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Abstract

Expressive molecular representation plays critical roles in researching drug design, while

effective methods are beneficial to learning molecular representations and solving related

problems in drug discovery, especially for drug-drug interactions (DDIs) prediction.

Recently, a lot of work has been put forward using graph neural networks (GNNs) to forecast

DDIs and learn molecular representations. However, under the current GNNs structure, the

majority of approaches learn drug molecular representation from one-dimensional string or

two-dimensional molecular graph structure, while the interaction information between chem-

ical substructure remains rarely explored, and it is neglected to identify key substructures

that contribute significantly to the DDIs prediction. Therefore, we proposed a dual graph

neural network named DGNN-DDI to learn drug molecular features by using molecular

structure and interactions. Specifically, we first designed a directed message passing neural

network with substructure attention mechanism (SA-DMPNN) to adaptively extract sub-

structures. Second, in order to improve the final features, we separated the drug-drug inter-

actions into pairwise interactions between each drug’s unique substructures. Then, the

features are adopted to predict interaction probability of a DDI tuple. We evaluated DGNN–

DDI on real-world dataset. Compared to state-of-the-art methods, the model improved DDIs

prediction performance. We also conducted case study on existing drugs aiming to predict

drug combinations that may be effective for the novel coronavirus disease 2019 (COVID-

19). Moreover, the visual interpretation results proved that the DGNN-DDI was sensitive to

the structure information of drugs and able to detect the key substructures for DDIs. These

advantages demonstrated that the proposed method enhanced the performance and inter-

pretation capability of DDI prediction modeling.

Author summary

Drug-drug interactions (DDIs) may cause adverse effects that damage the body. There-

fore, it is critical to predict potential drug-drug interactions. The majority of the predic-

tion techniques still rely on the similarity hypothesis for drugs, sometimes neglect the
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molecular structure, and fail to include the interaction information between chemical sub-

structure when predicting DDIs. We exploited this idea to develop and confirm the role

that molecular structure and interaction information between chemical substructure play

in DDIs prediction. The model includes a molecular substructure extraction framework

to explain why substructures contribute differently to DDIs prediction, and a co-attention

mechanism to explain why the interaction information between chemical substructure

can improve DDIs prediction. Compared to state-of-the-art methods, the model

improved the performance of DDIs prediction on real-world dataset. Furthermore, it

could identify crucial components of treatment combinations that might be efficient

against the emerging coronavirus disease 2019 (COVID-19).

This is a PLOS Computational BiologyMethods paper.

Introduction

With the rapid development of machine learning techniques, many AI technologies have been

successfully applied in a variety of tasks for drug discovery, such as drug-drug interactions

(DDIs) [1]. One of the main issues in these studies is how to learn expressive representation

from molecular structure [2]. Most of the conventional molecular representation are based on

hand-crafted features and heavily rely on time-consuming biological experimentations [3].

The most common molecular representation method called simplified molecular input line

entry specification(SMILES), is the molecular linear notation that encodes the molecular

topology on the basis of chemical rules [4,5], while this line of work suffered from insufficient

labeled data for specific molecular tasks. More recently, among the promising deep learning

architectures, graph neural networks (GNNs) have gradually emerged as a powerful candidate

for modeling molecular data [6–8]. A molecule is naturally treated as a graph based on its

geometry, where an atom serves as the node and a chemical bond serves as the edge. Therefore,

a molecule is normally mapped to an undirected graph and defined as G = (V, E), where V and

E are the sets of all atoms and chemical bonds in the molecule, respectively. Moreover, to bet-

ter encode the interactions between atoms, a message passing neural network named MPNN

was designed to utilize the attributed features of both atoms and edges [9]. It is a general

framework for learning node embeddings or learning the entire graph representations. The

MPNN used the basic molecular graph topology to obtain structural information through

neighborhood feature aggregation and pooling methods [10,11].

DDIs prediction is one of the applications of molecular representation [12–14]. DDIs is

referred to as a situation where the pleasant or adverse effects caused by the co-administration

of two drugs, which may cause adverse drug events and side effects that damage the body

[15,16]. In order to avoid such events, it’s urgent to develop computational approaches to

detect DDIs [17].

Various machine learning methods have been proposed and have greatly contributed to the

DDIs prediction [18–20]. The vast majority of these techniques rely on the drug similarity

assumptions, where it is believed that if drugs A and B interact to produce a specific biological

effect, then drugs similar to drug A (or drug B) are likely to interact with drug B (or drug A) to

produce the same effect. Drugs are, therefore, processed depending on their similarities in
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chemical structures; as well as additionally, in other features such as their individual side

effects, targets, pathways [21,22].

Recently, many deep learning methods have been developed and have shown encouraging

performance in DDIs prediction tasks [23–26]. For instance, Deng et al. [24] proposed a

multi-modal deep learning framework combined diverse drug features to predict DDIs. Feng

et al. [25] applied deep graph auto-encoder to learn latent drugs representations fed to a deep

feedforward neural network for DDIs prediction. Liu et al. [27] introduced a deep attention

neural network framework for drug-drug interaction prediction, which can effectively inte-

grate multiple drug features. For adverse drug-drug interaction (ADDI), Zhu et al. [28]

employed eight attributes and developed a discriminative learning algorithm to learn attribute

representations of each adverse drug pair for exploiting their consensus and complementary

information in multi-attribute ADDI prediction. And then they designed three dependence

guided terms among molecular structure, side effect and ADDI to guide feature selection and

put forward a discriminative feature selection model DGDFS for ADDI prediction [29].

Because combination therapy can boost efficacy and reduce toxicity, recent approaches have

used deep learning to identify synergistic drug combinations for the new coronavirus disease

2019 (COVID-19) [30–32]. Jin et al. [31] presented a new deep learning architecture Comb-

oNet for predicting synergistic drug combinations for COVID-19. Howell et al. [33] developed

a computational model of SARS-CoV-2-host interactions used to predict effective drug

combinations.

Although these methods achieved inspiring results, there are still mostly unexplored in

DDIs prediction tasks especially as far as feature extraction from the raw representations (i.e.,

chemical structures) of drugs are concerned. Most of the existing methods predict DDIs rely-

ing on the similarity assumption of drugs or on manually engineered features [34,35]. How-

ever, molecular structure-based methods regard drugs as independent entities, and predict

DDIs only by relying on drug pairs. This is no need for external biomedical knowledge. It has

been proven that DDIs usually depend only on a few substructures as a whole [36,37]. SSI-DDI

[34] and GMPNN-CS [35], two recent methods that both leveraged the powerful feature

extraction ability of deep learning, work directly on raw molecular chemical structures of

drugs using GNNs. SSI-DDI used graph attention (GAT) layers [38] to learn a comprehensive

feature representation of a drug from substructures, while GMPNN-CS introduced gated mes-

sage passing neural network which learns chemical substructures with different sizes and

shapes from the molecular graph representations of drugs for DDIs prediction. However, the

gates are computed before the message passing, which means that they did not fully exploit the

molecular structure information.

In this study, we proposed a DDIs prediction approach called DGNN-DDI that uses dual

GNN to extract drug feature representation while taking into account drug substructure and

the interaction information between chemical substructure. To extract the molecular substruc-

tures features, we first constructed a directed message passing neural network with substruc-

ture attention mechanism (SA-DMPNN) by fully considering the flexible-sized and irregular-

shaped of drug molecules substructures. Second, we used co-attention mechanism [39] to

determine the importance weight by learning the interaction scores between the substructures

features of the two drugs. After that, we concatenated the weighted substructures features for

each drug to obtain the final feature, which was used to predict the potential interaction proba-

bility of the existing drugs and drugs. We evaluated our model using real-world dataset, and

the experiments demonstrated that our DGNN-DDI is superior in predicting the potential

DDIs. The method was applied to predict anti-COVID-19 drug combinations. The main con-

tributions of this work are summarized as the following:
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1. DGNN-DDI takes into account the key molecular substructure feature of the drugs, which

is conducive to learning high-quality features.

2. DGNN-DDI leverages the interaction information between chemical substructure to iden-

tify substructures with interactions, which can enhance the final feature of drug and also

contribute to improving the prediction accuracy of DDIs.

3. The method is applied to predict anti-COVID-19 drug combinations using real-world

dataset.

Results and discussion

Dataset

We evaluated the model performance in DrugBank [40], which is a unique bioinformatics and

cheminformatics resource that combines detailed drug data with comprehensive drug target

information. The dataset contains 1706 drugs and 191808 DDIs tuples classified into 86 inter-

action types, which describes how one drug affects the metabolism of another one. Each drug

is associated with their SMILES and we converted it into molecular graph using RDKit. In the

dataset, each drug pair is only associated with a single type of interaction.

Experiment setting

In our study, we split the dataset randomly into training (60%), validation (20%), and test

(20%) for the DDIs prediction task. The message passing steps T was searched from {1, 2, 3,

4, 5}, and the Multi-GNN layers L was searched from {1, 2, 3, 4,5}. Because of the model was

dual, T and L was determined to be 3 through subsequent parameter analysis. After parame-

ter analysis, we considered the following hyper-parameter settings. Dimension of hi in Eq 12

was searched from {32, 64, 128}. The model was trained on mini-batches DDI tuples tuned

from {128, 256, 512} using the Adam optimizer [41] with a learning rate lr tuned from {1e-2,

1e-3, 1e-4}. Additionally, an exponentially decaying scheduler of 0.96e(where e is the current

epoch) was set on the learning rate. We discovered that the best performance was obtained

when the T = L = 3, hi 2 R64, lr = 1e − 4 and batch size was 256. The number of epochs was

50. To avoid overfitting, we applied a weight decay of 5 × 10−4 for all methods. Like most of

the literatures [42,43], we trained the comparison methods with the same parameter settings

as DGNN-DDI, including learning rate, optimizer, batch size, weight decay, hidden dimen-

sion and number of epochs. But the message passing steps T or layers L was taken from origi-

nal manuscript. The performance metrices included accuracy (ACC), area under the curve

(AUC), F1-score (F1), precision (Prec), recall (Rec) and area under the precision and recall

curve (AUPR).

Comparative analysis with other methods

On the DrugBank dataset, we compared the proposed model with cutting-edge approaches to

verify its efficacy. Only chemical structural information is taken into account by these

approaches as an input, and combined drug-drug information is integrated in some way dur-

ing the learning process.

• SA-DDI [44]: a GNN that used a message-passing neural network and a substructure-sub-

structure interaction module to learn thorough and useful features. SA-DDI extracted fea-

tures with message passing step T = 10 for DDIs prediction.
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• SSI-DDI [34]: considered each node hidden features as sub-structures and then computes

interactions between these substructures to determine the final DDI prediction. SSI-DDI

stacked L = 4 layers of graph attention (GAT) for DDIs prediction.

• GMPNN-CS [35]: a GNN architecture that introduced gates message passing mechanism to

control the flow of message passing of GNN. GMPNN-CS learned chemical substructures

with message passing step T = 10 for DDIs prediction.

• GAT-DDI [35]: replaced the GNN architecture in GMPNN-CS with GAT for drug represen-

tations, which are directly used for DDI prediction. GAT-DDI learned chemical substruc-

tures with message passing step T = 10 for DDIs prediction.

Table 1 summarizes metric scores of all prediction models, and results demonstrate that

DGNN-DDI outperforms other methods on all metric scores for the DrugBank dataset, which

show the effectiveness of the proposed DGNN-DDI for DDI prediction.

To further analyze the performances of prediction models, we used Fig 1A–1F to display all

metric scores of different methods. These violin plots clearly show that DGNN-DDI produces

better performances for these metrices than the competing methods.

Moreover, we conducted a statistical analysis to test the differences between DGNN-DDI

and other state-of-the-art methods. We conducted statistical significance tests by using pre-

dicted scores, and paired t-test results are demonstrated in Fig 2. For the DDI prediction, the

Table 1. Comparison results in % of the proposed DGNN-DDI and baselines on the dataset.

ACC AUC F1 Prec Rec AUPR

GAT-DDI 0.7894 0.8653 0.8045 0.7676 0.8682 0.8398

GMPNN-CS 0.9485 0.9834 0.9495 0.9346 0.9725 0.9785

SA-DDI 0.9565 0.9868 0.9573 0.9472 0.9746 0.9834

SSI-DDI 0.8965 0.9541 0.8993 0.8763 0.9321 0.9420

DGNN-DDI 0.9609 0.9894 0.9616 0.9472 0.9788 0.9863

https://doi.org/10.1371/journal.pcbi.1010812.t001

Fig 1. Violin plots displaying metric scores of all models.

https://doi.org/10.1371/journal.pcbi.1010812.g001
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proposed method DGNN-DDI significantly (p-value < 0.05) improves the performances com-

pared to other state-of-the- art methods.

To further demonstrate the superiority of GNN-DDI, we set T = 3 or L = 3 for all compari-

son methods, which is consistent with DGNN-DDI. Fig 3 displays the ROC curves (receiver

operating characteristic curves) and P-R curves (precision-recall curves) of all models. Clearly,

DGNN-DDI performs best among all methods, demonstrating once more its strong potential

for DDIs prediction.

Parameter analysis

The parameters T and L have a significant impact on the extraction of substructures with vari-

able sizes and forms during the processing of molecular features learning. We tested all 25

combinations of steps T and layers L, as shown in Fig 4. The distribution of all metric scores

under all 25 combinations are shown in Fig 4A–4E, respectively. It can be seen that when

Fig 2. The significant difference between DGNN-DDI and other models in terms of predicted scores.

https://doi.org/10.1371/journal.pcbi.1010812.g002

Fig 3. The ROC curves and P-R curves of all models, where T = 3 or L = 3 for all models.

https://doi.org/10.1371/journal.pcbi.1010812.g003
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T = 1, L = 2; T = 2, L = 4; T = L = 3; T = 4, L = 2; T = 5, L = 2 all metric scores are superior to

other combinations. We further compared these five combinations, as shown in Fig 4F, when

T = L = 3 shows a better performance than other combinations.

The size of the batch is particularly significant since the DGNN-DDI is sampled and trained

in batches. It will be challenging to converge if the batch size is too small. While if the batch is

too large, a large amount of computation is required. As shown in Fig 5A, we investigated the

Fig 4. The effects of steps T and layers L.

https://doi.org/10.1371/journal.pcbi.1010812.g004

Fig 5. Parametric analysis. (A) Effects of batch size. (B) Effect of hidden dimension. (C) Effects of learning rate. (D)

The significance analysis of batch size in terms of predicted scores. (E) The significance analysis of hidden dimension

in terms of predicted scores. (F) The significance analysis of learning rate in terms of predicted scores.

https://doi.org/10.1371/journal.pcbi.1010812.g005
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impact of various batch sizes on the methodology. The method has the best performance when

the batch size is equal to 256. As demonstrated in Fig 5B and 5C, we also looked into how hid-

den dimensions and learning rates affected the performance of the model. Moreover, we con-

ducted a significance analysis to test the differences on different values of batch size, learning

rate and hidden dimension, respectively. Using predicted score, we conducted statistical signif-

icance tests, the paired t-test results are demonstrated in Fig 5D, 5E and 5F. For the three

parameters, when the hi 2 R64, lr = 1e − 4 and batch size is equal to 256, DGNN-DDI signifi-

cantly (p-value< 0.05) improves the performances compared to other values.

Ablation study

In our designs, the successful construction of the DGNN-DDI highly relies on D-MPNN with

substructure attention mechanism (SA-DMPNN) and interaction-aware substructure extrac-

tion (Multi-GNN). The substruction attention is used to extract substructures with arbitrary

size and shape. The relevance of substructure interactions with co-attention is expected to

enhance the model performance to the final DDI prediction. We conducted experiments by

removing the substructure-attention mechanism (SA) and/or co-attention layer (CA). Table 2

summarizes the contributions of SA and CA. The results show that both SA and CA are neces-

sary for DGNN-DDI.

Fig 6A–6C also shows that the model performs poorly without SA, CA, or SA and CA,

showing the necessity of SA and CA. Furthermore, we observed that the results decrease

Table 2. Investigating the contributions of substructure-attention mechanism and co-attention layer.

ACC AUC F1 Prec Rec AUPR

DGNN-DDI_no_SA 0.9072 0.9482 0.8979 0.8833 0.9155 0.9248

DGNN-DDI_no_CA 0.8882 0.9461 0.8915 0.8755 0.9413 0.9313

DGNNDDI_no_SA_CA 0.8858 0.9445 0.8898 0.8785 0.9308 0.9273

DGNN-DDI 0.9609 0.9894 0.9616 0.9472 0.9788 0.9863

https://doi.org/10.1371/journal.pcbi.1010812.t002

Fig 6. Analysis of the substructure attention mechanism (SA) and co-attention layer (CA). (A)-(C) The metric scores of

DGNN-DDI and without SA and/or CA. (D)-(F) The training and testing losses for DGNN-DDI and without SA and/or CA.

https://doi.org/10.1371/journal.pcbi.1010812.g006
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greatly when applying either SA or CA. However, the improvement of using both is larger

than the only one, highlighting the effectiveness of DGNN-DDI. Additionally, as demon-

strated in Fig 6D–6F, SA and CA can expedite training while also enhancing generalization

ability.

Visual explanations for DGNN-DDI

We conducted visual explanation-related experiments to rationalize the DGNN-DDI. To

investigate how the atom hidden vectors evolved during the learning process, we obtained the

similarity coefficient between atom pairs by measuring the Pearson correlation coefficient for

those hidden vectors. We chose the hidden vectors after the last iteration (i.e., hi in Eq 12). Figs

7 and 8 give two drugs with their atom similarity matrices during the learning process. The

cluster heat maps show some degree of chaos at the beginning and then clearly group into clus-

ters during the learning process where the corresponding substructures for clusters are

highlighted in the drugs. Taking Fig 7 as an example, we found that the atoms in sildenafil at

epoch 50 approximately separate into three clusters. This finding is in accordance with our

intuition regarding the sildenafil structure.

These results suggest that the DGNN-DDI can capture the structure information of a

molecule.

Furthermore, we investigated the performances of DGNN-DDI for each DDI type and cal-

culated the metric scores for interaction types independently by using predicted scores and

real labels. The performance metrics for each DDI type are shown in Fig 9. Among 86 DDI

types, DGNN-DDI achieves the highest AUC scores and the highest AUPR scores in 80 DDI

Fig 7. Heat maps of the atom similarity matrix for drug sildenafil.

https://doi.org/10.1371/journal.pcbi.1010812.g007

Fig 8. Heat maps of the atom similarity matrix for drug phenindione.

https://doi.org/10.1371/journal.pcbi.1010812.g008
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types (more than 85%). In general, Fig 9 demonstrates that DGNN-DDI produces good per-

formance in most of DDI types.

Case study

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has

triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus dis-

ease 2019 (COVID-19) [30]. However, the research and development of traditional medicines

for the new coronavirus are very expensive in terms of time, manpower, and funds. We

hypothesized that combining drugs with independent mechanisms of action could result in

synergy against SARS-CoV-2, thus generating better antiviral efficacy [45]. We prioritized 73

combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them

[46]. Twelve synergistic combination drugs were identified. To further investigate which sub-

structure among the 12 synergistic instances contributes most significantly to medication syn-

ergistic combos, we visualized the most crucial substructures for combination drugs.

Specifically, we first determine the indices (h, t) of the highest pairwise interaction score from

Eq 1:

ðh; tÞ ¼ argmaxi;jðĝ
ðiÞ
x Mrĝ

ðjÞ
y Þ i; j ¼ 1; . . . ; L ð1Þ

This can be extended to top k pairwise interaction scores for further analysis. To keep

the study simple, we used only the highest one(k = 1). (h, t) tells us that the substructures of

concern are from the h-th Multi-GNN layer for dx and t-th Multi-GNN layer for dy, which

were primarily responsible for the DDI outcome. We chose three atoms with the largest

substructures attention, which were described by Eq 13, as the center of the most vital

substructures.

Fig 10 show the results of this case study. Contributions of substructures are presented as a

heat map (map with green fill) of the molecular graph. Each row contains two pair of drugs,

for each pair of drugs, the indices h, tmeans the radius of a substructures. Therefore, in the

heat map, each substructure contribution is shown mainly concentrated around its center. We

Fig 9. Performance for each DDI type.

https://doi.org/10.1371/journal.pcbi.1010812.g009
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can see that the drug nitazoxanide with remdesivir, amodiaquine, emetine dihydrochloride

hydrate, arbidol and NCGC00411883-01 exhibiting significant synergy against SARS-CoV-2,

which is consistent with the result of a previous study [46]. When synergistic with different

drugs, the key substructures of drug nitazoxanide are basically the unified, and cresyl acetate

(‘CC (= O)Oc1ccccc1C’) or part of it can be found in all of them. However, the key substruc-

tures of drug arbidol are vary wildly. We hypothesized that this variety might be caused by var-

ious chemical substructures that function in various ways in the medication combinations

used to treat SARS-CoV-2, which was consistent with the notion put out that substructures

with various weights affect DDI prediction. Overall, these results highlight the utility of drug

repurposing and preclinical testing of drug combinations for discovering potential therapies to

treat SARS-CoV-2. Additionally, Fig 11 displays a map of pharmacological combinations with

results of their synergism.

Conclusion

This paper presented a novel molecular structure-based deep learning model DGNN-DDI for

predicting DDIs between a pair of drugs. The DGNN-DDI used the substructure attention

and co-attention mechanism to obtain the substructure with irregular size and shape, and

enhance the representation capability for the model. On DrugBank dataset, we contrasted the

suggested model with cutting-edge approaches to confirm its superiority. Moreover, we visual-

ized the atom similarity of certain molecules. Finally, we showed the key substructures for the

SARS-CoV-2 drug combinations as a case study. The visual interpretation results showed that

Fig 10. The key substructures contributing to the SARS-CoV-2 drug combinations. The center of the most

important substructure and its receptive field are shown as red circle and green colors respectively.

https://doi.org/10.1371/journal.pcbi.1010812.g010
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the DGNN-DDI was sensitive to the structure information of drugs and able to detect the key

substructures for DDIs. These advantages demonstrated that the proposed method improved

the performance and interpretation capability of DDIs prediction modeling.

Materials and method

This section gives the technical details of the DGNN-DDI. First, we defined the problem that

has to be resolved. Then, we presented the input representation and all involved computational

steps of our method. The overall framework is shown in Fig 12.

Problem formulation

The purpose of the DDIs prediction task is to develop an advanced model that takes two drugs

and an interaction type as input and generates an output indicating whether there exists an

interaction between them. Formally, given a dataset of DDIsM ¼ fðdx; dy; rÞig
N
i¼1

, where dx, dy
is taken from the drugs set D, r denotes the interaction type between two drugs, taken from the

interaction types set I. Our major objective is to find a model f: D × D × I! {0, 1}, which pre-

dicts the probability that this type of interaction will occur between the two drugs.

Input representation

The input of the model is a DDI tuple (dx, dy, r). Drugs dx and dy are both represented by

SMILES strings. We preprocessed the SMILES into graph using RDKit [47] as shown in Fig

13A, where the nodes representing atoms, while edges representing the bonds between the

atoms. Therefore, a drug is typically defined as a molecular graph G = (V, E), where V ¼
fvig

n
i¼1

is the set of nodes, and E ¼ fðvi; vjÞsg
m
s¼1

is the set of edges. Each node vi has a corre-

sponding feature vector xi 2 Rd. Similarly, while each edge eij = (vi, vj) has a feature vector xij 2
Rd

0

. The features used for atoms and bonds are given in the Table 3.

Fig 11. Drug combination to treat SARS-CoV-2.

https://doi.org/10.1371/journal.pcbi.1010812.g011
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Graph neural network

When a graph is represented as G = (V, E), a GNN maps a graph G to a vector hG 2 Rd usually

with a message passing phase and readout phase. As shown in Fig 13B and 13C, the message

passing phase updates node-level features by aggregating messages from their neighbor nodes

in G, and the readout phase generates a graph-level feature vector by aggregating all the node-

level features, which is used to predict the label of the graph.

Message passing phase. Given a graph G, we denoted the feature of node v at step t as

xðtÞv 2 R
d. We then updated xðtÞv into xðtþ1Þ

v 2 Rd using the following graph convolutional layer

[9]:

mðtþ1Þ

v ¼
X

u2NðvÞ
Mtðx

ðtÞ
v ; x

ðtÞ
u ; euvÞ ð2Þ

xðtþ1Þ

v ¼ Utðx
ðtÞ
v ;m

ðtþ1Þ

v Þ ð3Þ

where N(v) denotes the neighbors of v in graph G.Mt and Ut are the message functions and

node update functions, respectively.

Fig 12. The overview of proposed DGNN-DDI for DDI prediction. (A) The workflow of DGNN-DDI. (B) The

SA-DMPNN updates the node-level features with T steps where T is 4 in this example.

https://doi.org/10.1371/journal.pcbi.1010812.g012
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Readout phase. To obtain a graph-level feature hG, readout operation integrates all the

node features among the graph G is given in Eq 4:

hG ¼ Rðx
T
v : v 2 GÞ ð4Þ

where R is readout function, and T is the final step.

So far, the GNN is learned in a standard manner, which has third shortcomings for DDIs

prediction. First, the GNN extracts fixed-size substructures with a predetermined number of

layers, it is insufficient to capture the global structure of the molecules. As shown in Fig 14A, a

GNN with two layers is unable to know whether the ring exists in the molecule. Therefore, to

capture the structures make up of k-hop neighbors, the k graph convolutional layers should be

stacked. Second, a well-constructed GNN should be able to preserve the local structure of a

compound. As shown in Fig 14B, the methyl carboxylate moiety is crucial for methyl

Fig 13. Molecule representation and graph embedding. (A) Preprocessed the smiles into graph. (B) Graph message

passing phase. (C) Graph readout phase.

https://doi.org/10.1371/journal.pcbi.1010812.g013

Table 3. Atom and bond features.

atom feature Description Size

atom type [B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, meta 16 (one-hot)

degree number of covalent bonds [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 11 (one-hot)

hybridization [sp, sp2, sp3, sp3d, sp3d2] 5 (one-hot)

implicit valence implicit valence of the atom [0, 1, 2, 3, 4, 5, 6,] 7 (one-hot)

radical electrons number of radical electrons 1(integer)

formal charge formal charge of the atom 1 (integer)

aromatic whether the atom is part of an aromatic system 1 (integer)

bond feature Description Size

bone type [single, double, triple, aromatic] 4 (one-hot)

conjugated whether the bond is part of a conjugated system 1 (integer)

ring whether the bond is part of a ring 1 (integer)

https://doi.org/10.1371/journal.pcbi.1010812.t003
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decanoate and the GNN should distinguish it from the less essential substituents in order to

make a reasonable inference. Concretely, it is necessary to apply the attention mechanism to

the key substructures. Third, DDIs usually depend only on a few substructures of the whole

chemical structures. As depicted in Fig 14C, the interaction type of ‘blood calcium increased’

between drug pair ‘Carnitine’ and ‘Budesonide’ is caused by their partial important substruc-

tures [48]. It is feasible to break down DDIs into substructure–substructure interactions. The

following, we adopted directed message passing neural network with substructure attention

mechanism (SA-DMPNN) and interaction-aware substructure extraction to solve these three

limitations.

Directed message passing neural network with substructure attention

mechanism

The idea of substructure attention is to extract substructures with arbitrary sizes and shapes

and assign each substructure a unique score. We used the D-MPNN [2] with substructure

attention mechanism(SA-DMPNN) for molecule substructures extraction. The process is

shown in Fig 12B. During the t-th step, the SA-DMPNN extracts substructures with a radius of

t.
In the SA-DMPNN, each node will receive a message from the bond-level hidden feature.

For each node vi, the hidden feature at step t is hðtÞi 2 Rd, where hð0Þi ¼ xi, we used hðtÞij to repre-

sent a bond-level hidden feature with each bond ei!j. We initialized the bond-level hidden fea-

tures as

hð0Þij ¼Wixi þWjxj þWijxij ð5Þ

whereWi 2 Rh×d,Wj 2 Rh×d, andWij 2 Rh×d
0

are learnable weight matrices.

Fig 14. Both structure information and DDIs are important for GNN. (A) The sight of GNNs in the second layer is

shown in blue as we take the carbon with orange as the center. In this example, a GNN with two layers fails to identify

the ring structure of zearalenone. (B) The GNN should preserve local structure information (orange ellipse) (C) The

interaction type of ‘blood calcium increased’ between drug pair ‘Carnitine’ and ‘Budesonide’ is caused by their partial

significant substructures (elliptical parts).

https://doi.org/10.1371/journal.pcbi.1010812.g014
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At step t, we computed the bond-level neighborhood features for each node before utilizing

a substructure-aware global pooling, then we obtained its bond -level graph representation g(t).

The corresponding calculation equations are thus:

mðtÞi ¼
X

vj2NðviÞ
bijh

ðtÞ
ji ð6Þ

gðtÞ ¼
Xn

i¼1
mðtÞi ð7Þ

where SAGPooling [49] can be used to calculate βij. Given a graph with bond-level feature

matrix X and adjacency matrix A in which the nonzero position indicates that two bonds

share a common node, SAGPooling computes the importance vector βij as follows:

bij ¼ softmaxðGNNðA;XÞÞ ð8Þ

GNN is an arbitrary GNN layer for calculating projection scores. For each bond-level graph

representation g(t), the substructure attention score can be computed as follows:

eðtÞ ¼ wðtÞ � tanhðWgðtÞ þ bÞ ð9Þ

where� represents dot product, w(t) is a weight vector for step t. In order to make the coeffi-

cients of different steps easy to compare, we normalized e(t) by using the softmax function:

aðtÞ ¼
expðeðtÞÞ

XT

k¼1
expðeðkÞÞ

ð10Þ

where each α(t) 2 R1 indicates the importance of the substructures with a radius of t. After

updating bond-level hidden features T steps, we returned the final representation of hij by the

weighted sum of bond-level hidden features across all steps according to the following:

hji ¼
XT

t¼1
aðtÞhðtÞji ð11Þ

The substructure attention mechanism will make it possible that not all the nodes in a sub-

structure are considered equally, refining even further the type of substructures being learned.

Finally, we returned to the node-level features by aggregating the incoming bond-level fea-

tures as follows:

hi ¼ f ðxi þ
X

vj2NðviÞ
hjiÞ ð12Þ

where f is a multilayer perceptron, and hi contains the substructure information from different

receptive fields centering at i-th atom.

Interaction-aware substructure extraction

As mentioned above, shallow convolutional layers cannot capture global structure of the mole-

cules, in order to overcome this limitation, we stacked multiple SA-DMPNN blocks to obtain

substructure-level graph representation. The stacking structure is referred to as Multi-GNN

for the sake of simplicity in descriptions. The process is shown in Fig 12A.

For a given drug dx, suppose we have obtained the node-level features for each node in

molecular graph Gx from the SA-DMPNN. At each Multi-GNN layer l, the features of each

node are denoted as hðlÞi , then the representation of the substructure gðlÞx 2 Gx is therefore given

by the Eq 13, which is represented by aggregating the node features hðlÞi , each one weighted by

a learnable coefficient βi, which can be interpreted as its importance. The βi can be obtained by
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the SAGPooling.

gðlÞx ¼
Xn

i¼1
bih

ðlÞ
i ð13Þ

After obtaining all the substructure information gðlÞx and gðlÞy of the input drugs dx and dy
from all the Multi-GNN layers, we employed a co-attention mechanism to account for the

importance γij of each pairwise interaction between the substructures of Gx and Gy, which is

given by:

gij ¼ b
T tanhðWxg

ðiÞ
x þWyg

ðjÞ
y Þ i; j ¼ 1; . . . ; L ð14Þ

where b is a learnable weight vector,Wx andWy are learnable weight matrices. To prevent situ-

ations where similar substructures are given high ratings, we applied various weight matrices.

Furthermore, we updated the substructural features gðiÞx ; g
ðjÞ
y with γij, respectively, which is

formulated as follows:

ĝ ðiÞx ¼
XL

j¼1
gijg

ðiÞ
x i ¼ 1; . . . ; L ð15Þ

ĝ ðjÞy ¼
XL

i¼1
gijg

ðjÞ
y j ¼ 1; . . . ; L ð16Þ

Finally, the graph-level representation of dx can be computed by the following:

gx ¼
XL

l¼1
ĝ ðlÞx ð17Þ

The graph-level representation of dy(i.e., gy) can be calculated by using computational steps

similar to that described in Eq 17. As opposed to the global pooling that considers every sub-

structure equally important, we utilized the interaction information to enhance structure

information of dx and dy by assigning cross-substructure interaction scores. The overall

computational steps for graph-level representation of dx and dy are depicted in Fig 15.

Fig 15. The overall computational steps for graph-level representation of dx and dy.

https://doi.org/10.1371/journal.pcbi.1010812.g015
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Drug-drug interaction prediction

Given a DDI tuple (dx, dy, r), the DDIs prediction can be expressed as the join probability of

the tuple:

Pðdx; dy; rÞ ¼ sðg
T
x MrgyÞ ð18Þ

where σ is the sigmoid function, andMr is the learnable matrix representation of interaction

type r. The learning process of the model can be achieved by minimizing the cross-entropy

loss function [50], which is given as follows:

Loss ¼ �
1

M

XM

i¼1
yi logðpiÞ þ ð1 � yiÞlogð1 � piÞ ð19Þ

where yi = 1 indicates that an interaction exists between dx and dy, and vice versa; and pi is the

predictive interaction probability of a DDI tuple is computed by using Eq 18.
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