Table 5.
Accuracy of SVM, BN, KNN, CapsNet, and CNN networks in image classification by ten features, including subband power, mean, standard deviation, zero-crossing rate, fractal dimension, entropy, and correlation dimension.
| Classifiers | Features | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Power theta | Power alpha | Power beta | Power gamma | Mean | Standard deviation | Zero-crossingrate | Fractal dimension | Approximate entropy | Correlation dimension | SAETM | |
| SVM | 0.5132 ± 0.02 | 0.5818 ± 0.01 | 0.4363 ± 0.06 | 0.5527 ± 0.01 | 0.3280 ± 0.13 | 0.3620 ± 0.02 | 0.4750 ± 0.12 | 0.5145 ± 0.03 | 0.4239 ± 0.05 | 0.3840 ± 0.01 | 0.7536 ± 0.01 |
| BN | 0.4746 ± 0.13 | 0.5373 ± 0.02 | 0.5248 ± 0.05 | 0.4323 ± 0.01 | 0.4129 ± 0.01 | 0.3359 ± 0.01 | 0.3984 ± 0.03 | 0.4719 ± 0.11 | 0.3487 ± 0.15 | 0.4602 ± 0.04 | 0.6906 ± 0.12 |
| KNN | 0.5601 ± 0.02 | 0.4982 ± 0.12 | 0.4880 ± 0.05 | 0.3760 ± 0.05 | 0.3717 ± 0.01 | 0.3129 ± 0.04 | 0.4573 ± 0.04 | 0.3985 ± 0.03 | 0.4604 ± 0.04 | 0.4228 ± 0.02 | 0.7158 ± 0.04 |
| CNN | 0.6534 ± 0.03 | 0.6710 ± 0.04 | 0.5730 ± 0.07 | 0.5915 ± 0.04 | 0.4872 ± 0.06 | 0.3916 ± 0.01 | 0.4716 ± 0.02 | 0.5610 ± 0.04 | 0.5201 ± 0.07 | 0.5072 ± 0.12 | 0.8305 ± 0.02 |
| CapsNet | 0.6721 ± 0.06 | 0.6430 ± 0.11 | 0.5928 ± 0.02 | 0.6592 ± 0.07 | 0.5340 ± 0.16 | 0.4924 ± 0.12 | 0.5935 ± 0.04 | 0.6026 ± 0.15 | 0.5873 ± 0.02 | 0.6453 ± 0.13 | 0.8159 ± 0.01 |
| Average (ACC) | 0.5747 ± 0.052 | 0.5863 ± 0.06 | 0.5230 ± 0.05 | 0.5223 ± 0.036 | 0.4268 ± 0.074 | 0.3790 ± 0.04 | 0.4792 ± 0.05 | 0.5097 ± 0.072 | 0.4681 ± 0.066 | 0.4839 ± 0.064 | 0.7613 ± 0.04 |