loss followed by partial PG content recovery, damaged cells contributing

to the overproduction of ROS led to decreasing PG content over time. This suggests that

necrosis might play an early short-term role in PG loss, but cell damage and its downstream

catabolic effects may last longer despite the short lifetime of ROS [24,55]. Thus, cell damage

and large amounts of ROS could undermine the partial recovery seen with the necrosis-only

model and continue cartilage degradation near the lesion even when tissue-level global loading

is physiologically normal (15% strain in our model).

Low ROS production in cartilage did not result in major cell death (5.0%), nor did the mod-

erate (6.5%) or severe (7.5%) ROS overproduction (Fig 5B) near the lesion at day 5. Further-

more, low ROS production did not result in a substantial PG loss (13.0%, 2.8% higher than

passive PG diffusion) whereas moderate and severe ROS overproduction resulted in higher

PG loss, 21.2% and 26.4%, respectively. A similar interplay between damaged cells and

increased ROS production leading to cell death and PG loss has been observed experimentally

in animal models [24,51,55] and also in human cartilage explants [71].

4.3. Inflammation

Simulated inflammation resulted in rapid and substantial cell death and PG loss near the free

surfaces, in good agreement with experimental findings (Fig 2C) [32,40]. With 1 ng/ml of IL-1,

inflammation-driven degradation mechanisms dwarfed those driven by biomechanics. The

inflammation-related PG loss was mostly driven by the aggrecanases; when the proteolytic

effect of aggrecanases was turned off, the IL-1-induced apoptosis (resulting in decreased PG

biosynthesis) had only a minor effect on the PG loss (Fig 7C and 7D).

Analysis of inflammation-related PG loss has been extensively included in computational

and experimental studies [32,34,36]. However, IL-1-induced cell death has rarely been

included in computational models. In experimental work conducted by Lopez-Armada et al.

[72], ~50% bulk tissue cell death was observed after 7-day culture with 5 ng/ml of IL-1 [72],

and Li et al. [32] reported ~50% bulk cell death after 17 days culture with 1 ng/ml of IL-1. Our

model exhibited 15.1% and 34.8% bulk cell death on days 7 and 17 with 1 ng/ml, respectively.

Lower cell death in our simulated results may be explained by the absence of additional inflam-

matory mechanisms, such as chondrocyte production of IL-1 after signaling via DAMPs [2,19]

or autocrine stimulation via TNF-α [30].

4.4. Combined model

Simultaneously acting biomechanical and biochemical mechanisms resulted in marked cell

death and PG loss especially near the lesion during the first 5 days (Figs 3D and 8). Later, the

IL-1-driven degradation dominated over the other mechanisms around the defect, in agree-

ment with digital densitometry results [40]. Our model was able to capture the well-docu-

mented synergistic effect of biomechanics and inflammation on PTOA progression (Fig 2D)

[63,73].

Our reference model predicted locally extensive PG loss of 43.6% near the lesion at day 3

(Fig 8B and 8E, red line; total PG loss of 9.0% in the whole cartilage geometry at day 3) and

spread of PG loss also to the intact areas at day 5 (Fig 8B and 8F; total PG loss of 18.9%). Previ-

ous experiments have shown that injuries can potentiate inflammation causing highly

increased expression/activity of matrix-destructing enzymes and PG loss in bovine and human

explants [73]. Eskelinen et al. [40] reported increased PG degeneration in the intact regions of

injured-and-inflamed bovine cartilage at day 7 compared to day 3. These experiments are in

general consistent with our modeling results showing substantial near-lesion PG loss caused
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by synergistic effect of inflammation and high shear strains after 3 days and inflammation-

induced PG loss also in the intact areas in the subsequent time-points.

Interestingly, a simulated fast decrease of the IL-1 concentration in the culture medium

resulted in partial recovery of the near-lesion (20.4%-point increase at day 30 compared to day

9) and bulk PG contents (3.9%-point increase). This finding highlights the major role of inflam-

mation in the computational model; decreasing the cytokine concentration temporally leads to

partial recovery of the tissue, while the biomechanical mechanisms contribute to tissue degrada-

tion around the lesion. The result of possible partial recovery suggests that inhibition of cyto-

kine activity or rapid cytokine clearance from the culture medium/joint space could suppress

production of proteolytic enzymes and rescue PG synthesis via reduced cell death (see Eq (1)

and Eq (S14) in S4 Text). Similar PG recovery has been reported in experimental studies

[74,75]. Specifically, our numerical model predicted PG recovery between days 10 and 30 (Fig

8E, purple line) after removal of most IL-1 from the culture medium (day 10 in Fig 8A, purple

line). During a similar time-window as shown by our model, previous in vitro experiments

showed partial recovery of uninjured bovine cartilage GAG content over 3 weeks after changing

the medium to that without IL-1 [75]. Interestingly, less recovery was observed in the most

severely degraded regions compared to the more intact regions of the cartilage after IL-1 treat-

ment. Similarly, our model predicted less recovery in highly degenerated areas near the lesion

compared to the more intact areas away from the lesion (Fig 8G). These findings indicate that

our model provided reasonable predictions of the cartilage recovery and adaptation.

4.5. Limitations

Although our approach represents a step toward elucidating the cell-driven cartilage degrada-

tion after injury, our model has limitations that may partly explain the disagreement between

the model and experiments.

Biomechanical loading and inflammation of cartilage include many complex cell-level

mechanisms. All mechanisms inducing cartilage degradation are nearly impossible to include

in a computational model, but we believe cartilage degeneration can be predicted by estimat-

ing the net effect of the most significant mechanisms. Here, we have included a few of these

mechanisms but, in reality, additional mechanisms may also alter the cartilage degeneration.

These mechanisms may include: IL-1 production by chondrocytes [2,30,32], IL-1-induced

ROS production [54], ROS-induced necrotic cell death [16,76], introduction of MMP-3-driven

matrix degradation after injury [12,77], possible fluid flow-dependent PG loss or cytokine

transport through cartilage–fluid-interfaces via advection [17,78,79], and injury-related PG

loss due to microdamage and structural changes instead of enzymatic degradation [62]. More-

over, our model does not consider the beneficial effects of moderate dynamic loading, such as

alleviation of the catabolic effects of IL-1 and increased synthesis of the ECM matrix compo-

nents by live cells [40,80,81].

After acute inflammation, physiological IL-1 concentration in the inflamed human knee

joint is typically much lower than 1 ng/ml. We simulated diffusion of IL-1 into cartilage (from

a bath having 1 ng/ml concentration), the same as used in previous experimental in vitro stud-

ies [32,34,36]. Since the biochemical model was calibrated previously based on in vitro experi-

ments [36], we did not use physiological concentrations which would just result in slower

progress of the degeneration. In the human joint, also other pro-inflammatory cytokines such

as TNF-α, regulate apoptosis [61,82]. Their effects would be possible to include into the model

with Eq (1). However, for now, we did not incorporate TNF-α, since we had no information

available about its diffusion/reaction coefficients, and it was not used in the experiments uti-

lized for model comparison.
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We did not account for the degeneration of the collagen network that would affect the bio-

mechanical properties and cell responses in the cartilage [83]. This was justified as structural

and constitutional changes in the collagen network have been observed to occur later than in

the PG content [32,84]. Also, we did not explicitly model the pericellular matrix or changes in

its properties during the degeneration. There is evidence that alterations in the pericellular

matrix properties and cell–matrix interactions may have substantial role in the OA initiation

and progression of tissue degeneration [85–87], thus, the pericellular matrix and possibly

altered mechanotransduction during loading of damaged cartilage should be accounted for in

future studies. In addition, the biomechanical loading used in the computational model is a

simplification of the experiments. For instance, we did not simulate the initial impact-loading

leading to cartilage defects in the superficial zone or the full dynamic loading protocol used

in previous experiments after the injury [17,40]. After impact-loading and during the continu-

ous dynamic loading, changes in PG (and collagen) content can also influence the shear strain

distributions [88]. Moreover, considering fluid exchange with the culture medium [89], carti-

lage injuries [90], and decreased boundary resistance post-injury [91] may induce decreased

pressure. This may also broaden the high-strain area from the vicinity of lesions to the deeper

layers of the cartilage. Hence, due to simplifications in the biomechanical simulations, our

model may underestimate the depth-dependent necrosis, apoptosis, and cartilage

degeneration.

Although some inflammation and material parameters have been calibrated well [17,36],

full model validation is hampered by the small amount of time-dependent biomechanical and

biochemical experimental data from different studies. Data for extensive validation should also

include the fraction of cell death (necrosis and apoptosis), ROS activity, and PG content to fur-

ther improve the calibration of the related parameters and validate the localized degradation

processes induced by mechanisms I-III. However, the presented predictions are already gener-

ally in line with the current literature and despite the lack of extensive calibration, the current

modeling framework can offer insights into the local mechanisms driving cell death and PG

loss in PTOA-like conditions.

4.6. Future directions

In the future, multiscale mechanobiological models may be feasible to produce patient-specific

predictions of early cartilage degeneration. Future developments of the model could include

the implementation of the pericellular matrix to investigate the mechano-inflammatory cross-

talk between the pericellular matrix and the chondrocyte at the early phases of cartilage injury

[87,92]. In addition, extensive experimental research is still needed to elucidate the injury-

related mechanotransduction pathways, cell death, and ROS kinetics, which could provide

time-dependent quantitative data to calibrate and enhance the current modeling framework.

Thus, we are planning to conduct additional experiments to validate our tissue-level model

predictions which could then provide validated improvements in the current joint-level mod-

els [33,93]. One potential example could be merging this framework with musculoskeletal–

finite element modeling workflow [33,94,95] which considers patient-specific joint geometry

and loading. When adding inflammatory biomarkers from the synovial fluid, and possibly the

defect size, to the workflow with our new cell-level mechanobiological model, virtual evalua-

tion of the effects of biomechanical (such as rehabilitation) and biochemical (for example

pharmaceutical treatment) interventions on cartilage health would become possible. This

would enable optimizing the treatment and help in clinical decision making. Our current

model already considers ROS (Eqs (3)–(6)) and could provide means to simulate, for example,

the effect of N-acetylcysteine treatment on oxidative stress, ROS production, cell death, and
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cartilage health [7]. Eventually, the model predictions could produce cost-efficient optimized

intervention strategies, to mitigate early cartilage degeneration.

5. Conclusions

Cell death and enzymatic cartilage degeneration in response to injurious loading are important

factors to consider in computational models for predicting PTOA progression. We incorpo-

rated biological cell–tissue-level responses including necrotic and apoptotic cell death, ROS

overproduction, and inflammation of injured cartilage into a finite element model of early-

stage PTOA. Our novel mechanobiological model was able to predict localized cell death and

PG loss similar to previous biological experiments; biomechanically induced necrosis and apo-

ptosis and the following enzymatic degeneration of PGs were observed near the cartilage

lesion, while diffusing pro-inflammatory cytokines resulted in more widely spread damage.

Based on the computational model predictions, rapid inhibition or clearance of pro-inflamma-

tory cytokines would result in partial recovery of the PG content and could be a potential way

to decelerate PTOA progression even in injured tissue. In the future, the current computa-

tional framework could enhance previous models by introducing new mechanisms, thus pro-

viding a better understanding of PTOA progression. Furthermore, in the future, thoroughly

calibrated multi-level mechanobiological models could be a valuable tool in assessing patient-

specific pharmacological treatments time-dependently and help in the planning of new inter-

vention strategies.
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