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a b s t r a c t 

One methodology extensively used to develop biomarkers is the precise detection of highly respon- 

sive genes that can distinguish cancer samples from healthy samples. The purpose of this study 

was to screen for potential hepatocellular carcinoma (HCC) biomarkers based on non-fusion inte- 

grative multi-platform meta-analysis method. The gene expression profiles of liver tissue samples 

from two microarray platforms were initially analyzed using a meta-analysis based on an em- 

pirical Bayesian method to robust discover differentially expressed genes in HCC and non-tumor 

tissues. Then, using the bioinformatics technique of weighted correlation network analysis, the 

highly associated prioritized Differentially Expressed Genes (DEGs) were clustered. Co-expression 

network and topological analysis were utilized to identify sub-clusters and confirm candidate 

genes. Next, a diagnostic model was developed and validated using a machine learning algorithm. 

To construct a prognostic model, the Cox proportional hazard regression analysis was applied and 

validated. 

We identified three genes as specific biomarkers for the diagnosis of HCC based on accuracy 

and feasibility. The diagnostic model’s area under the curve was 0.931 with confidence interval 

of 0.923–0.952. 

• Non-fusion integrative multi-platform meta-analysis method. 

• Classification methods and biomarkers recognition via machine learning method. 

• Biomarker validation models. 
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Specifications table 

Subject area: Bioinformatics 

More specific subject area: Computational genomics, system biology and biomarker detection 

Name of your method: Non-fusion integrative Meta-analysis 

Name and reference of original method: Name: Integrative multi-platform meta-analysis 

Reference: doi 10.1016/j.gendis.2022.07.018 

Resource availability: 1.GEO database ( https://www.ncbi.nlm.nih.gov/geo/ ) 

2. TCGA database ( https://cancergenome.nih.gov/ ) 

3. GeneCards ( https://genecards.org ) 

4. ToPPGene ( https://toppgene.cchmc.org ) 

5. Cytoscape ( http://apps.cytoscape.org/apps/mcode ) 

6. KM plotter ( http://www.kmplot.com/analysis/ ) 

7. DAVID database ( https://david.ncifcrf.gov/ ) 

8. GO database ( http://geneontology.org/ ) 

9. KEGG database ( https://www.genome.jp/kegg/pathway.html ) 

Background information 

Identifying key genes that can distinguish cancers from normal samples is one of strategy widely utilized to develop diagnostic

biomarkers. Several research aimed to identify diagnostic and prognostic biomarkers by splitting the most informative genes from the 

irrelevant ones. Dessie et al. used statistical and bioinformatics tools to identify HCC biomarkers based on Differentially Expressed 

Genes (DEGs) [1] . For the diagnosis of liver hepatocellular cancer, Ouyang et al . provided 34 DEGs based on several machine learn-

ing techniques [2] . Microarray data are now widely used to address biological questions. This has resulted in an explosion of raw

microarray data from various chip platforms. As a result, databases with hundreds of thousands of microarray samples clustered by

different chips are difficult to merge. One of the primary goals of these databases was to make the data available to other researchers

for more accurate analysis with large sample size. Therefore, using a meta-analysis to integrate data from various platforms is critical,

as it can significantly improve the reliability and robustness of biomarker detection. Most of earlier investigations used only data sets

generated on the same chip platform. So, the prediction accuracy and application scope of these studies have been severely limited

by sample size. 

In this study, we aimed to identify and validate diagnosis and prognosis biomarkers associated with HCC based on expression data

of two microarray chip platforms. Based on a meta-analysis, 939 samples (493 tumors and 446 non-tumors) from the Gene Expression

Omnibus (GEO) were screened to identify DEGs. Weighed correlation network analysis (WGCNA) method was used to cluster the 

prioritized DEGs. The co-expression networks and topological analysis were performed to find the sub-clusters and confirm target 

genes. Finally, based on these genes two prediction models, involved in the diagnosis and prognosis, were established. The gene

expression profile of GSE45267 was applied as a training cohort to build a Lasso regression model for diagnosis and GSE84402 was

used as a validation cohort. In addition, to verify the prognostic ability of the risk score model, GSE57957 gene expression data was

utilized as a training cohort, and GSE45267 and TCGA ( https://cancergenome.nih.gov/ ) data were used as validation cohorts. 

Method details 

Non-fusion integrative method 

HCC Illumina and Affymetrix datasets 

In this investigation, which was based on the Illumina and Affymetrix platforms, seven microarray gene expression transcriptome 

datasets were considered. Human samples were divided into the HCC group and adjacent or non-tumor groups; sample numbers

greater than ten for the HCC and non-tumor groups were included in each dataset; and only mRNA expression profiling was em-

ployed to the study. Additionally, the included dataset met the criteria for demographic characteristics, etiology, and Edmonson 

stage ( Table 1 ). Based on the TCGA dataset, which contains 371 HCC and 50 normal tissue samples, the important HCC prognostic

genes were discovered. 
Table 1 

Dataset with the following baseline characteristics were considered. 

Datasets Sex: Male)%) Age mean ± SD Etiology Stages (Edmonson) Platform Application 

GSE57957 90 65 ± 20 HBV infection I, II, III, IV Illumina DEGs Identification, prognostic model identification 

GSE39791 84 57.5 ± 20 HBV infection I, II, III, IV Illumina DEGs Identification 

GSE36376 83 55.9 ± 10 HBV and HCV I, II, III, IV Illumina DEGs Identification 

GSE84005 86 54.5 ± 18 HBV and HCV I, II, III Affymetrix DEGs Identification 

GSE12941 100 65.5 ± 10 HBV and HCV I, II, III Affymetrix DEGs Identification 

GSE64041 88 64 ± 12 HBV and HCV I, II, III, IV Affymetrix DEGs Identification 

GSE45267 90 51 ± 14 HBV and HCV I, II, III, IV Affymetrix Diagnostic model and prognostic model validation 

GSE84402 30 55 ± 11 HBV and HCV I, II, III, IV Affymetrix DEGs Identification and diagnostic model validation 

2 

https://www.ncbi.nlm.nih.gov/geo/
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Cross-platform correction 

The data was preprocessed and integrated using the Irigoyen et al. method [3] . Each experiment’s data was imported, filtered, and

normalized independently. For preprocessing data from Affymetrix platforms, we used BRBArrayTools, an Excel GUI for interacting 

with the R programming environment. The R package Lumi was used to perform quantile normalization to Illumina expression data.

To reduce false-positive rates, we removed genes with minimal expression variability (p-value < 0.05). Transcriptome datasets were 

integrated using the virtual array software R program. This software enables the integrate data from several microarray chip using

batch effect and cross-platform correction. Empirical bayes approach (ComBat) was used to eliminate heterogeneity [4] . 

Classification methods and biomarkers recognition 

Analysis of differential gene expression patterns 

Linear models for microarray data (LIMMA) software R package based on the Bayesian technique was used to identify DEGs from

normalized log-expression levels in the integrated data. The false discovery rate was managed using Benjamini-Hochberg’s method. 

A p-value threshold of 0.05 was ad-judged statistically significant with a fold-change cutoff of 1 (Log FC > 1). 

DEGs elimination based on literature retrieval and co-expression network 

Literature retrieval 

GeneCards and ToPPGene websites were used to identify and prioritize DEGs with high confidence. The literary evidence for

reported genes was extracted from the GeneCards website (training group). The used keywords included “hepatocellular carci- 

noma ” + “biomarker ” and “hepatocellular carcinoma ” + ” DEGs ”. Then, the ToPPGene website was used to order the test group

of genes based on the training group to discover the most significant DEGs in HCC patients with a p-value less than 0.05. 

Co-expression network 

A differential co-expression network among DEGs was developed in accordance with the WGCNA method, in order to group

genes with strong correlation and discover co-expression modules. The STRING database was used to develop a protein-protein 

interaction network with the highest confidence threshold in order to better understand the interconnectivity of DEGs (0.9). A matrix

of pairwise Pearson’s correlation coefficients was used to evaluate the level of correlation between the gene expression profiles. With

the WGCNA function adjacency, we were able to create an adjacency matrix from the similarity matrices computed using Pearson

correlation coefficients (PCCs). The pairwise correlations’ statistical significance was assessed using the PCC cut-offs of 0.7, which 

correspond to p-value < 0.05. Cytoscape (v.3.7.1) was used to illustrate the final outcome which was done using the Cytoscape plug-in

Molecular Complex Detection with the following parameters: degree cut-off = 2, node score cut-off = 0:2, kcore = 2, and maximum

depth = 100 and CytoHuba. We examined modules with at least ten nodes in deeper detail. Clusters of differentially expressed genes

were discovered and visualized by using the MCODE plug in. Diagnostic and prognostic information was derived from genes found

in sub-clusters [5] . 

Local and global network metrics analyses 

With plug-in Network-Analyzer of Cytoscape [6] , we performed topological analysis to the network in order to identify the hub

genes, which included metrics including degree, betweenness connectivity, network density, and clustering coefficient. In terms of 

degree and betweenness, the top five molecule candidates were identified as hubs. 

Diagnostic risk model 

In order to identify diagnostic gene biomarkers, the least absolute shrinkage and selection operator (lasso) regression model was

developed. Many regression analysis methods utilize the Lasso regression regularization. The goal of lasso is to reduce the weighted

average of mean squared prediction error for samples by identifying regression coefficients for genes [1] . In order to build a diagnostic

model, we used the gene expression profile of GSE45267. Consequently, the risk score model for Lasso regression was built using the

LARS package [7] . 

Prognostic risk model and survival analysis 

To develop a prognostic model, the gene expression profile of GSE57957 was used. Then a prognostic model was constructed

based on a linear combination of the regression coefficient derived from the Lasso Cox regression model coefficients multiplied with

its mRNA expression level. The statistical significances of OS to compare the survival difference between the high- and low-expression

groups, were determined using the Log-Rank test. The median was chosen as a cutoff value to make dividing line between high-risk

and low-risk patients and OS with the best performing threshold. The results were displayed with criteria of hazard ratios (HRs) > 1

or HRs < 1. The "survminer" package was used to visualize the survival curves. The survival probability at any particular time was

calculated by the number of subjects surviving (the number of living- the number of died) divided by the number of subjects living

at the start. 
3 
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Validation models and biomarkers 

It is challenging to accurately measure whether batch effect correction method is working especially without a reference data

set. Visual evaluation is a common method for determining the efficacy of a batch adjustment. Following, we calculated the local

Shannon entropy, which each sample k the entropy S based on batch b is defined as; 

𝑆 𝑘 = − 

𝑛 𝑏 ∑

𝑏 =1 
𝑝 𝑏 ln 

(
𝑝 𝑏 
)

where p_(b)is the estimated probabilities of the different batches and n_b is the total number of batches. According to the comparative

boxplot, the ComBat was shown to be beneficial in this research ( Figs. 1 and 2 ). Diagnostic Risk score model’s superiority was evaluated

using receiver operating characteristic (ROC) analysis. Based on ROC analysis of the training set (AUC = 0.952) the co-detection of

these genes displayed a great performance of the model in HCC diagnosing. The gene expression profile of GSE84402 was used as

a validation set. Diagnostic performance in distinguishing between HCC and normal was evaluated using the risk score model. The

AUC in the validation set was 0.941 ( P < 0.0001). The prognostic ability of a risk score model was then addressed using expression

data from GSE45267 and TCGA as a validation set. Gene biomarkers were evaluated using Kaplan–Meier (KM) survival analysis. An

analysis of the relationship between overall survival (OS) time and gene biomarker obtained by lasso was performed using the KM

plotter tool. Genome ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed for the representative 

genes to assess the potential functional role and biological mechanism behind them. The gene ontology related to different subtypes

was found using the database for annotation, visualization, and integrated discovery (DAVID) database. The R code of this study is

included as supplementary file Non-fusion_integ_microdata.R . 

Additional information 

To improve the reliability and robustness of possible biomarker detection to enhance decision-making for HCC patient manage- 

ment, we performed an integrated meta-analysis of various MAGE datasets. To eliminate confounding influences in the data analysis,
Fig. 1. Three-step identification of HCC potential biomarkers. First, DEGs using non-fusion integrative method detected. Based on ComBat approach, 

the batch effect between data from two main microarray platforms (Affymetrix and Illumina), removed. Second, to deal with a more in-depth analysis 

of HCC expression datasets to identify potential diagnosis and prognosis biomarkers, classification methods and biomarker recognition conducted. 

Third, to evaluate the diagnostic performance in classifying HCC from normal, the risk score model was developed, and to assess the prognostic 

value of gene biomarkers, Kaplan–Meier (KM) survival analysis performed. 

4 
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Fig. 2. Performance assessment from our remove heterogeneity method. In order to quantify the correction success, we calculated the local Shannon 

entropy. Box plot is confirmed how data were integrated and heterogeneity removed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Affymetrix GeneChips and Illumina BeadChips data were preprocessed separately. The ComBat technique was used for batch correc- 

tion and data integration. There is a vast amount of literature, which strongly recommends ComBat due to its (i) low computational

cost (ii) independence of sample size (iii) reduced inter-platform variance (iv) outperformance of other approaches such as DWD or

MC. 

After integration, 302 DEGs were identified (LFC > 1 and FDR < 0.05), and 7 DEGs were identified as being common in all

three analyzes- Affymetrix, Illumina, and integrated meta-analysis. These genes, namely SOCS2, AOX1, CCNB1, PTEN, FAM83D, 

AKR1C3, CDC20 were shown to be potential biomarkers for HCC given in prior research. However, despite remarkable biomedical

researches, there is still an urgent need to find disease-specific and effective molecular signatures, since investigations have focused 

on single genes associated with HCC, ignoring the interactions and associations among them. The construction of DCENs from DEGs

using pairwise correlation metrics and their topological analysis gives critical insights and enlightens us about the changes that

occur in biological systems as a result of environmental and biological disturbances caused by disease. In several studies, human

disease-associated genes and gene clusters of highly connected network components were identified through weighted correlation 

network analysis, including chronic lymphocytic leukemia [8] , obesity [9] tumor-associated macrophages [10] , breast cancer [ 11 , 12 ],

ovarian cancer [13] , hepatocellular carcinoma, and cholangiocarcinoma [14] , pancreatic cancer [15] , cholangiocarcinoma [16] , lung 

cancer [17] and HCC [18] . Li et al. built an integrated co-expression network via three gene expression profiles of 480 patients with

HCC to investigate the hub genes and biological processes of HCC, which change substantially during its progression [18] . In the

present study, 239 prioritized DEGs represented three DCEMs. The cooperative role among modules might enhanced as a result 

of the modification and may have a strong correlation with tumor evolution. Interestingly, the majority of those differential co-

expressed genes coded for proteins taking roles in the Wnt–𝛽-catenin signaling pathway, NF- 𝜅B pathway, cell cycle, and p53 pathway

( Fig. 3 ). 

Studies have reported, in around 40% of the cases, significantly higher activation of the Wnt–𝛽- catenin signaling pathway,

caused by genetic alterations in CTNNB1, TP53, RB1, CCNA2, CCNE1, PTEN, ARID1A, ARID2, RPS6KA3 or NFE2L2, all of which are

involved in cell cycle control [ 19 , 20 ]. Several examinations have also highlighted the NF- 𝜅B pathway as a key inflammatory signaling

pathway involved in HCC induction [ 21 , 22 ]. The topological analysis resulted in the identification of five top hub genes with three

repressed (CCNB1, IGF1, SOCS2) and two overexpressed (AFP, CDK4). However, functional enrichment analyses of these hub genes 

showed the predicted results; the majority of significantly enriched genes were involved in metabolic and cellular processes. CDK4,

which is involved in the regulation of cell proliferation, apoptosis, and drug resistance, is also being investigated as a target for HCC

chemotherapeutics in preclinical and clinical trials. Notably, many studies reported that overexpression of CDK4 mRNA and protein 

promoted HCC progression and poor prognosis. Moreover, CDK4 and its direct correlation with clinical parameters, tumor stage, size,

and poor survival rate in HCC patients have been revealed [23–26] . 

Finally, several genes have been proven to be the prognostic or diagnostic biomarkers of HCC. Clinical symptoms, pathological

classification, and gene expression data could be used to build cancer prognostic and diagnostic predictive models. Early detection of

cancer has always been challenging. In the present study, a set of nine robust diagnostic signatures were identified by Lasso regression

analysis, and then, a three-gene simplified diagnostic risk model compositing CYP2E1, AKR1C3, AFP was built. Among these genes, 

AFP as an extensively researched biomarker for HCC has been reported by several studies [27–31] , as the diagnostic biomarker in

HCC patients. Nonetheless, recently reported the use of AFP as a biomarker for early diagnosis of HCC has been limited because of
5 
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Fig. 3. Cellular component (A) and Pathway and (B) of SOCS2, AOX1, CCNB1, PTEN, FAM83D, AKR1C3, CDC20; 7 DEGs were identified as being 

common in all three analyzes- Affymetrix, Illumina, and integrated meta-analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the high false-positive rate and its low sensitivity (55%). Furthermore, its overexpression is detected in other liver abnormalities and

other tumors, consequently, the specificity of this biomarker is not too high (87%) [30] . Nevertheless, the isoform of AFP namely

AFP-L3 is suggested to be a remarkably more reliable biomarker because of expression increase only in HCC but not in hepatitis

or cirrhosis cases. CYP2E1 is an enzyme important in ethanol metabolism, and its increased activity was documented in HCC using

chlorzoxazone as a probe drug [32] . CYP2E1 was also documented as one of the DEGs as analyzed in the GSE36376 dataset using

GEO2R [33] . Those observations are in keeping with HCC clinical features, i.e. the 5-year cumulative HCC incidence in cirrhosis was

estimated to be 8% in alcoholic cirrhosis [34] . AKR1C3 (Aldo-keto reductase family 1 member C3) may have a role in controlling

cell growth and/or differentiation. Likewise, to the present study, Zhu et al. applying bioinformatics methods suggested AKR1C3 

overexpression in HCC and identified its diagnostic and prognostic value [35] . The study also addressed the possible underlying

molecular mechanisms, showing that AKR1C3 might participate in the MAPK/ERK and androgen receptor signaling pathways. 

Moreover, in the present study, a four-gene prognostic signature including SOCS2, MAGEA6, RDH16, and RTN3 was established 

by Cox proportional hazards regression model combined with Kaplan-Meier survival analysis and could predict the overall survival 

of HCC. We demonstrated that SOCS2, RDH16 expression was significantly downregulated in HCC, and MAGEA6, RTN3 were sig-

nificantly upregulated as compared with normal liver tissues. SOCS2 is a member of the SOCS family and several studies have been

reported its close association with HCC and its role in the inhibition of tumor metastasis [36–38] . Hence, SOCS2 may provide a useful

HCC treatment and diagnostic target. Liu et al., via in vitro and in vivo experiments demonstrated that overexpression of SOCS2 inhib-

ited HCC cell proliferation and migration, whereas SOCS2 knock ‑down promoted HCC tumorigenesis suggesting that SOCS2 may act

as a potential HCC prognostic biomarker [38] . RDH16 (coding for retinol dehydrogenase 16) is another downregulated gene in the

present study. This observation is in keeping with other repost [39] , which also demonstrated RDH16 protein suppression. Functional

experiments showed that ectopic expression of RDH16 in HCC cells suppressed cell growth, clonogenicity, and cell motility, and was

associated with increased levels of retinoic acid, which was widely evidenced to inhibit tumor development and progression [40] . A

stratified survival analysis based on the clinical stage demonstrated that higher expression of RDH16 predicted better prognosis of

HCC patients in early clinical stage. The present study also revealed up-regulation of MAGEA6 and RTN3 expression as prognostic

features in HCC. Recent studies are in keeping with our findings, and revealed MAGEA6 (melanoma antigen A6) among up-regulated

genes in HCC, also evidencing its prognostic value [ 41 , 42 ]. MAGEA6 functions as a ubiquitin ligase physiologically, and normally is

expressed only in the male germline, but also can be re-activated in human cancers. In neoplastic cells, MAGEA6 and TRIM28 are

combined to form a cancer-specific ubiquitin ligase, that leads to inhibition of the AMPK signaling pathway, and in HCC induced the

stemness maintenance and selfrenewal of stem cells [43] . The upregulation of the expression of reticulon 3 (RTN3) is a component

of the prognostic signature revealed in the present study. This finding is supported by observations of others, who also classified

RTN3 increased expression as positive prognostic marker [44] . Recently is has been evidenced that RTN3 restrained HCC growth and

induced apoptosis. These effects were mediated by p53 activation of p53, i.e. RTN3 facilitated p53 Ser392 phosphorylation via Chk2

(RTN3 recruited Chk2 to the endoplasmic reticulum and promoted its activation) and enhanced subsequent p53 nuclear localization. 

RTN3 interacted with Chk2 [44] . 

So, the reported in the present study the three-gene diagnostic signature CYP2E1, AKR1C3, AFP as well as the four-gene prognostic

signature including SOCS2, MAGEA6, RDH16, and RTN3 are supported by the potential biological role of the respective proteins in

the pathogenesis of HCC. 

Conclusions 

To improve the reliability and robustness of potential biomarkers detection, an innovative analysis has been performed with the 

large accumulation of seven HCC transcriptome datasets. Our results show despite, the abundance of transcriptomic data provided 

by different platforms, non-fusion integrative meta-analysis could be a compelling method when aiming for detection diagnostic and 

prognostic biomarkers. 
6 
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