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Abstract
Rationale Brain iron accumulation has been observed in neuropsychiatric disorders and shown to be related to 
neurodegeneration.
Objectives In this study, we used quantitative susceptibility mapping (QSM), an emerging MRI technique developed for 
quantifying tissue magnetic susceptibility, to examine brain iron accumulation in individuals with alcohol use disorder (AUD) 
and its relation to compulsive drinking.
Methods Based on our previous projects, QSM was performed as a secondary analysis with gradient echo sequence 
images, in 186 individuals with AUD and 274 healthy participants. Whole-brain susceptibility values were calculated 
with morphology-enabled dipole inversion and referenced to the cerebrospinal fluid. Then, the susceptibility maps were 
compared between AUD individuals and healthy participants. The relationship between drinking patterns and suscep-
tibility was explored.
Results Whole-brain analyses showed that the susceptibility in the dorsal striatum (putamen and caudate) among AUD 
individuals was higher than healthy participants and was positively related to the Obsessive Compulsive Drinking Scale 
(OCDS) scores and the amount of drinking in the past three months.
Conclusions Increased susceptibility suggests higher iron accumulation in the dorsal striatum in AUD. This surrogate for 
the brain iron level was linearly associated with the compulsive drinking pattern and the recent amount of drinking, which 
provides us a new clinical perspective in relation to brain iron accumulation, and also might indicate an association of AUD 
with neuroinflammation as a consequence of brain iron accumulation. The iron accumulation in the striatum is further relevant 
for functional imaging studies in AUD by potentially producing signal dropout and artefacts in fMRI images.
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Introduction

As a chronic relapsing disease, alcohol use disorder 
(AUD) represents one of the world’s most significant 
addiction problems and has a large impact on global public 
health. It is characterized by recurrent compulsive alcohol 
use despite significant alcohol-related behavioral, cogni-
tive, physiological, and social problems. The Diagnostic 
and Statistical Manual of Mental Disorders fifth version 
(DSM-5) criteria of substance use disorder also empha-
sizes the compulsive quality as a central aspect of addic-
tion (American Psychiatric Association 2013).

The underlying neurobiological mechanism of compul-
sive consumption is currently still not fully understood. 
Converging evidence suggests the dorsal striatum to be 
critical in compulsive drug seeking. In animal studies, a 
large increase in dopamine levels was observed in the dor-
sal striatum in long-term cocaine use (Ito et al. 2002), and 
when inactivating the dorsolateral striatum, the habitual 
behavior was reduced (Vanderschuren et  al. 2005). In 
addition to the deep gray matter of the striatum, a circuit 
involving the frontal cortex is suggested to be important 
for the development of compulsivity. In human imaging 
studies, our previous results from cue–reactivity tasks 
indicated that the cue-induced activation of the ventral 
striatum in social drinkers is higher than in heavy drinkers, 
while in heavy drinkers it was higher in dorsal striatum 
(Vollstädt-Klein et al. 2010). This suggested that the dor-
sal striatum became the dominant region in compulsive 
alcohol use. In 2013, Sjoerds et al. also found a dysfunc-
tion of the anterior putamen in alcohol-dependent patients 
using an instrumental learning task, which was related to 
habit control (Sjoerds et al. 2013). From an anatomical 
perspective, studies using structural MRI have indicated 
that the basal ganglia were affected in alcohol users, 
including the caudate, putamen, and nucleus accumbens 
(Fritz et al. 2022).

Brain iron concentration has emerged as a potentially 
contributing factor to psychiatric disorders. In 2017 
(Juhás et al. 2017), brain iron accumulation in the deep 
gray matter of AUD patients was ascertained from resting-
state functional MRI (fMRI) signal, by combining multi-
channel complex phase signal in raw fMRI data using an 
adaptive method. Patients exhibited higher iron levels in 
the basal ganglia regions including the caudate nucleus, 
putamen, globus pallidus, and dentate nucleus compared to 
healthy subjects. Recently, a study based on UK Biobank 
also found moderate alcohol consumption was associated 
with higher iron in the putamen, caudate, and substantia 
nigra (Topiwala et al. 2022b). Previous research found 
brain iron levels to not only be associated with aging and 
neurodegeneration (Möller et al. 2019) but also with some 

psychiatric disorders, such as mood disorders and schizo-
phrenia (Necus et al. 2019; Yao et al. 2017), whereby the 
role of concomitant alcohol use remains unclear in these 
studies. With regard to substance use disorder (SUD), 
iron accumulation was observed in the globus pallidus of 
cocaine users, which strongly correlated with the overall 
duration of cocaine use (Ersche et al. 2017). Similarly, 
accumulation of iron in the globus pallidus and substantia 
nigra was found in methamphetamine-exposed animals 
(Melega et al. 2007). These findings showed that in SUD 
the basal ganglia exhibited an increased iron concentra-
tion. The mechanism of this restricted pattern of iron 
accumulation in the brain are not well understood. The 
profound effect of alcohol on systemic iron storage is well 
established (Duane et al. 1992; Whitfield et al. 2001), and 
animal studies suggest an involvement of dopamine sign-
aling in brain iron metabolism (Ben-Shachar et al. 1993; 
Ben-Shachar and Youdim 1990). Interestingly, the basal 
ganglia, especially the ventral and dorsal striatum, as men-
tioned above, are also at the core of the shift from hedonic 
to compulsive consumption.

Quantitative susceptibility mapping (QSM) is an emerg-
ing MRI technique. It calculates the tissue frequency shift 
using phase information at different echo times from gra-
dient echo images and then reconstructs the susceptibility 
maps (Haacke et al. 2015; Kurz et al. 2021; Möller et al. 
2019; Wang and Liu 2015). Studies have shown that in gray 
matter structures there is a strong linear correlation between 
chemically determined iron concentration and bulk magnetic 
susceptibility (Langkammer et al. 2012). This method has 
been extensively validated to be able to identify altered deep 
grey matter iron in normal aging as well as in many neuro-
logical disorders (Deistung et al. 2017; Haacke et al. 2015; 
Wang and Liu 2015).

Here, we applied QSM with gradient multi-echo imag-
ing collected by and compiled from several previously con-
ducted fMRI studies to compare brain iron levels in individ-
uals with AUD and healthy participants. We hypothesized 
that AUD individuals show increased accumulation of brain 
iron especially in the basal ganglia and that the concentration 
of brain iron relates to compulsive drinking.

Methods

Participants

This study was based on previous projects (Bach et al. 
2021; Bach et al. 2019; De Santis et al. 2019; Gerchen 
et al. 2021; Hansson et al. 2018; Karl et al. 2021; Voll-
städt-Klein et al. 2020) in AUD conducted in our lab 
(Supplementary Table 1), which were all designed with 
similar inclusion criteria and used the same gradient echo 
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sequence (GRE). Data were collected for 186 AUD indi-
viduals (DSM-IV or DSM-5 criteria, see supplementary 
material) and 274 healthy participants recruited between 
2011 and 2019 at the Central Institute of Mental Health, 
Mannheim, Germany. The demographic and clinical 
overview of the participants is summarized in Table 1. 
AUD individuals did not use other substances except nic-
otine, which was verified by a urine drug screen (nal von 
minden GmbH Drug-Screen® Diptest, Version 1.0). The 
healthy participants had no history of alcohol or drug 
addiction or any current psychiatric disorder. Participants 
in both groups were excluded if they had any history of 
serious medical (including psychiatric or neurological) 
complications, brain injury, use of psychotropic medica-
tions (other than during the detoxification process), or 
did not meet magnetic resonance safety criteria for our 
imaging facility, for example because of metal implants 
or pregnancy.

Before taking part in the scanning procedure, partici-
pants completed the following questionnaires: Form90 
(Scheurich et al. 2005), the Alcohol Dependence Scale 
(ADS, (Kivlahan et al. 1989)), the Alcohol Urge Question-
naire (AUQ, (Bohn et al. 1995)), and the Obsessive Com-
pulsive Drinking Scale (OCDS, (Anton et al. 1995; Mann 
and Ackermann 2000)). Form90 retrospectively recorded 
the amount of alcohol drunk everyday and calculated the 
cumulative amount in the past 90 days. With Form90, the 
amount of daily alcohol consumption was assessed, and 
the cumulative amount in the past 90 days was calculated. 
All participants provided informed written consent accord-
ing to the declaration of Helsinki, and all projects in this 
study were approved by the ethics committee of the Uni-
versity of Heidelberg.

MRI acquisition

Neuroimaging data was acquired using a Siemens 3 Tesla 
whole-body tomograph (MAGNETOM Trio, TIM technol-
ogy, Siemens, Erlangen, Germany) with a 12-channel head 
coil. A multislice 2D-GRE was used for the QSM analysis: 
TR = 358 ms;  TE1 = 5.19 ms, and  TE2 = 7.65 ms; matrix 
size = 64 × 64 × 42; voxel size = 3 × 3 × 3  mm3; and flip 
angle = 60°. This sequence was originally implemented as a 
sequence for fieldmap correction of fMRI data to control for 
distortions of the functional images in the previous projects.

Quantitative susceptibility mapping (QSM)

The GRE raw data were reconstructed manually by using a 
sum-of-squares approach for the magnitude and exponential 
addition for the phase after referencing the phase of each 
channel to the first echo. QSM reconstruction was done 
with the MEDI toolbox from Cornell MRI Research Lab (de 
Rochefort et al. 2010; Liu et al. 2011), which included pro-
cedures of fitting the complex MRI data, phase unwrapping 
with a region growth approach, brain mask generation with 
morphological operators and 5 mm erosion of the bound-
ary, and background field removal by solving the Laplacian 
boundary value (Sun and Wilman 2014; Zhou et al. 2014). 
Furthermore, field inversion with MEDI used a weighting 
factor of 1000, which was based on the parameter optimi-
zation (from  10−3 to  106) with 10% random sub-sampling 
(for detailed methodological description see (Hubertus 
et al. 2019a, b)), and the susceptibility maps were also ref-
erenced to the averaged susceptibility in the cerebrospinal 
fluid (CSF). The CSF-referenced susceptibility values were 
relative values without units.

Table 1  Group characteristics 
of all participants (N = 460)

Abbreviations: ADS, Alcohol Dependence Scale; AUQ, Alcohol Urge Questionnaire; OCDS, Obsessive 
Compulsive Drinking Scale (OCDS)
a Based on FORM90
b Calculation rules of OCDS based on Mann et. al. (Mann and Ackermann 2000)

AUD individuals Healthy controls Statistics 
(T/χ2 value)

df P value

N 186 274
Age (years) 48.3 ± 10.8 37.5 ± 15.3 8.337 458 < 0.001
Sex (female) 34, 18.3% 66, 24.2% 1.924 1 0.165
Duration of drinking (years) 19.8±12.9 - - - -
Cumulative amount of alcohol 

(gram in the last 90 days)a
15332.2 ± 13752.9 1092.1 ± 3967.3 9.227 206 < 0.001

Current smoke (yes) 115, 67.6% 30, 13.8% 116.206 1 < 0.001
ADS score 11.8 ± 8.0 2.5 ± 3.5 9.271 130 < 0.001
AUQ score 13.5 ± 6.5 10.3 ± 3.6 4.503 218 < 0.001
OCDS  globalb 14.8 ± 7.5 2.8 ± 3.9 15.619 251 < 0.001
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Data analysis

The CSF-referenced susceptibility maps were then normal-
ized using SPM12 (Wellcome Centre for Human Neuro-
imaging, London, UK, https:// www. fil. ion. ucl. ac. uk/ spm/) 
to SPM12 TPM MNI template for statistical comparison. 
Whole-brain susceptibility values for each subject were 
included in a one-tailed t-test to find brain regions with dif-
ferences in QSM intensity between the groups of AUD and 
healthy participants. Age and current smoke status were 
added as covariates of no interest. Although we had specific 
hypotheses for the basal ganglia, we conducted whole brain 
analyses to also exploratory look at other brain regions. A 
voxel-wise-threshold of P < 0.001 in combination with a 
cluster-extent threshold determined with random field the-
ory in SPM12 was used for a corresponding cluster-level 
family-wise error (FWE) significance threshold of P < 0.05. 
We then generated a region of interest (ROI) using the sig-
nificant voxels of the group comparison and averaged the 
susceptibility values in this ROI. A linear partial correlation 
controlling for age and smoke status was conducted between 
the mean susceptibility within the ROI and psychometric 
variables using SPSS (Statistical Package of the Social 

Sciences, version 25; SPSS Inc., Chicago, IL, USA). Cor-
relation analyses were done to all participants, because in a 
group of healthy participants, there were also light to moder-
ate drinkers, which could bring more information on linear 
relations between susceptibility and psychometrics. Psycho-
metric data included the sum of ADS score, AUQ score, and 
the OCDS global score, according to the calculation rules 
from a previous study (Mann and Ackermann 2000).

Results

Whole‑brain susceptibility in AUD and healthy 
participants

To examine the brain iron level, we voxel-wise compared 
the whole-brain susceptibility in AUD individuals with the 
healthy participants. AUD individuals showed increased 
CSF-referenced susceptibility in the bilateral putamen and 
caudate (Table 2 and Fig. 1). This revealed higher iron accu-
mulation in the dorsal striatum of AUD individuals.

Correlation of susceptibility and psychometrics

To explore whether the increased susceptibility in the dorsal 
striatum is related to the pattern of alcohol consumption, 
further correlation analyses were conducted. The mean sus-
ceptibility in the ROI of all 177 voxels in four clusters based 
on the results of whole-brain analysis was positively linearly 
correlated to the cumulative amount of alcohol consumption 
in the past three months, controlling for age and smoke sta-
tus (Table 3 and Fig. 2). Furthermore, the ROI susceptibil-
ity was also significantly correlated to OCDS global scores 
(Table 3 and Fig. 3). There was no significant correlation 
with ADS and AUQ observed (sFigure 1 and sFigure 2), 
and the linear correlations were not significant within the 
AUD group.

Table 2  Brain areas with increased susceptibility in AUD individuals 
compared to healthy controls (n = 460 subjects, combined voxel-wise 
(P < 0.001) and FWEc = 29 voxels, corresponding to cluster-pFWE 
< 0.05)

a, b The rest voxels of these two clusters were unlabeled in AAL-Atlas

Side Brain 
regions

Percent-
ages in 
cluster

Cluster size MNI coor-
dinates (x, y, 
and z)

tmax

Left Caudate 86.4%a 44 − 20 − 20 
22

5.1025

Right Caudate 83.6%b 67 18 2 20 5.0614
Right Putamen 100% 37 28 6 6 4.6831
Left Putamen 100% 29 − 28 − 2 6 4.0510

Fig. 1  Brain regions with iron 
accumulation. (A) Whole-brain 
two-sample t-test of susceptibil-
ity between AUD individuals 
and healthy participants (com-
bined voxel-wise (P < 0.001) 
and extent threshold FWEc = 
29 voxels, corresponding to 
cluster-pFWE < 0.05). (B) An 
exemplary susceptibility map 
from an AUD individual
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Discussion

The most salient message of the current study is that AUD 
patients show increased iron accumulation in the dorsal 
striatum and that iron levels are associated with the meas-
ure of drinking pattern. Specifically, AUD subjects had 
bilaterally increased magnetic susceptibility in the dorsal 
striatum when compared to healthy participants. Impor-
tantly, this iron accumulation was strongly and positively 
correlated to the alcohol exposure in the last three months 
and with OCDS score. This finding suggests that the 
behavioral pattern of compulsive drinking is related to the 
concentration of brain iron in the dorsal striatum, a brain 
region involved in habituation and automated behaviors. 
The specificity of this finding is supported by the lack of 
correlation of momentary alcohol urges and severity of 
alcohol dependence with the striatal iron levels.

Accumulation of brain iron in AUD

As hypothesized, increased accumulation of brain iron was 
observed in AUD participants. Alcohol use has a significant 
and wide-ranging impact on multi-systems/organs and might 
be associated with systemic iron accumulation in the body. 
Alcohol use may increase intestinal iron absorption and be 
related to abnormal hepcidin signaling (Duane et al. 1992; 
Juhás et al. 2017; Kohgo et al. 2008). The liver, as the major 
storage site for iron, as well as the principal targets for alcohol 
injury, suffers from iron overload (Ioannou et al. 2004; Tavill 
and Qadri 2004). Further, it is reported that alcohol use dis-
rupts the blood-brain barrier (BBB) integrity (Haorah et al. 
2005; Pimentel et al. 2020), which could have impact on iron 
transport and contributes to brain iron accumulation (Olmedo-
Díaz et al. 2017). What is more, the pre-clinical experimental 
literature reports increased brain iron after acute and chronic 

Table 3  Correlation of 
mean ROI susceptibility and 
psychometric variables in all 
participants

Abbreviations: ADS, Alcohol Dependence Scale; AUQ, Alcohol Urge Questionnaire; Obsessive Compul-
sive Drinking Scale (OCDS)
a Calculation rules of OCDS based on Mann et al. (Mann and Ackermann 2000)

Controlled age and smoke status All participants AUD group

Coefficient df P coefficient df P

Cumulative amount of drinking 
(gram in the last 90 days)

0.201 185 0.006 0.068 110 0.478

Global score of OCDS a 0.146 225 0.028 -0.072 118 0.434
Sum of ADS 0.139 120 0.127 0.190 40 0.228
Sum of AUQ 0.118 201 0.093 0.097 104 0.320

Fig. 2  Correlation of the cumulative amount of drinking (alcohol in 
gram, in the last 90 days period) and susceptibility, controlling for 
age and smoking status

Fig. 3  Correlation of OCDS scores and susceptibility, controlling for 
age and smoking status
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alcohol exposure in animals (Crews and Nixon 2009; Rouach 
et al. 1997; Rouach et al. 1990), which was hypothesized to be 
related to free radicals and oxidative stress, and consequently 
in neuroinflammation. Studies in humans linked long-term 
alcohol use and AUD to signs of increased immune signaling 
in the central nervous system (Coller and Hutchinson 2012), 
pro-inflammatory state in the brain (Rubio-Araiz et al. 2017), 
and microglia activation (Kempuraj et al. 2016; Petrakis et al. 
2019). However, the mechanism underlying increased brain 
iron in AUD and its relation to neuroinflammation and neuro-
degeneration is still not fully understood. (Haorah et al. 2005).

Specific brain iron accumulation in the dorsal 
striatum

Our findings indicate a specific brain iron accumulation in 
the dorsal striatum of AUD participants. Whole-brain analy-
sis showed significantly higher susceptibility in the dorsal 
striatum of AUD participants compared to healthy controls. 
A potential reason why striatal regions might be particularly 
sensitive to iron accumulation is its high energetic demands 
resulting from dopaminergic activity. In dopamine synthesis, 
iron is a co-factor of tyrosine hydroxylase, which converts 
tyrosine to dopamine. Tissue culture experiments in periph-
eral blood cells have shown that dopamine alters cellular 
iron homeostasis by increasing iron incorporation (Dichtl 
et al. 2018). The dorsal striatum is particular vulnerable to 
alterations of the iron homeostasis because it holds the high-
est density in dopaminergic terminals, and dopamine turno-
ver and metabolism are energetically extremely demanding 
with iron and dopamine forming a potent redox couple (Hare 
and Double 2016; Scheurich et al. 2005), which might also 
underlie the higher sensitivity of the dorsal vs. ventral stri-
atal regions to neurodegeneration in Parkinson’s disease. 
Following the dopamine synthesis, molecules from oxida-
tion in the dopamine degradation could be neurotoxic to 
catecholaminergic cells (Muñoz et al. 2012), and iron was 
found as a mediator of the neurotoxicity in Parkinson’s dis-
ease via Fe − dopamine complex (Paris et al. 2005).

Thus, regions with high dopaminergic activity appear to 
be vulnerable to iron accumulation. This in turn might lead 
to cognitive and behavioral impairment (Rodrigue et al. 
2020; Schröder et al. 2013; Spence et al. 2020; Toneka-
boni and Mollamohammadi 2014). In fact, evidence from 
human PET and postmortem studies and corresponding 
animal experiments demonstrated profound alterations in 
the dopamine system in AUD (Hansson et al. 2019; Hirth 
et al. 2016). The ventral and dorsal striatum play differ-
ent dopamine-mediated roles in addiction, and the dorsal 
striatum is more related to compulsive use. (Ito et al. 2000; 
Lüscher et al. 2020; Uhl et al. 2019; Vollstädt-Klein et al. 
2010). In the present study, AUD participants had been 
drinking for 19.8 years, on average, and were therefore 

likely in the stage of compulsive use, to varying degrees as 
assessed by the OCDS. Correspondingly, the dopaminergic 
activity in the dorsal striatum might have become dominant 
in their alcohol use behavior, which led to increased iron 
accumulation in this region.

Connections between brain iron accumulation 
and compulsive drinking in AUD

The current study found a positive correlation between dorsal 
striatal susceptibility, i.e., iron load, and compulsive drinking 
behavior as measured by the OCDS (Vollstädt-Klein et al. 
2010). This correlation further strengthens the hypothesis that 
the dorsal striatum is specifically involved with mediating com-
pulsive drinking behavior and that a potential underlying neural 
mechanism contributing to this might be iron overload (Tonek-
aboni and Mollamohammadi 2014). An interesting question 
these findings raise is whether brain iron accumulation in the 
dorsal striatum is a predisposing factor for compulsive behavior 
and the development of AUD or whether it is the result of long-
term alcohol consumption. In order to explore this question it 
would be useful to follow individuals over trajectory of addic-
tion development, to make a direct intra-individual comparison 
of iron levels over time. While the present study is limited by its 
cross-sectional design and found a positive correlation between 
brain iron accumulation and the drinking amount, some recent 
studies have attempted to elucidate the relationship between 
brain iron, cognitive function, and age in non-AUD popula-
tions. Interestingly, in healthy individuals, greater iron load was 
predictive of deficits in a working memory task, especially in 
younger and middle-aged participants, when compared to older 
ones (Rodrigue et al. 2020). However, a different study (Larsen 
et al. 2020) in which the longitudinal trajectories of striatal iron 
load were examined came to the conclusion that greater cogni-
tive ability is increasingly associated with greater iron concen-
tration through late adolescence and young adulthood. Mean-
while, we did not find significant correlations between dorsal 
striatal susceptibility and AUQ or ADS scores. We did not find 
this result surprising given that the AUQ assesses ‘state’ as 
opposed to ‘trait,’ which reflects a temporary condition and 
would be unlikely to correlate with a cumulative, chronic indi-
cator like iron load. The ADS, on the other hand, does in fact 
measure trait (severity of alcohol dependence), but one which 
consists of several domains beyond compulsivity, including 
negative emotion, preoccupation and salience. Therefore, it 
seems likely that the ADS may associate with neural activity 
that goes beyond the dorsal striatum. The OCDS is a tool that 
is specific to the assessment of trait compulsive drinking and its 
positive correlation with dorsal striatal susceptibility makes a 
compelling case that increased iron load in the dorsal striatum 
is directly related to increased compulsive drinking patterns.
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Clinical perspective

These results provide us with a new perspective on clinical 
assessment and treatment. Brain iron concentration from 
imaging examinations could function as a potential bio-
logical marker in AUD diagnosis, providing an objective 
measure associated with recent alcohol exposure and com-
pulsive drinking, which might be helpful for individualized 
treatment of AUD.

Importantly, it must be noted that increased brain iron 
accumulation leads to signal loss and hence systematic 
artefacts when acquiring fMRI images because of the static 
field inhomogeneities. This represents a specific challenge 
for clinical addiction researchers using fMRI, because it is 
exactly these regions—the putamen, pallidus, insula, and 
caudate—that have been hypothesized to have special rel-
evance for the development and maintenance of addiction. 
Meanwhile, these regions are disproportionately affected by 
iron accumulation when compared to healthy individuals 
(Puckett et al. 2018; Song 2001). This likely has signifi-
cant implications when analyzing fMRI data and should be 
regarded as a potentially impacting factor in studies of AUD.

Limitation

Our re-analyses following this innovative method 
included existing datasets from previous projects using 
the same inclusion criteria and scanning parameters. 
This resulted in limitations regarding data resolution. 
Second, although our GRE sequence appears suitable for 
standard QSM methods (Haacke et al. 2015), its spatial 
resolution is relatively low, which may have limited our 
ability to detect iron increases in smaller brain regions 
of the mid and hind brain as previously reported (Juhás 
et al. 2017; Topiwala et al. 2022a) and prevented the 
exploration of striatal subregions. However, this work 
performed whole-brain analysis and warrants further 
investigation using QSM of adequate spatial resolution. 
Moreover, our analyses only found a significant cor-
relation in both groups, but not within the AUD group 
alone. This might be because of the classification based 
on DSM criteria, which results in different distributions 
in the AUD and healthy individuals. Third, we had no 
access to blood markers (e.g., iron levels, ferritin, and 
transferrin saturation), and were unable to study the 
relationship between iron metabolism and brain iron 
accumulation. Thus, future studies need to address these 
issues by using state-of-the-art sequences, including bio-
markers of peripheral iron metabolism, and most impor-
tantly by positing an a priori and pre-registered hypoth-
esis on the effect of iron accumulation on behavioral and 
other clinical outcomes.

Conclusion

This is the first study exploring whole-brain iron accumulation 
in AUD using GRE sequences with a large clinical sample. 
It is also the first time that compulsive behavioral patterns in 
AUD have been related to brain iron accumulation. In summary, 
treating compulsive patterns of alcohol use is one of the main 
aims in clinical practice with regard to AUD. The neural mecha-
nisms underlying habituation and compulsivity are still not fully 
understood. This study using QSM susceptibility measures finds 
increased iron accumulation in the dorsal striatum to be asso-
ciated with the behavior of compulsive drinking, which might 
bring a new perspective to clinical practice. Further, neuroinflam-
mation might be a consequence of brain iron accumulation which 
might relate AUD to neuroinflammation mechanisms. Lastly, our 
results also have implications for fMRI methods used in addic-
tion research, because iron accumulation results in signal dropout 
when echo planar imaging images are acquired. This means that 
regions of the basal ganglia, specifically of interest in general 
SUD research, have a potentially systematically disturbed signal, 
which may affect the quality of the analysis. The method used in 
the current study is easy to implement and offers the possibility 
to examine brain iron accumulation with images using short GRE 
sequences, which might already have been acquired in previous 
studies as images for fieldmap correction.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00213- 022- 06301-7.
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