
Sequence analysis

A Boolean algebra for genetic variants

Jonathan K. Vis 1,2,*, Mark A. Santcroos 1,3, Walter A. Kosters 2

and Jeroen F.J. Laros 1,4

1Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands, 2Leiden Institute of Advanced

Computer Science, Leiden University, 2333 CA Leiden, The Netherlands, 3Department of Clinical Genetics, Leiden University Medical

Center, 2333 ZC Leiden, The Netherlands and 4National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The

Netherlands

*To whom correspondence should be addressed.

Associate Editor: Tobias Marschall

Received on May 24, 2022; revised on December 6, 2022; editorial decision on December 23, 2022; accepted on January 2, 2023

Abstract

Motivation: Beyond identifying genetic variants, we introduce a set of Boolean relations, which allows for a
comprehensive classification of the relations of every pair of variants by taking all minimal alignments into account. We
present an efficient algorithm to compute these relations, including a novel way of efficiently computing all minimal
alignments within the best theoretical complexity bounds.

Results: We show that these relations are common, and many non-trivial, for variants of the CFTR gene in dbSNP.
Ultimately, we present an approach for the storing and indexing of variants in the context of a database that enables
efficient querying for all these relations.

Availability and implementation: A Python implementation is available at https://github.com/mutalyzer/algebra/tree/
v0.2.0 as well as an interface at https://mutalyzer.nl/algebra.

Contact: j.k.vis@lumc.nl

1. Introduction

DNA sequencing aims to measure the genetic makeup of individuals.
Without going into details about the many different technologies,
these processes determine (fragments of) the genetic sequence.
Commonly, the primary data analysis consists, among other steps,
of (i) alignment against a reference genome, e.g. GRCh38 for human
samples and (ii) variant calling. The primary result is a list of var-
iants, i.e. a set of differences, which is specific for the measured indi-
vidual (sample), often reported in a tabular file like the variant call
format (VCF) (Danecek et al., 2011). These variants are used in sub-
sequent applications ranging from fundamental and association re-
search studies to clinical diagnostics. It is advantageous to look only
at differences (with regard to some reference), as the genome is usu-
ally large (ca. 3 � 109 nucleotides for humans), but the individual
differences between two genomes are relatively small [ca. 0.6%
(1000 Genomes Project Consortium, 2015)].

When variants are associated with phenotypic traits, they are
reported in literature and stored with their annotation in (locus-spe-
cific) databases. Usually, the representation of the variant in VCF is
refined to a representation more suitable for reporting. For this,
many (domain-specific) languages exist. Most notable are:

• Recommendations of the Human Genome Variation Society

(HGVS) (den Dunnen et al., 2016);

• SPDI (Holmes et al., 2020), the internal data model for variants

used by the National Center for Biotechnology Information

(NCBI);
• Variant representation specification (VRS) (Wagner et al., 2021),

developed by the Global Alliance for Genomic Health

(GA4GH).
These languages attempt to represent the observed differences in a
human-understandable and/or machine-interpretable manner and,
whereas VCF is implicitly tied to the tooling and configuration used
in the primary data analysis, these representations are process ag-
nostic and universally interpretable.

Within the domain of variant recording, some simplifications are
common. First, small (local) variants on a single molecular sequence
(part of the same haplotype) are recorded separately, because this is
convenient when storing large numbers of variants in databases.
Phasing information, i.e. whether small variants are part of the same
haplotype, is often lost or incomplete. This is partially a direct con-
sequence of the sequencing technology and partially because this in-
formation is removed. Second, in some representations (notably,
HGVS) uncertainties might be expressed. Usually, the uncertainties
relate to the positioning of the variant within the reference genome
but also the exact makeup of larger insertions might be unknown.
Finally, unchanged regions may be implicit. During primary data

VC The Author(s) 2023. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(1), 2023, btad001

https://doi.org/10.1093/bioinformatics/btad001

Advance Access Publication Date: 3 January 2023

Original Paper

https://orcid.org/0000-0002-5815-9116
https://orcid.org/0000-0001-8414-2548
https://orcid.org/0000-0001-8860-0390
https://orcid.org/0000-0002-8715-7371
https://github.com/mutalyzer/algebra/tree/v0.2.0
https://github.com/mutalyzer/algebra/tree/v0.2.0
https://mutalyzer.nl/algebra
https://academic.oup.com/


analysis, in particular the alignment step, the sequence from the ref-
erence genome is assumed to be present even when direct evidence,
e.g. coverage information from the sequencing process, is lacking.

For the remainder of this article, we adopt a strict view on the
nature of variants:

1. A variant consists of deletions, insertions or a combination

thereof with respect to a single molecular sequence. When these

operations occur in combination, they are said to be phased, in

cis or part of the same allele and can be written down as phase

sets or allele descriptions. Many variant description languages

have introduced higher-order operations like single nucleotide

variants (SNV) (called substitutions in HGVS), multi-nucleotide

variants (deletion/insertions), duplications, transpositions, inver-

sions, repeats, etc. We consider all of these notions to be special

cases of the definition given above.

2. We consider only interpretable variants, i.e. given a reference se-

quence, there is a deterministic and unambiguous way of ‘apply-

ing’ the variants such that the result is the (originally) measured

observed sequence, cf. the Unix diff and patch utilities.

As is already observed within the various variant representation lan-
guages, it is often possible to have multiple representations describ-
ing the same observed sequence. These possibilities can originate
from the choice of ‘operator’, e.g. an SNV can also be represented
by a deletion of one nucleotide followed by an insertion of another
nucleotide. Another source contributing to the number of possibil-
ities is the structure of the reference sequence. Consider the reference
sequence ATTTA and the observed sequence ATTA. One of the sym-
bols T is removed, to say which one specifically yields a number (3)
of possibilities. To determine a universally accepted representation
of a variant, most variant representation languages employ a nor-
malization procedure. Normalization chooses a canonical represen-
tation from the set of possibilities. Unfortunately, this procedure is
not standardized over the various languages, e.g. the 30-rule in
HGVS versus the 50-rule in VCF. Within a certain language, how-
ever, proper normalization solves the problem of identifying equiva-
lent variant representations. The implications of using non-
normalized variant representations have been reviewed in Yen et al.
(2017), Eisfeld et al. (2019), Pandey et al. (2012) and Allot et al.
(2018). Solutions to this problem are presented in Tan et al. (2015),
Bayat et al. (2017), Watkins et al. (2019), Talwalkar et al. (2014),
Lee et al. (2019), Kozanitis et al. (2014), Liu et al. (2019) and
Wittler et al. (2015). Often, dedicated tooling (Freeman et al., 2018;
Kopanos et al., 2019; Lefter et al., 2021; Vis et al., 2015) is needed
to rigorously apply the proposed normalization procedure.
Normalized variant representations can be textually compared using
standard string matching.

Arguably, identification of equivalent variant representations,
i.e. determining whether two variant descriptions result in the same
observed sequence, is currently the most interesting query in the
variant domain, as it allows for the grouping and matching of
equivalent variants and their annotations. With the advent of long-
read single molecule sequencing technologies (provided by platforms
such as those manufactured by Pacific Biosciences and Oxford
Nanopore), which are capable of providing direct evidence of nu-
merous small variants that are part of the same haplotype, a richer
set of questions arises. For example, the identification of suballeles,
which is of interest in the fields of molecular microbiology (strain
typing) and pharmacogenomics (star allele calling), can be achieved
by determining whether the suballele of interest is contained within
the observed allele.

Minimal sequence-level alignments, informally defined as
sequences of deletions/insertions that transform one string into an-
other, having the shortest length possible, are used to define rela-
tions between given variants of the same reference sequence.
Figure 1 shows an example. In Section 2, we precisely define how
the relations depend on the set of all alignments between the two

sequences. In the example situation, the containment relation takes
precedence over the overlap relation.

In this article, we explore the relations of variants in an exhaustive
manner. In addition to the equivalence relation, we partition the do-
main of binary variant relations into Boolean relations: equivalence;
containment, i.e. either a variant is fully contained in another or a vari-
ant fully contains another; overlap, i.e. two variants have (at least) one
common element; and disjoint, i.e. no common elements. Because of
this partitioning, exactly one of the aforementioned relations is true for
every pair of variants. For determining the relation, we consider all
(minimal) variant representations simultaneously.

2. Formalization

Formally, a variant representation is a pair ðR;uÞ, where R is a
string, a finite sequence of symbols from a non-empty finite alpha-
bet, e.g. R ¼ fA;C;G;Tg, called the reference sequence, and u is a fi-
nite set of operations transforming the string R into the string O, the
observed sequence. The length of a string S, denoted by jSj, is the
number of symbols in S. We refer to the symbol on position i of
string S as Si, with 1 � i � jSj. This notation is extended in the nat-
ural way for substrings of S, i.e. Si...j represents the string containing
the contiguous symbols Si; . . . ; Sj, with 1 � i < j � jSj.

Note that the set of operations is dependent on the variant repre-
sentation language used. The actual problem of transforming a ref-
erence sequence into an observed sequence is, for instance, handled
in Lefter et al. (2021).

The difference between the reference sequence (R) and the
observed sequence (O) is the ‘actual’ variant, which is, to some ex-
tent, independent from the original representation (u) as we take all
minimal representations into account. To this end, we perform a
global pairwise alignment between R and O. In contrast to the speci-
alized alignment methods used in, for instance, the context of short
read sequencing, we use an elementary form of alignment which is
close to a commonly used distance metric, the Levenshtein distance
(Levenshtein, 1966). The simple edit distance, i.e. the Levenshtein
distance without substitutions and weighing both deletions and
insertions as 1, is defined as the minimal number d(R, O) of dele-
tions and insertions to transform string R into string O. It can be
determined by dðR;OÞ ¼ DðjRj; jOjÞ, given by the recurrence rela-
tion with 1 � i � jRj and 1 � j � jOj:

Dð0;0Þ ¼ 0;
Dði;0Þ ¼ i;
Dð0; jÞ ¼ j;

Dði; jÞ ¼
Dði� 1; j� 1Þ if Ri ¼ Oj;

min
Dði� 1; jÞ þ 1;
Dði; j� 1Þ þ 1

otherwise:

�8<
:

8>>>>>>><
>>>>>>>:

(1)

The simple edit distance is related to the Longest Common
Subsequence (LCS) problem (Bergroth et al., 2000):

� � � �

� �

Fig. 1. The top panel shows alignments for two variants, GATCCTG and

GATCTG, with the same reference sequence GAATCG, where the changes (*com-

mon to both, †unique for one of them) suggest overlap. The bottom panel shows

these same variants, but now obtained through different alignments, where the

changes this time suggest that the left variant contains the right one

2 J.K.Vis et al.



Dði; jÞ ¼ iþ j� 2 � jLCSðR1...i;O1...jÞj: (2)

Commonly, the recurrence relation is computed using a dynamic
programming approach by filling a matrix containing the solutions
to Equation (1) in a bottom-up fashion (Wagner and Fischer, 1974).
Consider the computation of the simple edit distance between R ¼
CATATATCG and O ¼ CTTATAGCAT in Figure 2. The simple edit
distance DðjRj; jOjÞ ¼ 7 is given by the bottom-right element.

Informally, a representation of string O with respect to string R
(the reference) is a well-defined algorithm to transform R into O.
Formally, it consists of single symbol deletions/insertions (opera-
tions) at well-defined string positions from R. In the case of inser-
tions, the inserted symbol is also provided; for deletions this is
optional. Note that the order of the insertions matters, but deletions
can be performed in any order. An easy way to achieve all this is by
indexing the positions in R (1; 2; . . . ; jRj) and providing each oper-
ation with the appropriate index from this original numbering.
Operations then take place after the position mentioned, where
index 0 is used for insertions at the beginning. The ordering issue for
insertions can also be resolved by combining the symbols of all inser-
tions at the same position into one string in the desired order.

Note that many languages, like HGVS (den Dunnen et al.,
2016), can be used to accomplish the same result. As an example,
8_9insA denotes the insertion of symbol A after the eighth symbol
of R. Likewise, 7delT represents a deletion of the symbol T at
Position 7 of R. Together they constitute the representation
½7delT;8 9insA�, yielding the string O ¼ CATATACAG from refer-
ence R ¼ CATATATCG.

A minimal representation is a representation with the smallest
number of operations. Such a minimal representation uniquely cor-
responds to a ‘path’ in the matrix from top-left to bottom-right.
These paths can be computed from the matrix by tracing back
from the bottom-right element to the top-left element while doing
only orthogonal (up or left) steps for non-matching elements if the
next element has a lower value than the current one. Vertical steps
correspond to deletions, while horizontal steps correspond to inser-
tions. For matching elements (circled) a diagonal step (up and left)
is allowed, keeping the current value. Note that matching elements
are not recorded in a representation but can easily be inferred: they
are exactly the non-deleted positions. For instance, [2delA;
3_4insT; 6_7insG; 7delT; 8_9insA; 9delG; 9_10insT]
corresponds to the highlighted minimal representation for the ex-
ample in Figure 2. Also note that any minimal representation has
the same number of deletions and also the same number of
insertions.

The computational complexity of the simple edit distance is
OðjRj � jOjÞ (Backurs and Indyk, 2017), although many tailored
algorithms exist that have an improved bound for specific classes of
strings (Bergroth et al., 2000; Lember et al., 2014; Navarro, 2001;
Rick, 2000). In practice, this means that only a subset of the

elements in the matrix needs to be computed, in particular if only
one solution (or just the distance value) is required.

In general, the number of equivalent trace backs, called LCS
embeddings in Greenberg (2002, 2003), is exponentially bounded

by
jRj þ jOj
jRj

� �
. We call the set of all minimal representations

UðR;OÞ, and we formalize the relations between non-empty var-
iants with regard to a fixed reference sequence R (we will omit R
from our notation for the sake of brevity) by using their respective
O and P observed sequences as generic representations as follows.

Definition 1 (Equivalence) Two variants uO and uP are equivalent if and

only if UðR;OÞ ¼ UðR;PÞ, consequently, O¼P.

Example: R ¼ TTTTTT; uO ¼ 1delT; uP ¼ 6delT

Here, 1delT (HGVS omits the square brackets in case of a single oper-

ation) and 6delT are equivalent because their respective sets of minimal

alignments are equal. Classic normalization procedures followed by

exact string matching are sufficient to draw the same conclusion. This

does not hold for the remaining relations as they rely on checking all

combinations of all minimal alignments.

Definition 2 (Containment) The variant uO contains the variant uP if

and only if uO
0 6�uP

0 for some u0O 2 UðR;OÞ and u0P 2 UðR;PÞ, and uO

is not equivalent to uP.

We find a representation within the set of minimal representations for O

that is a proper subset of a representation within the set of minimal rep-

resentations for P.

Example: R ¼ TTTTTT; uO ¼ 2 5delinsGGG; uP ¼ 3T > G 2_5de

linsGGG (HGVS abbreviation for [2delT; 3delT; 4delT; 5delT;

5_6insGGG]) contains 3T>G (HGVS abbreviation for [3delT;

3_4insG]) and conversely by definition, 3T>G is contained by

2_5delinsGGG. The containment relation can be easily shown by look-

ing at u0O ¼ ½1 2insG;2delT;2 3insG;3delT;3 4insG; 4delT;

5delT� and u0P ¼ ½2 3insG;3delT�. All elements of u0P are found in

u0O. Different combinations of minimal representations for O and P pos-

sibly yield incomplete results: u0O0 ¼ ½1delT;2delT;3 4insG;4delT;

4 5insG;5delT;5 6insG� and u0P0 ¼ ½3delT; 3 4insG�, which gives

just a single common element (3_4insG), or even u0P00 ¼
½2 3insG;6delT� without any common element with u0O0. However,

the existence of the combination u0O and u0P determines the containment

relation.

Notable examples of this relation can be found by comparing mul-
tiple alleles of polymorphic simple tandem repeats, i.e. a long repeat
expansion contains all shorter ones. The variants in Figure 1 are
another example of the containment relation.

Definition 3 (Overlap) Two non-equivalent variants uO and uP overlap

if and only if u0O \ u0P 6¼1 for some u0O 2 UðR;OÞ and u0P 2 UðR;PÞ
while neither uO contains uP nor uP contains uO.

A proper subset of a representation within the set of minimal representa-

tions for O is shared with a proper subset of a representation within the

set of minimal representations for P.

Example: R ¼ TTTTTT; uO ¼ 2 4delinsGG; uP ¼ 3T > A 2_4del

insGG has overlap with 3T>A. A common element (3delT) is easily found:

u0O ¼ ½1 2insG;2delT;3delT;3 4insG;6delT� and u0P ¼ ½3delT;

3 4insA�, however, the insertion of the symbol A cannot be found in any

minimal representation of O. Also, the insertion of the symbol G (in O) can-

not be found in any minimal representation of P. In general, the makeup of

the common elements, or even the number of common elements between dif-

ferent combinations of minimal representations is not constant.

Fig. 2. Computation matrix of the simple edit distance between R ¼ CATATATCG

and O ¼ CTTATAGCAT. Matching symbols are annotated with a circle. The high-

lighted path shows one of the minimal alignments

A Boolean algebra for genetic variants 3



Polymorphic SNVs are a notable example of the overlap relation, as
they share the deleted nucleotide, but the inserted nucleotide is dif-
ferent by definition.

Definition 4 (Disjoint) Two variants uO and uP are disjoint if they are

not equivalent, are not contained in one another, and do not overlap.

None of the minimal representations of O share anything with any of

the minimal representations of P.

Example: R ¼ TTTTTT; uO ¼ 2 3insA; uP ¼ 4 5insA 2_3insA

and 4_5insA are disjoint. Although both insert the same symbol (A),

this cannot occur at a common position within R.

The properties of the Boolean relations given in Table 1 follow dir-
ectly from the aforementioned definitions. The table is provided for
completeness and future reference, and throughout this article, we
use these properties to reason about relations.

3. An efficient algorithm

The formal definitions of the Boolean relations presented in Section
2 depend on the enumeration of all minimal variant representations.
As explained in Greenberg (2003), the number of representations is
bounded exponentially by the length of strings R and O. For large
strings (such as whole human chromosomes up to ca. 250 � 106)
this approach is infeasible. In this section, we present an alternative
and efficient way for the computation of each of the relations.

Equivalence: As follows directly from Definition 1, equivalence
can be computed by a string matching over O and P in
OðminðjOj; jPjÞÞ time and OðjOj þ jPjÞ space (storing both strings).
This is optimal. Alternatively, we can compute metric d for O and
P: dðO;PÞ ¼ 0 if and only if uO is equivalent to uP.

Containment: We observe that computing the minimal distances
is sufficient: dðR;OÞ � dðR;PÞ ¼ dðO;PÞ and dðO;PÞ > 0 if and
only if uO contains uP. Indeed, in this situation, there is a minimal
path from R to O that passes through P, and both legs are minimal
too.

Disjoint: Again, we note that: dðR;OÞ þ dðR;PÞ ¼ dðO;PÞ and
dðO;PÞ > 0 implies uO and uP are disjoint, since any minimal paths
from O to R and R to P are disjoint here. Unfortunately, the con-
verse is not true. Consider the counterexample R ¼ CT; O ¼ TG,
and P ¼ GC. O and P are disjoint despite their simple edit distances
being: dðR;OÞ ¼ 2; dðR;PÞ ¼ 2; dðO;PÞ ¼ 2. Their representa-
tions, however, have no common elements: UðR;OÞ ¼
f½1delC;2 3insG�g and UðR;PÞ ¼ f½0 1insG;2delT�g.

The aforementioned distance-based approach can be efficiently
computed using any LCS distance algorithm tailored for similar
strings, e.g. Wu et al. (1990). However, to separate the disjoint and
overlap relations, we need to consider all minimal representations.
With the notable exception of the naive dynamic programming ap-
proach introduced in Section 2, existing algorithms typically do not
compute all representations. The naive approach suffers from a
OðjRj � jOjÞ space complexity rendering it infeasible for whole
human chromosomes.

3.1 Computing all minimal variant representations
Here, we present an efficient algorithm to compute the relevant ele-
ments of the recurrence relation (Equation (1)) to be able to recon-
struct all minimal representations (alignments) within the
theoretical complexity bounds: OðjRj � jOjÞ time and using OðjRj þ
jOjÞ temporary space (excluding storing the solution). In practice,
because of the high similarity between R and O the expected run-
time is linear. The output of this algorithm is an LCS-graph (Rick,
2000): a directed acyclic graph that consists of nodes representing
single symbol matches for all LCSs. Edges connect nodes for con-
secutive symbols in an LCS, possibly labeled with a representation.

We use the generic A* search algorithm (Hart et al., 1968) which
uses a heuristic to guide the search. In general, the space require-
ments of A* search might be of concern. However, in our case, the
space is quadratically bounded by the number of elements in the ma-
trix. Furthermore, we demonstrate that by expanding partial solu-
tions in a particular order, it is possible to bound the space
requirements linearly: OðjRj þ jOjÞ.

We introduce the admissible heuristic:

hðR;O; i; jÞ ¼ jðjRj � iÞ � ðjOj � jÞj: (3)

The heuristic h represents a best-case guess for the minimal distance
from the current element (i, j) to the bottom-right element of the ma-
trix (hoping to match as many symbols as possible). A* minimizes
the total cost function for each solution:

f ðR;O; i; jÞ ¼ Dði; jÞ þ hðR;O; i; jÞ; (4)

by taking into account the actual cost to reach element (i, j), given
by D(i, j) (see Equation (1)), and the estimated minimal cost h. A*
search iteratively expands partial solutions, also called the frontier,
based on the lowest f-value until the target element is expanded. In
our case the progression of f-values is determined by the heuristic
value of the first element hðR;O;0; 0Þ ¼ jjRj � jOjj, increasing with
steps of 2, as D increases by 1 for each orthogonal step and the heur-
istic changes with either þ 1 or �1 for each orthogonal step.
Diagonal steps, i.e. matching symbols, do not incur a change in f-
value. This results in a constant parity for the f-values. The simple
edit distance is given by the f-value of the target element ðjRj; jOjÞ.
Constructing all minimal variant representations is analogous to the
naive approach detailed in Section 2.

In typical A* implementations, the frontier is implemented as a
priority queue. In our case, we observe that we can keep track of the
elements in the frontier by describing a ‘convex’ shape in the matrix.
We use two arrays rows and cols that store the right-most element
for a given column and the bottom-most element for a given row,
respectively.

In Figure 3, we present the progression of the expansion of the
matrix elements for the example introduced in Figure 2: R ¼
CATATATCG and O ¼ CTTATAGCAT. We use OðjRj þ jOjÞ space
(excluding the output), and we expand at most OðjRj � jOjÞ
elements.

The non-filled elements are not part of any minimal representa-
tion as they would have a greater f-value than the bottom-right
element. The circled elements are needed to create the LCS-graph
and therefore stored. The remaining elements are expanded, but not
stored. For each circled element, we determine its place in an LCS
(and level in the LCS-graph) by:$

iþ j�Dði; jÞ
2

%
: (5)

This allows us to construct the LCS-graph efficiently. The LCS-
graph for the example in Figure 3 is given in Figure 4. The nodes in
the LCS-graph are ordered by their position in the LCS. To construct
the variant representations, edges are added for each node (i, j) on
level ‘ (determined by Equation (5)) to each node ði0; j0Þ on level ‘þ
1 if i0 > i and j0 > j. For instance, there is an edge from node (2, 3)
on level 1 to node (3, 5) on level 2 (4delA). Not all circled elements
end up in the LCS-graph as some do not lie on an optimal path, e.g.
T at (2, 5). These elements may be represented as nodes in the LCS-

Table 1. Properties of the Boolean relations

Relation Symmetry Reflexivity Transitivity

Equivalent Symmetric Reflexive Transitive

Contains Asymmetric Irreflexive Transitive

Is contained Asymmetric Irreflexive Transitive

Overlap Symmetric Irreflexive Intransitive

Disjoint Symmetric Irreflexive Intransitive

Note: The converse of ‘contains’ is ‘is contained’ and vice versa.

4 J.K.Vis et al.



graph. For these nodes there is no path to the sink node.
Alternatively, constructing the LCS-graph from the sink node to the
source node, these elements are avoided.

We define WðR;OÞ as the set of all elements that occur in min-
imal representations from UðR;OÞ. To distinguish between the rela-
tions disjoint and overlap, it is sufficient to determine whether the
two sets WðR;OÞ and WðR;PÞ are disjoint. Note that the number of
elements in each set is bounded quadratically as opposed to enumer-
ating all, exponentially bounded, minimal representations. Some
practical implementation enhancements can also be applied, not-
ably, reducing the number of elements to be added to the set by tak-
ing (partially) overlapping edges in the LCS-graph into account. For

small alphabets, e.g. DNA nucleotides, an efficient bit string can be

used in lieu of a proper set implementation.

3.2 Maximal influence interval
Given any pair of variants (within the context of the same reference
sequence), it is likely that their relation is disjoint purely based on

their often distant positions in the reference sequence. These disjoint
relations can be determined efficiently at the cost of some pre-

computation for individual variants (n.b. not pairs of variants).
For each variant, the maximal influence interval is defined as the

interval given by the lowest row index for a deletion or an insertion

(a) (b)

(c) (d)

Fig. 3. Computing the elements of Equation (4) for R ¼ CATATATCG and O ¼ CTTATAGCAT to efficiently reconstruct the set of all minimal variant representations. (a)

Expanded elements for f ¼ 1 with rows ¼ ½1; 2� and cols ¼ ½0; 1; 1�. (b) Expanded elements for f ¼ 3 with rows ¼ ½2; 3; 4; 5; 6; 6; 7� and cols ¼ ½1; 2; 3; 3; 4; 5; 6; 6�. (c)

Expanded elements for f ¼ 5 with rows ¼ ½3; 4; 5; 6; 7; 7; 8; 8; 9� and cols ¼ ½2; 3; 4; 5; 6; 7; 7; 7; 8; 8�. (d) Expanded elements for f ¼ 7 with rows ¼ ½4; 5; 6; 7; 8; 8; 9; 10; 10; 10�
and cols ¼ ½3; 4; 5; 6; 7; 8; 8; 9; 9; 9; 9�

Fig. 4. The LCS-graph for R ¼ CATATATCG and O ¼ CTTATAGCAT. The coordinates refer to the coordinates of the matching symbols in Figure 3. Unlabeled edges indicate

consecutive matches and do not contribute to the set of elements of all minimal variant representations

A Boolean algebra for genetic variants 5



in an optimal path in D and the highest row index for a deletion or
an insertion in an optimal path in D. This interval gives the extreme
bounds, as positions in the reference sequence, of possible changes
due to this variant. A pair of variants can only be non-disjoint when
their maximal influence intervals intersect. The pre-computing of
the maximal influence intervals of individual variants is specifically
worthwhile in the context of repeated querying, e.g. a (locus specif-
ic) database and VCF annotation.

For example, given a fixed reference R ¼ TCCCTTTA. The var-
iants uO ¼ 3C > A (O ¼ TCACTTTA) with maximal influence inter-
val ½2; 5Þ and uP ¼ 6T > G (P ¼ TCCCTGTA) with maximal
influence interval ½5;8Þ are disjoint based on the empty intersection
of their maximal influence intervals. The variants uO and uP0 ¼
½4del;5 6insC� (P0 ¼ TCCTCTTA) with maximal influence interval
½2;8Þ have intersecting intervals, and indeed the variants overlap. In
contrast, the variants uO and uP00 ¼ 2 3insT (P00 ¼ TCTCCTTTA)
with maximal influence interval ½2;2Þ also have intersecting inter-
vals, but the variants are ultimately disjoint.

4 Experiments

To obtain an intuition of the impact of the proposed approach, we
analyzed the well-studied CFTR gene (NG_016465.4 with 257 188
bp), that provides instructions for making the cystic fibrosis trans-
membrane conductance regulator protein.

In dbSNP (build 154) (Sherry et al., 2001), there are 62 215 in-
terpretable variants for the CFTR gene which lead to 1 935 322 005
pairs of variants to analyze. Using the method described in Section
3.2, only 92 251 eligible pairs of variants with a potential non-
disjoint relation remain.

When the algebra is applied to the remaining pairs, we obtain
the results in Table 2. We observe that (as expected) there are no
equivalent variants for CFTR in dbSNP, indicating a correct applica-
tion of standard normalization techniques. Beyond equivalence,
there are 10 120 containment relations (either contains or is con-
tained), 37 690 pairs have some form of overlap, and 44 441 pairs
are disjoint.

Zooming in to individual variant level (as opposed to pairs), we
find that 16 939 variants are disjoint with all other variants based
on their maximal influence intervals alone and 45 276 variants are
potentially involved in a non-disjoint relation with another variant.
After determining the relations, 16 814 variants also turn out to be
disjoint with all other variants. In total, 33 753 variants are disjoint
with all other variants. The remaining 28 462 variants have a non-
disjoint relation to some other variant(s).

In Table 3, we see a selection of variants in CFTR that, at first
sight, have a counter-intuitive relation with another variant. For
Pair 1, the left-hand side (LHS) variant contains the right-hand side
(RHS) variant because the former can be left justified to
11402_11406del (HGVS abbreviation for the deletion of the sym-
bols on positions 11402,. . .,11406) to incorporate the deletion of re-
gion 11402 to 11403. For Pair 2, the containment is less obvious,
the LHS needs to be rewritten to [151240_151241insTATA;
151270_151271insCA] to make this containment relation intui-
tively clear. For Pair 3, the LHS can be written as
[151242_151243del; 151271_151278del] to make the

overlap relation between the two variants clear. For Pair 4, left-
justification of the LHS to 112270_112271insCTCTCTC and
rewriting the RHS to [112269_112270insCC; 112270_1
12271insCTCT] makes the overlap relation obvious. Finally, we
can see from both Pairs 2 and 3 that in practice, variants that are

reported to be well separated, still may have something in common.
The ratio between the length of the maximal influence interval

and the number of non-disjoint relations a variant has on average is
shown in Figure 5. The length of the maximal influence interval cor-
relates strongly with the number of relations of a variant as

expected. The variants with the largest maximal influence interval
lengths (> 150) all happen to be large deletions, e.g.

203907_204783del contains 31 smaller deletions and overlaps
with 404 variants.

The distribution of the number of non-disjoint relations per vari-
ant is shown in Figure 6. More than half of all variants (16 735)
have a single non-trivial relation with another variant, the remaining

11 727 variants have a non-trivial relation with multiple variants.
The distributions for both overlap and inclusion relations, are nearly
identical.

5 Discussion

Higher-order operations like SNVs, multi-nucleotide variants, dupli-
cations, transpositions and inversions, can all be represented as com-

binations of deletions and insertions. In practice, this view aligns
well with the expected outcomes, e.g. an SNV can be contained

within a larger deletion/insertion. Arguably, inversions are the ex-
ception, as their distance represented as a deletion/insertion might
not reflect their true nature. This can be considered a limitation of

the approach.
The relation between a pair of variants is only well defined when

both variants are described in the context of the same reference se-
quence. In general, we can extend the definitions to include variants
on different reference sequences, the natural interpretation of which

would be to consider two variants on different reference sequences
to be disjoint, e.g. a variant on human chromosome 1 has nothing in

common with a variant on human chromosome 2. This interpret-
ation is sensible as long as the reference sequences are unrelated. In
practice, however, many reference sequences are actually referring

to the same (or a strongly related) genetic locus, e.g. genes on chro-
mosomes, different transcripts for the same gene and chromosomes

in different reference genomes. Arguably, variants described in the
context of these reference sequences could be seen as having poten-
tially a non-disjoint relation. To properly compare these variants on

a sequence level, the differences between the reference sequences
should also be taken into account.

Structural variants are often reported in a non-exact manner, i.e.
not sequence-level precise. These representations are unsuitable for

our method. Even if an exact structural variant representation is
given, it is unlikely to yield meaningful results, as the exact positions
are not the same across samples. Instead, e.g. gene copies can be

analyzed by the algebra when they are provided individually.
The choice of relations presented here follows the ones from set

theory, commonly used in a wide range of domains. For some specif-
ic domains, more refined relations exists as well, e.g. for intervals,
the relations ‘starts with’, ‘ends with’ and ‘is directly adjacent’ are

useful extensions (Allen, 1983). The set of relations could be further
partitioned using these, or other, refinements.

Unfortunately, the set of relations (see Table 1) does not contain
a relation that implies an ordering of variants, i.e.

UðR;OÞ � UðR;PÞ. A partial order of variants would require a rela-
tion with the following properties: reflexive, antisymmetric and
transitive. Sorting variants or storing variants in a particular order

in a database (indexing) is meaningless in the context of this algebra.
The interval ordering based on the pre-computed maximal influence
intervals described in Section 3.2 mitigates this problem.

Table 2. Relation counts for the pairwise comparison of variants in

the CFTR gene

Relation Count

Equivalent 0

Contains 5491

Is contained 4629

Overlap 37 690

Disjoint 44 441

Note: The counts are given based on the upper triangular matrix, so the

converse relations are not included.

6 J.K.Vis et al.



5.1 Characterization of overlap
The actual makeup of the common changes between two variants is
never computed. For all relations, except the overlap relation, the
common changes can be trivially given: none for disjoint variants,
either of the variants for equivalence, and the ‘smaller’ variant for
containment, i.e. the one that is contained within the other. This
leaves, however, the overlapping variants. In general, there are
many different sets of common changes between overlapping var-
iants, some of which, especially the larger ones, may be more (bio-
logically) relevant than others. The algorithm described in Section 3
determines whether there is at least one common change.
Computing the maximal size of the overlap requires enumerating an
exponential number of possible alignments, which is infeasible for
all but extremely short sequences.

5.2 General normalization
The current practice of normalizing variant representations is suffi-
ciently powerful to cater for the equivalence relation (also illustrated
in Section 4). Determining other relations is, in general, impossible
when given a single normalized representation. Even SNVs, often
regarded as trivially normalized, are problematic when querying for
containment. Consider reference R ¼ CACAT and the SNV 3C>T to
obtain the observed sequence O ¼ CATAT. In the classical sense, no
normalization is necessary. When we consider a second variant
3_4insT (CACTAT), we might draw the conclusion that this inser-
tion is contained within the SNV based on the normalized position.
A possible third variant 2_3insT (CATCAT) has the same relation
but is less trivially found. When substrings adjacent to the variant
match subsequences of the deleted or inserted string, the number of
alignments increases exponentially; therefore, regardless of which
normalization procedure is used, however sophisticated, counter
examples like this can always be constructed. Therefore, procedures
that rely on normalization will, in general, lead to wrong conclu-
sions and cannot be employed to determine relations between
variants.

Within the domain-specific languages for variant representations
different normalization schemes are used, where arbitrary choices
influence the normalized representation, e.g. the 30 and 50-rules.
From the alignment matrix D, it is also possible to choose a canonic-
al path that represents a normalized representation. Sensible choices
are either a bottom-most or top-most path. This corresponds to
favoring either deletions over insertions at the beginning of a variant
(or vice versa). Note that for all minimal variant descriptions in any
of the domain-specific languages, corresponding alignments can be
found. It could be worthwhile to investigate whether a comprehen-
sive set of deterministic rules exist to find these alignments, as this
can be used in the formalization of these languages.

5.3 Non-minimal variant representations
So far, we assumed that all variant representations are minimal
with regard to Equation (1). In practice, this is not always the
case, nor is it necessary for our approach to work, as the only
constraint on the variant representation is its interpretability (see
Section 1). The relations are computed on all minimal alignments,
where a non-minimal representation is minimized as part of the
procedure. Interpreting the relations based on non-minimal repre-
sentations yields surprising results. When we consider the refer-
ence R ¼ GCTTT with variant uO ¼ ½1G > A;2C > G;3T > C�
(O ¼ AGCTT) and variant uP ¼ ½1G > A;2C > G� (P ¼ AGTTT),
the naive conclusion, based on the non-minimal representation,
would be that uO contains uP. However, both uO and uP are not
minimal. The minimal alignments for UðR;OÞ ¼
f½0 1insA;3delT�; ½0 1insA;4delT�; ½0 1insA; 5delT�g and
the minimal alignment for UðR;PÞ ¼ f½0 1insA;2delC�g show
that the actual relation is overlap instead of containment.

A variant representation (in the classical sense) that covers all
possible minimal alignments simultaneously is impossible to find in
the general case because of the potential mutual exclusivity of suba-
lignments. A trivial solution is the full listing of the observed se-
quence. This, however, offsets the benefits of a representation that is
humanly understandable, and, furthermore, it introduces a huge
amount of redundant information for larger sequences. However,

Table 3. Examples of non-trivial relations between variants in CFTR

No. LHS variant Relation RHS variant

1 11404_11408del Contains 11402_11403del

2 151270_151271insTATACA Contains 151240_151241insAT

3 151271_151280del Overlap 151240_151255del

4 112274_112275insCTCTCTC Overlap 112269_112270insCCTCTC

Note: The variants are described using the HGVS nomenclature with respect to reference sequence NG_016465.4 using the genomic (g.) coordinate system.

Fig. 5. Scatterplot of the average number of non-disjoint relations of all variants in

CFTR with a certain maximal influence interval length

Fig. 6. The distribution of the number of non-disjoint relations per variant. The long

tail of counts of 11 and above are aggregated. The most relations a single variant

has is 435

A Boolean algebra for genetic variants 7



based on the maximal influence intervals introduced in Section 3.2,
a normalized supremal variant representation can be defined. These
take the form of a deletion insertion where the deletion spans the en-
tire maximal influence interval and the insertion potentially contains
redundant reference information. For the SNV example in Section
5.2, the supremal representation is 2_3delinsAT, where first an A
is deleted and inserted again. SPDI (and consequently VRS) pre-
scribes a normalization procedure that follows a similar approach
(Holmes et al., 2020) by extending the variant in both directions
using a rolling procedure. We note that such a procedure, in general,
does not result in all minimal alignments (nor the extreme bounds)
being contained in the representation for all variants.

Arguably, a supremal representation is not suitable in all con-
texts, e.g. reporting clinical results, but within the context of storing
large quantities of variants in, for instance a database, the proposed
supremal representations are appealing as the variants can be prop-
erly ordered and indexed on their deleted interval. Furthermore,
these representations contain all information needed to determine
the relations with other variants in the database without the need to
use the reference sequence. The drawback, however, is that poten-
tially larger inserted sequences are stored (AT in the example). In
practice, however, the maximal influence intervals are tiny com-
pared to the length of the reference sequence.

6. Conclusions

Looking beyond the identification of equivalent variants, we intro-
duced a comprehensive set of Boolean relations: equivalence, con-
tainment, overlap and disjoint, which partitions the domain of
binary variant relations. Using these relations, additional variants of
interest, i.e. variants with a specific relation to the queried variant
can be identified. We determine these relations by taking all minimal
alignments (on a sequence level) into account. The relations can be
computed efficiently using a novel algorithm that computes all min-
imal alignments. We have shown that these relations occur frequent-
ly in existing datasets, notably in large ones like dbSNP.
Approximately half of the variants in the CFTR gene in dbSNP have
at least one non-disjoint relation with another variant within the
same gene. We have shown that normalization of variant representa-
tions is not powerful enough to answer any but the trivial relation
queries. Inspired by the alignment matrix, we introduced the max-
imal influence interval of a variant. Filtering on the maximal influ-
ence interval allows for calculating the relations of all pairs of
variants for an entire gene.

For indexing variants in a database setting, allowing querying on
our Boolean relations, we expect that the supremal representation
(Section 5.3) will be convenient.

In the case where phased variants (alleles) are available, directly
querying on other (combinations of) variants is possible, e.g. is a
variant contained within a given allele? The quantification and the
makeup of the overlap relation remain an open problem. Locus-
specific databases can, without changing their internal representa-
tion of variants, use our algebra to query on these relations. Because
our method is not tied to a particular representation, it can also be
applied in VCF annotation tools.

6.1 Future work
The current Python implementation is suitable for sequences up to a
length of that of an average gene. Preliminary work on an imple-
mentation in a more performance-oriented language indicates that
our approach is suitable for handling whole human chromosomes.
Although, from the algebra perspective, a single canonical (or nor-
malized) representation is insufficient, we see the advantages of hav-
ing such a representation in different contexts (especially for human
interpretation). By looking at patterns within all the minimal align-
ments, we can potentially construct a canonical representation that
reflects these patterns on sequence level in the variant, e.g. repeated
elements can be separated from larger variants or a sequence-level

argument can be given for why close by SNVs should be (or not be)
combined. These observations could be combined in a new imple-
mentation of a variant description extractor (Vis et al., 2015).

Dealing with variants in an algebraic way can possibly be
extended to higher-level calculations such as union, subtraction and
characterizing/measuring overlap. The ability to mathematically
construct larger alleles from smaller variants seems appealing in
many domains. These techniques would also enable a proper
sequence-level remapping of variants onto other reference sequen-
ces, which is a recurring problem with the publication of every new
reference genome.

Financial Support: none declared.

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium (2015) A global reference for human gen-

etic variation. Nature, 526, 68–74.

Allen,J.F. (1983) Maintaining knowledge about temporal intervals. Commun.

ACM, 26, 832–843.

Allot,A. et al. (2018) LitVar: a semantic search engine for linking genomic

variant data in PubMed and PMC. Nucleic Acids Res., 46, W530–W536.

Backurs,A. and Indyk,P. (2017) Edit distance cannot be computed in strongly

subquadratic time (unless SETH is false). arXiv, arXiv:1412.0348, preprint:

not peer reviewed. https://doi.org/10.48550/arXiv.1412.0348.

Bayat,A. et al. (2017) Improved VCF normalization for accurate VCF com-

parison. Bioinformatics, 33, 964–970.

Bergroth,L. et al. (2000) A survey of longest common subsequence algorithms.

In: Proceedings Seventh International Symposium on String Processing and

Information Retrieval, SPIRE 2000, A Curuna, Spain, pp. 39–48. IEEE.

Danecek,P. et al.; 1000 Genomes Project Analysis Group. (2011) The variant

call format and VCFtools. Bioinformatics, 27, 2156–2158.

den Dunnen,J.T. et al. (2016) HGVS recommendations for the description of

sequence variants: 2016 update. Hum. Mutat., 37, 564–569.

Eisfeld,A.-K. et al. (2019) Implementation of standardized variant-calling no-

menclature in the age of next-generation sequencing: where do we stand?

Leukemia, 33, 809–810.

Freeman,P.J. et al. (2018) VariantValidator: accurate validation, mapping,

and formatting of sequence variation descriptions. Hum. Mutat., 39, 61–68.

Greenberg,R.I. (2002) Fast and simple computation of all longest common

subsequences. arXiv, arXiv:cs/0211001, preprint: not peer reviewed.

https://doi.org/10.48550/arXiv.cs/0211001.

Greenberg,R.I. (2003) Bounds on the number of longest common subsequen-

ces. arXiv, arXiv:cs/0301030, preprint: not peer reviewed.

Hart,P.E. et al. (1968) A formal basis for the heuristic determination of min-

imum cost paths. IEEE Trans. Syst. Sci. Cyber., 4, 100–107.

Holmes,J.B. et al. (2020) SPDI: data model for variants and applications at

NCBI. Bioinformatics, 36, 1902–1907.

Kopanos,C. et al. (2019) VarSome: the human genomic variant search engine.

Bioinformatics, 35, 1978–1980.

Kozanitis,C. et al. (2014) Using genome query language to uncover genetic

variation. Bioinformatics, 30, 1–8.

Lee,S. et al. (2019) Plyranges: a grammar of genomic data transformation.

Genome Biol., 20, 1–10.

Lefter,M. et al. (2021) Mutalyzer 2: next generation HGVS nomenclature

checker. Bioinformatics, 37, 2811–2817.

Lember,J. et al. (2014) Optimal alignments of longest common subsequences

and their path properties. Bernoulli, 20, 1292–1343.

Levenshtein,V.I. (1966) Binary codes capable of correcting deletions, inser-

tions, and reversals. Soviet Physics Doklady, 10, 707–710.

Liu,Y. et al. (2019) Ask2Me VarHarmonizer: a python-based tool to harmon-

ize variants from cancer genetic testing reports and map them to the ClinVar

database. arXiv, arXiv:1911.08408, preprint: not peer reviewed.

Navarro,G. (2001) A guided tour to approximate string matching. ACM

Comput. Surv., 33, 31–88.

Pandey,K.R. et al. (2012) The curation of genetic variants: difficulties and pos-

sible solutions. Genomics Proteomics Bioinformatics, 10, 317–325.

Rick,C. (2000) Efficient computation of all longest common subsequences. In:

Halldorsson,M.M. (ed.) Algorithm Theory — SWAT 2000. Springer, Berlin

Heidelberg, pp. 407–418.

8 J.K.Vis et al.

https://doi.org/10.48550/arXiv.1412.0348
https://doi.org/10.48550/arXiv.cs/0211001


Sherry,S.T. et al. (2001) dbSNP: the NCBI database of genetic variation.

Nucleic Acids Res., 29, 308–311.

Talwalkar,A. et al. (2014) SMASH: a benchmarking toolkit for human genome

variant calling. Bioinformatics, 30, 2787–2795.

Tan,A. et al. (2015) Unified representation of genetic variants. Bioinformatics,

31, 2202–2204.

Vis,J.K. et al. (2015) An efficient algorithm for the extraction of HGVS variant

descriptions from sequences. Bioinformatics, 31, 3751–3757.

Wagner,A.H. et al. (2021) The GA4GH variation representation specification:

a computational framework for variation representation and federated iden-

tification. Cell Genomics, 1, 100027.

Wagner,R.A. and Fischer,M.J. (1974) The string-to-String correction prob-

lem. J. ACM, 21, 168–173.

Watkins,M. et al. (2019) Implementing the VMC specification to reduce ambi-

guity in genomic variant representation. In: AMIA Annual Symposium

Proceedings, Washington, DC, pp. 1226–1235.

Wittler,R. et al. (2015) Repeat-and error-aware comparison of deletions.

Bioinformatics, 31, 2947–2954.

Wu,S. et al. (1990) An O(NP) sequence comparison algorithm. Inf. Process.

Lett., 35, 317–323.

Yen,J.L. et al. (2017) A variant by any name: quantifying annotation discord-

ance across tools and clinical databases. Genome Med., 9, 1–14.

A Boolean algebra for genetic variants 9


	tblfn1
	tblfn2
	tblfn3

