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Introduction: Fructooligosaccharides (FOS) are well-known carbohydrates

that promote healthy gut microbiota and have been previously demonstrated

to enhance levels of Bifidobacterium and Lactobacillus. Its bifidogenic

properties are associated with positive health outcomes such as reduced

obesity and anti-inflammatory properties, and, therefore, is in use as a

prebiotic supplement to support healthy gut microbiota. However, the gut

microbiota changes with age, which may lead to differential responses to

treatments with prebiotics and other dietary supplements.

Methods: To address this concern, we implemented a 24-h in vitro culturing

method to determine whether FOS treatment in three different adult age

groups would have a differential effect. The age groups of interest ranged

from 25 to 70 years and were split into young adults, adults, and older adults

for the purposes of this analysis. Metagenomics and short-chain fatty acid

analysis were performed to determine changes in the structure and function

of the microbial communities.

Results: These analyses found that FOS created a bifidogenic response in

all age groups, increased overall SCFA levels, decreased alpha diversity, and

shifted the communities to be more similar in beta diversity metrics. However,

the age groups differed in which taxa were most prevalent or most affected

by FOS treatment.

Discussion: Overall, the results of this study demonstrate the positive effects

of FOS on the gut microbiome, and importantly, how age may play a role in

the effectiveness of this prebiotic.
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Introduction

The gut microbiota is an important factor to consider
in general wellness and disease. It is well known that a
healthy gut microbial community functions to aid against
inflammation, gastrointestinal disorders such as irritable bowel
disease and ulcerative colitis, diabetes, and obesity to name
a few (1–4). Diet plays an important role in shaping the
gut microbial community in terms of structure and function,
and subsequently overall health of the host (2, 5, 6). The
gut microbiota also changes with age (7–10). As humans age,
certain members of the gut microbiome have been found
to become more dominant, including Bacteroides, Alistipes,
and Parabacteroides (11, 12). It has also been demonstrated
that, in healthy individuals, the overall uniqueness of the
gut microbial community increases with age and this pattern
continues in the elderly population as long as those individuals
remain healthy (11). However, the aging gut microbiome has
also been shown to become less diverse and is also less
stable, likely due to other age-related health factors (13).
Aging is also associated with a decrease in the abundance
of beneficial Bifidobacterium sp. (8, 10). A possible method
to increase Bifidobacterium sp. and the abundances of other
beneficial bacterial species is to include prebiotics, such as
Fructooligosaccharides (FOS), as a regular dietary intervention
(14, 15).

Fructooligosaccharides are common carbohydrates that
are found in many vegetables, such as onions, chicory root,
and garlic (16). They are also used to add non-digestible
carbohydrates (NDC) to processed foods and as an alternative
sweetener (17). The FOS are marketed as prebiotics that
promote gut health because they are undigested until they
reach the colon, where they are then metabolized by the
gut microbiota (14). The fermentation of FOS and other
prebiotics by the gut microbiota encourages the growth and
health of the gut microbial community (14, 18, 19). The
use of FOS as a dietary supplement has been associated
with an increase in the abundance of the Bifidobacterium
genus, which is an important member of the gut microbial
community starting from birth and continuing onward
throughout the aging process (8, 20). This bifidogenic property
of FOS when used as a prebiotic has been demonstrated
by several recent studies involving human participants (21–
23). The changes to the gut microbial community caused
by ingestion of FOS also cause changes in the metabolic
products of that community, especially the production of
short-chain fatty acids (SCFAs). SCFAs are the driver of
many of the beneficial health effects associated with the
gut microbial community including glucose homeostasis, the
integrity of the gastrointestinal tract, and host immunity
(24, 25).

Many studies related to FOS focus on its health benefits
overall as a general prebiotic. However, as the gut microbiome

field evolves, it has become increasingly clear that gut
microbiomes are unique to each individual, which poses a
problem as to which supplements or prebiotics may be most
useful for any one individual. It is also well known that gut
microbiomes change with age, which further complicates the
issue of which prebiotics may be best for a person to use. To
address the issue of age-related effects, we cultured gut microbial
communities from six individuals of three adult age groups
[young adult (25–35 year), adult (36–50 year), and older adult
(51–70 year)] for 24 h with 5 g/L of FOS to understand first,
how FOS may change the microbial communities overall, and
second, how it may change the communities based on age. The
dosage of FOS was decided based on previous work performed
both in vivo and in vitro, similar to a reasonable amount of
fiber supplementation in a day (26–29). To do so, the cultures
were subjected to 16S rRNA sequencing analysis, qPCR analysis,
and gas chromatography-flame ionizing detection to determine
changes in their structure and function. Taken together, we
found that FOS does cause changes in the structure and function
of the gut microbial community in all age groups with notable
age-dependent differences.

Materials and methods

In vitro culturing experiments

Fecal samples were obtained from 18 adults in 3 age groups
with 6 individuals for each group, young adult (25–35 years
of age), adult (36–50 years of age), and older adult (51–
70 years of age). All donors were screened for adverse health
conditions before use in this experiment. Exclusion criteria
included any GI disorders, current medication, pregnancy, or
lactation. Donors that were included had a BMI <30, were
non-smokers, and had not taken any probiotics, prebiotics, or
antibiotics for 3 months at a minimum. Once collected, the
fresh feces collections were homogenized in a phosphate buffer
containing 8.8 g/L K2HPO4; 6.8 g/L KH2PO4; 0.1 g/L sodium
thioglycolate; and 0.015 g/L sodium dithionite to create a fecal
slurry under anaerobic conditions as described previously (27,
28). This fecal slurry was used to inoculate 2 small cultures under
anaerobic conditions, one control, and one containing 5 g/L
Fructooligosaccharides (FOS) from chicory root (Sigma Aldrich,
Saint Louis, MO, USA). The basal nutritional media used for
both conditions contained the following commercially available
ingredients: 16.3 g/L KH2PO4, 5.2 g/L K2HPO4, 2.0 g/L Yeast
Extract, 2.0 g/L peptone, 2.0 g/L NaHCO3, 2.0 mL/L Tween80,
1.0 g/L mucin, 0.5 g/L L-cysteine and was made to a pH of 6.5.
The inoculated cultures were grown for a total of 24 h and kept
at 37◦C as described previously (27). Samples were harvested
from each culture at hours 0 (pre-treatment), 6, and 24 h. pH
was monitored through the experiment.
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Gas Chromatography-Flame Ionizing
Detection analysis of short-chain fatty
acids

Samples of the communities were harvested at 0-, 6-, and
24-h post-inoculation and subject to analysis for the abundance
of short-chain fatty acids (SCFA) and gas levels in the reactors.
SCFA analysis was performed as described previously using
the GC-2014 gas chromatography (Shimadzu) instrument
(30). Detected SCFAs included: propionate, butyrate, acetate,
valerate, isobutyrate, isovalerate, and isocaproate. Total
SCFAs were calculated through summation of all SCFA
levels, and total branch-chained SCFAs (BCFAs) were
calculated through summation of isobutyrate, isovalerate,
and isocaproate.

qPCR analysis of Bifidobacterium

Deoxyribonucleic acid was extracted from a 1 mL volume
of the microbial community that had been pelleted down using
a fast DNA spin kit for soil (MP Biomedical). The abundance
of the Bifidobacterium genus was determined using qPCR as
described previously (31, 32). Integrated DNA Technologies
(IDT) was our source of Primers and G-blocks that were
used for standards. These standards were run using 10× serial
dilutions from 1 × 107–1 × 102 copies/µL. The extracted
DNA was diluted 100× in qPCR grade water (Roche). Samples
were run in triplicate. Primers for this analysis were as
follows: forward Bif243F 5′-TCGCGTCYGGTGTGAAAG-3′

and reverse Bif243R 5′-CCACATCCAGCRTCCAC-3′ (31). The
conditions for qPCR analysis were as follows: 95◦C for 5 m,
followed by 40 cycles of 95◦C for 15 s, 64◦C for 15 s, and
72◦C for 30 s, and ended with 83◦C for 15 s accompanied by
a melting curve analysis. Results were analyzed using the Roche
Lightcycler software following the manufacturers guidelines to
obtain absolute quantification of Bifidobacterium.

Amplicon sequencing

16s rRNA sequencing was performed on the V1-V2 variable
region of the 16S rRNA gene for microbial analysis. PCR
reactions containing 0.5 µM of the primers, 0.34 U Q5 High-
Fidelity DNA Polymerase (New England Biolabs), 0.2 mM
dNTPs, and 2.5 µL of extracted DNA were carried out in
duplicate. Cycling conditions included: 1 cycle of 98◦C for 1 m;
25 cycles of 98◦C for 10 s, 56◦C for 20 s, and 72◦C for 20 s; 1 cycle
of 72◦C for 8 m. Following the amplification step, PCR products
were pooled and purified using SPRI beads. DNA was quantified
using PicoGreen and pooled together in equal amounts. The
Illumina MiSeq was used to sequence the final library using
2× 250 bp chemistry.

Bioinformatics and statistical analysis

Sequencing read QC and initial data processing was
performed using QIIME2 (33). DADA2 was used to process
read pairs to identify amplicon sequence variants (ASV)
(34) and taxonomy was assigned using the naïve Bayes
classifier implemented in scikit-bio (35) in comparison to
the Greengenes references database (36). MAFFT was used
to create a phylogenetic tree from the sequence data (37).
Alpha diversity metrics were calculated using the phyloseq,
ape, and picante packages in R (v. 4.1.3) (38) with helper
functions from github/twbattaglia/btools (39–41). Beta diversity
was calculated using the weighted UniFrac method (42, 43).
Principle components analysis of SCFA data was performed in
R using the “stats: prcomp” function with parameter scale = T
and plotted using the “factoextra: fviz_pca_biplot” function
(44). Visualizations were generated using the factoextra, vegan,
tidyverse, ggplot2, pheatmap, and RColorBrewer R packages
(44–48). Statistical analysis of differences by treatment or age
group was performed using ANOVA with Tukey’s HSD post-hoc
testing or multiple testing correction using the Benjamini–
Hochberg method. Metagenomic compositions of samples were
estimated using PICRUSt2 (49).

Results

FOS treatment increases short-chain
fatty acid accumulation

Gas Chromatography-Flame Ionizing Detection (GC-FID)
was applied to determine the abundance of short-chain fatty
acids (SCFAs), which is well-regarded as a healthy measure
of gut microbiota functionality. This data was analyzed using
principal component analysis (PCA) to determine the effect
of FOS on SCFAs that are commonly produced by the gut
microbiota (Figure 1). In Figure 1A, we illustrated this point
using all time points and visualized a clear divergence of FOS-
treated samples (red) from the untreated control samples (gray).
When these results were separated by timepoint (Figures 1B,
C), it became clear that SCFA accumulation was not immediate,
meaning we observed little difference yet at 6 h post-treatment,
but we did observe this significant and large change 24 h post-
treatment.

In Figure 1C, the control communities cluster to the left
of the PCA plot, driven by levels of branched-chain fatty acids
(BCFAs) and specifically of isobutyrate, isocaproate, caproate,
valerate, and isovalerate. With the addition of FOS, we observe a
shift to the right of this plot, driven by total SCFA accumulation,
specifically of butyrate, acetate, and propionate. This difference
in BCFA and SCFA accumulation, meaning the increase in
overall SCFA accumulation and no present increase in BCFA
accumulation, is apparent in bar plots in Figure 2. In fact, BCFA
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FIGURE 1

Fructooligosaccharides (FOS) supplementation induces a clear shift in short-chain fatty acid (SCFA) accumulation. Principal component analysis
(PCA) analysis of metabolite data. (A) PCA plot includes all timespoints (B) 6 h timepoint (C) 24 h timepoint. For all PCA plots: Data are scaled
(z-scored for each metabolite/measure) and ellipses represent a 95% interval for a normal distribution. The larger points represent the mean
value for each group.

levels are greater in control samples when compared with FOS-
treated samples after 24 h of incubation, though this difference
is not significant. These changes in SCFA accumulation do not
change with age group. When broken down by age group,
we found that butyrate was the only SCFA that was different
between age groups (Figure 2C). Butyrate increased in all age
groups, but it increased the least in the adult age group, and
it had the greatest concentration in the older adult age group.
We also compared proportions of those four key SCFA to total
SCFA concentrations in Figure 2D. In this part of the analysis,
we found that increases in acetate, propionate occur with FOS
treatment, even proportionally. However, butyrate and valerate
did not increase with FOS treatment.

FOS treatment had a distinct effect on
gut microbial community diversity

In addition to the functional analysis performed by
way of SCFA accumulation, we analyzed changes to the
microbial communities in response to FOS treatment in all
three age groups using 16S rRNA marker gene sequencing.
Alpha diversity was measured using three different methods,
Shannon’s Diversity, species richness, and Faith’s phylogenetic
diversity index (Figure 3). In all measurements of alpha
diversity, changes in the community that occur between hour
0 and hour 6 are negligible. However, once the 24-h timepoint is
reached, we observed a significant decrease across all measures
of alpha diversity with the addition of FOS. This decrease
in diversity shown by Shannon’s diversity metric does not
differ by age group (Figure 3A). However, for both species
richness (shown by the number of ASVs observed) and
Faith’s phylogenetic diversity index measurements we found a

significant difference in age groups driven by a much lower level
of alpha diversity in the young adult group compared with both
older adult groups (Figures 3B, C, yellow).

We also performed principal coordinate analysis (PCoA) of
weighted UniFrac distances using 16S rRNA gene sequencing
data (Figure 4). Figure 4A shows all time points and age
groups together: there was slight divergence by age group, but
no divergence by treatment. In Figure 4C, however, in the
Procrustes analysis of Bray-Curtis dissimilarity, the chart is
separated by communities at either 6 h of incubation or 24 h of
incubation. In this figure, we show the control (blank) samples
connected to the FOS-treated communities from the same
donor and observed that most communities are grouped by the
donor and not by treatment. What is interesting about this figure
is that the FOS-treated samples (closed circles) appeared to be
converging together in this measure of beta diversity compared
with the untreated control, suggesting that the FOS-treated
samples were becoming more similar over time.

To determine whether FOS affected the functional capacity
of the community and not simply the phylogenetic composition,
we used PICRUSt to infer both the functions and the abundance
of those functions within the gut microbial communities.
Repeated beta diversity analysis using the abundances of
estimated KEGG functions in place of ASV abundances
demonstrated that the young adult group clusters apart from the
two other age groups in terms of function (Figure 4B), which
is different from what is seen in Figure 4A with phylogenetic
composition alone. There is no significant difference here
in terms of FOS treatment compared with control. This
indicates that while FOS is changing the microbial community
phylogenetically, it is not changing the functional capacity of
this community.
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FIGURE 2

Fructooligosaccharides (FOS) addition stimulates short-chain fatty acid (SCFA) rather than branch-chained SCFA (BCFA) accumulation in fecal
incubations. Concentration of SCFA measured by GC-FID. Branched chain fatty acid concentration (BCFA) compared with short-chain fatty acid
(SCFA) concentration at 6 h (A) and 24 h (B). For all age groups, FOS-treated samples have significantly higher levels of SCFA than control
(p < 0.001, ANOVA, Tukey post-hoc test) (A,B). (C) Shows individual SCFA concentrations of acetate, propionate, butyrate, and valerate.
FOS-treated samples have significantly higher levels of acetate and propionate for all age groups, and butyrate for older adults only. (p < 0.008,
ANOVA, Tukey post-hoc test). (D) Shows proportion of those individual SCFAs compared with total SCFA.

FIGURE 3

Alpha diversity differs significantly with Fructooligosaccharides (FOS) treatment and with donor age. Three alpha diversity measures shown;
(A) Shannon’s Diversity (B) Number of ASVs observed, (C) Faith’s phylogenetic diversity index. Significance was determined using ANOVA with
Tukey post-hoc test. Significance in all 3 at 24-h post inoculation with p < 0.001 in all cases. For (B,C), alpha diversity also differs significantly by
age group (p < 0.001).

FOS significantly decreased the
abundance of specific taxa

Using the 16S rRNA sequencing data, we also searched
for specific bacterial taxa that changed in relative abundance
due to treatment with FOS. We identified only four members

of the microbial communities whose abundance significantly
decreased in response to FOS treatment, despite their low
abundance in the communities (Figure 5). The first was
genus Odoribacter, which decreased in relative abundance when
treated with FOS in the adult and older adult age groups,
but it did not significantly decrease in abundance in the
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FIGURE 4

Community-level shifts in diversity are donor-specific and are minimal in a 24-h incubation. (A) Principal coordinates analysis of weighted
UniFrac distance shows some divergence by age group but no clustering by treatment. (B) PICRUSt analysis using Bray-Curtis NMDS analysis.
(C) Procrustes analysis on Bray-Curtis dissimilarity shows that most samples group by donor despite treatment. Procrustes analysis was
significant p < 0.001 with matrix (treated/control) correlation of 0.6359. Filled circles are FOS-treated, open circles are controls. Same-donor
pairs are connected by lines.

young adult age group. The second taxa member was genus
Bilophila, which decreased significantly in all age groups after
24 h of incubation with FOS. Unclassified members within the
family Lachnospiraceae were the third member of the taxa that
significantly decreased in response to FOS. Genus Oscillospira
was the final member of the taxa that significantly decrease in
abundance in the communities treated with FOS. In this case, it
was most prevalent in young adults and adults. Oscillospira did
decrease in abundance in the older adult age group, but there
was some overlap between the control and treatment groups.

While the overall relative abundance of the above taxa that
significantly decreased in the community with FOS treatment
was small, there was the possibility that gaps are left in
community function by their absence. To explore this idea,
we found taxa that were in the highest abundance in the
FOS-treated groups, particularly those that were increased at
24 h of incubation. This group, shown in Figure 6, included
members that were expected to be highly abundant, such as

Bacteroides, Megamonas, Collinsella, and Ruminococcus. Each
of these members increased in abundance with FOS treatment,
though that increase was not statistically significant. Two
of these community members increased in an age-group-
dependent manner. Bacteroides increased in abundance in the
young adult group only. Collinsella and Ruminococcus increased
in abundance in all age groups. However, Megamonas did not
increase in abundance in young adults (although it appears to be
nearly non-existent in the young adult microbial communities)
but did increase in both the adult and elder-adult age groups.

Bifidobacterium abundance increased
significantly with FOS treatment

Due to primer mismatches, the 16S rRNA target gene
sequence analysis as performed using V1/V2 regions for
the overall community analysis above does not accurately

Frontiers in Nutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.1058910
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1058910 January 10, 2023 Time: 10:41 # 7

Mahalak et al. 10.3389/fnut.2022.1058910

FIGURE 5

Significant taxa by treatment. Relative abundance of these taxa were determined by 16S rRNA sequencing. Significance was determined using
ANOVA with Tukey’s HSD post-hoc testing. (A) Odoribacter; (B) Bilophila; (C) Lachnospiraceae of unclassified genus; (D) Oscillospira.

detect taxa within Bifidobacteriales. However, Bifidobacterium
abundance is of particular interest when addressing the effect
of FOS on the gut microbiota (50). To address this issue, we
performed a qPCR analysis targeting Bifidobacterium to find
whether the addition of FOS impacted abundance. After 24 h
of incubation, there was an increase in Bifidobacterium across
all age groups (Figure 7). The increase found in young adults
was the least consistent across donors. The adult age group
also showed a real, but not statistically significant increase
in Bifidobacterium in some of the donors. The older adult
group, however, has the largest increase in Bifidobacterium
which was also statistically significant. This is an important

finding, because Bifidobacterium is known to decrease with
age, is associated with good health of the gut microbiota, and
has been demonstrated to support a proper immune system
(8, 15, 51).

SCFA abundance correlated with taxa
abundance gives insight into FOS
metabolism

Next, we performed a Pearson correlation of identified
taxa with SCFA concentrations to find any specialization of
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FIGURE 6

Most abundant taxa in the Fructooligosaccharides (FOS)-treated group. Relative abundance of these taxa were determined by 16S rRNA
sequencing. Significance was determined using ANOVA with Tukey’s HSD post-hoc testing. (A) Bacteroides; (B) Megamonas; (C) Collinsella;
(D) Ruminococcus.

SCFA correlation within taxa. We detected a pattern with
specific taxa and the most abundant SCFAs found in the
cultured gut microbiome communities, acetate, propionate,
and butyrate (Figure 8). We found a clustered group of taxa
that were negatively correlated with these SCFAs as well as
in gas concentration. The taxon with the largest negative
correlation was Lachnospiraceae (of unclassified genus), which
was also a taxon that significantly decreased in response to FOS.
Other community members that were negatively correlated
with SCFA accumulation included: Enterobacteriaceae (of
unclassified genus), Ruminococcaceae (of unclassified genus),
and Lachnospiraceae Clostridium. Many taxa had a positive
correlation with SCFA concentration, including some specific

Lachnospiraceae members, such as Blautia, Coprococcus, and
Ruminococcus. Collinsella also had a positive correlation with all
SCFAs shown in Figure 8, which was identified in Figure 6 as a
member that increased with the addition of FOS.

Following this analysis, we performed a PICRUSt2 analysis
of the 16S rRNA sequencing data to discover genes that are
associated with FOS metabolism. In Figure 9, we illustrated
a suggested pathway involved in FOS and inulin metabolism,
including which members of the gut microbial community
found in this study may be involved in each step. In the figure,
red indicates the bacteria that are positively correlated with
SCFA concentrations in Figure 8. The results of our analysis
indicated that genus Bacteroides and genus Prevotella may be
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FIGURE 7

Bifidobacterium increase significantly with Fructooligosaccharides (FOS) treatment. Absolute abundances of Bifidobacterium increase with FOS
treatment using qPCR.

involved in the metabolism of FOS and inulin to 1-kestotriose.
There are more taxa with genes associated with the metabolism
of inulin to inulobiose present in these communities, however,
including genus Megamonas, Erysipelotrichaceae of unclassified
genera, genus Clostridium, genus Dorea, and genus Collinsella.
Of these, Megamonas, Erysipelotrichaceae, and Dorea are
positively correlated with butyrate, Clostridium and Collinsella
are positively correlated with Acetate, and Megamonas and
Collinsella are positively correlated with propionate.

Discussion

Diet and nutrition are important factors that impact the
gut microbiota, which in turn impacts human health. Over
the past several decades, the diets available around the world
have changed, some of which are positive, for example, greater
nutritional availability in terms of energy available from foods
and more diverse options due to global commerce (52). Other
aspects of these changes can adversely affect health, such as an
increase in calorie-dense food with low nutritional value and
an increase in highly processed foods like sweetened beverages
(21). Those changes, combined with an increasingly sedentary
lifestyle are just a few of the many factors that are associated

with poor overall health (21, 53). These dietary shifts have
corresponded to some general trends in the gut microbial
population, including decreases in bacterial diversity that are
often associated with poor health outcomes. Recent studies
in humans have found that the western diet decreases gut
microbial diversity with a subsequent decrease in the range of
mono- and polysaccharides that can be digested by the gut
microbiota (54, 55). A recent study in rats found that the
addition of a western diet rapidly changed the gut microbiome to
a state of dysbiosis and increased markers of inflammation (56).
Taken together, this phenomenon helps to explain the current
interest in improving gut microbiota health and the interest in
prebiotics. FOS in particular is well-known to have bifidogenic
effects and to increase SCFA abundance in the gut microbiota,
which has made it a popular choice as a prebiotic.

In this study, we found that treatment of the gut
microbial communities with FOS created a clear shift in SCFA
accumulation compared with control after 24 h of incubation.
We also found that BCFA accumulation was not significantly
affected by this treatment, though there was a slight decrease
with FOS treatment. This is similar to a previous finding that
FOS significantly decreases BCFA abundance after at least 48 h
of treatment (26). BCFAs have been found to increase with
more protein-heavy diets and decrease with the addition of
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FIGURE 8

A conserved group of taxa correlated with short-chain fatty acid (SCFA) concentrations, with apparent specialization by taxon. Heatmap of
Pearson correlations of taxa (family-genus) with SCFA concentrations and gas production. Only taxa having an average relative abundance of at
least 0.1% across all samples are included. Samples and metabolites are clustered hierarchically.

complex carbohydrates (57). It may be that given more time
the accumulation of BCFA would have decreased significantly
in the FOS treatment group compared with control. This study
illustrated that the high abundance SCFAs, including acetate,
propionate, and butyrate are highly influenced by the addition
of this prebiotic. This is in keeping with other findings of
in vitro batch culture experiments using FOS treatment (26–
29). However, it is in contrast with a recent finding from a
clinical trial where FOS decreased the amount of butyrate in

fecal microbiome samples after 14 days of treatment (58). It is
possible that in vivo the excess butyrate produced is used by
other intestinal tissue or other members of the gut microbial
community that are removed or unable to be cultured in vitro.
The overall changes in SCFA abundance were not different
between age groups. The exception to this was butyrate, which
was higher in abundance in the older adults group compared
with the young adult and adult groups and was increased the
least in the adult age group.
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FIGURE 9

Genes associated with Fructooligosaccharides (FOS) metabolism are encoded within taxa correlated with short-chain fatty acid (SCFA)
concentrations. PICRUSt2 analysis of 16S rRNA indicates taxa likely to possess genes involved in FOS and inulin metabolism. The largest
contributors of these genes in the samples are those taxa associated with SCFA concentrations. A, acetate, P, propionate, B, butyrate. Red fill
indicates Pearson correlation ≥ 0.2.

The results of our genomic analyses showed that FOS
decreased alpha diversity across all measures and all age groups,
but this change was most pronounced in the young adult group.
This finding is in contrast with a recent in vivo study that found
FOS had no impact on the alpha diversity of young adults (58).
In previous work with young adults and FOS, researchers found
that FOS increased the Bifidobacteria present but decreased the
butyrate production in young people (35, 58). Conversely, in this
study, the abundance of Bifidobacteria did increase with FOS
treatment, in conjunction with an increase in the production
of beneficial butyrate. This study also found that the addition
of FOS to the microbial communities caused a shift to make
them more similar to each other after 24 h, regardless of age
group. When analyzing beta diversity using functional analysis
instead of phylogenetic analysis, however, it was discovered that
FOS did not change the functionality of the communities, but
that the young adult group did cluster away from the adult and
older adult groups.

Next, four taxa were identified that significantly decreased
in response to FOS treatment. The first was genus Odoribacter,
which has also been found to decrease in response to daily
orange juice consumption and increase in patients with
cognitive impairment (59, 60). The second was Bilophila,
which has been found to promote the production of
lipopolysaccharides (LPS), the overproduction of which is
associated with negative health outcomes, such as inflammation
and obesity (4, 61). Bilophila has also been found to decrease in
abundance in mice when their diets were supplemented with
adzuki bean (62).

Members of the Lachnospiraceae family that were otherwise
unclassified by our methods were also found to decrease in

response to FOS, which is a well-studied, complex family of
microorganisms whose many members are known to have a
great impact on gut health, however, since this grouping is not
identified we will not speculate further on their role (63).

Overall, we found that several abundant taxa were
correlated with SCFA analysis and known to carry genes
that are involved in FOS metabolism pathways. Some of the
taxa that are associated with these pathways, especially the
inulobiose pathway, are prevalent members of the community
that increased in response to FOS (64). These members
include Collinsella, Megamonas, and Ruminococcus, as well as
Bacteroides. Of these, Bacteroides and Collinsella were greater in
abundance in the young adult age group, whereas Megamonas
was more prevalent in the adult and older adult age groups.

As a whole, this study found that FOS treatment modulated
the gut microbiome community in a similar, but age-dependent
manner. In all groups, we found an increase in SCFA production
and abundance over 24 h with FOS treatment, a decrease in all
measures of alpha diversity, and a converging of communities
in beta diversity measurements. FOS treatment caused the
expected bifidogenic effect in all age groups, with the largest
increase in the older adult age group. After analysis of the
microbial community compositions and their functions, we
found that prevalent taxa in the communities are known
participants in the metabolism of FOS, and their abundance is
varied in the three age groups. Our findings indicate that FOS
changes the gut microbial community, community changes are
specific to age, and the function of the microbial community
in terms of FOS metabolism is taken over by alternate, age-
dependent taxa.
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