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Deep learning system to predict the 5-year risk of high myopia
using fundus imaging in children
Li Lian Foo 1,2,13, Gilbert Yong San Lim1,13, Carla Lanca3,4, Chee Wai Wong1,2,5, Quan V. Hoang1,2,6,7, Xiu Juan Zhang8,
Jason C. Yam8,9,10,11,12, Leopold Schmetterer1,2, Audrey Chia1,2, Tien Yin Wong1,2, Daniel S. W. Ting 1,2,14, Seang-Mei Saw1,2,14✉ and
Marcus Ang1,2,14✉

Our study aims to identify children at risk of developing high myopia for timely assessment and intervention, preventing myopia
progression and complications in adulthood through the development of a deep learning system (DLS). Using a school-based
cohort in Singapore comprising of 998 children (aged 6–12 years old), we train and perform primary validation of the DLS using
7456 baseline fundus images of 1878 eyes; with external validation using an independent test dataset of 821 baseline fundus
images of 189 eyes together with clinical data (age, gender, race, parental myopia, and baseline spherical equivalent (SE)). We
derive three distinct algorithms – image, clinical and mix (image+ clinical) models to predict high myopia development
(SE ≤−6.00 diopter) during teenage years (5 years later, age 11–17). Model performance is evaluated using area under the receiver
operating curve (AUC). Our image models (Primary dataset AUC 0.93–0.95; Test dataset 0.91–0.93), clinical models (Primary dataset
AUC 0.90–0.97; Test dataset 0.93–0.94) and mixed (image+ clinical) models (Primary dataset AUC 0.97; Test dataset 0.97–0.98)
achieve clinically acceptable performance. The addition of 1 year SE progression variable has minimal impact on the DLS
performance (clinical model AUC 0.98 versus 0.97 in primary dataset, 0.97 versus 0.94 in test dataset; mixed model AUC 0.99 versus
0.97 in primary dataset, 0.95 versus 0.98 in test dataset). Thus, our DLS allows prediction of the development of high myopia by
teenage years amongst school-going children. This has potential utility as a clinical-decision support tool to identify “at-risk”
children for early intervention.
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INTRODUCTION
Myopia is one of the leading causes of uncorrected, reversible visual
impairment in the world1–3. It has been projected that myopia could
affect 50% (4.7 billion) of the world’s population by 2050, with 10%
(1 billion) suffering from high myopia4,5. High myopia carries an
increased risk of sight-threatening complications such as retinal
detachment, open-angle glaucoma, myopic macular degeneration,
and choroidal neovascularization6,7 Occurrence of these complica-
tions would inevitably increase public health burden8, and lead to
loss of productivity9.
Currently, known potential risk factors for the development of

high myopia in children include a younger age of myopia
onset10–12, higher myopia diagnosed at presentation13, rapid
myopia progression14,15, reduced outdoor and increased near
work time14, parental myopia14, education years16, and polygenic
risk scores17,18. However, translating these factors into clinical
practice can be challenging. Many of these factors are based on
subjective recall, or require the use of cycloplegic eyedrops which
may not be widely available due to the need for staff with higher
level of training in administering the eyedrops19,20. Studies have
attempted to develop risk prediction based on statistical19,20

approaches that rely on serial visual and refraction assessments,
which is resource intensive and may delay necessary

intervention19. Moreover, there is also increased demand for
skilled eye care professionals, compounding challenges brought
about by the growing magnitude of vision and eye health related
problems21.
The trend of an increasing number of children and teenagers

with high myopia has become a global concern22. This is
particularly evident in East Asia where prevalence rates of high
myopia have risen up to 21.6%23–26. While there are interven-
tions such as atropine eyedrops and optical devices (e.g., myopic
defocus spectacles and multifocal contact lenses) that may
reduce myopia progression in children27, these interventions
may not be suitable for all children and have potential side
effects28,29.
A key area of research is to identify children who are “at risk” of

developing high myopia with greater precision, so that these
interventions may be appropriately introduced to these children.
Thus, there is an unmet need to identify children at risk of
developing high myopia, based on simple, accessible and
objective measures, ideally at a single baseline visit. In this study,
we aim to develop a deep learning system (DLS) utilizing objective
fundus imaging and/or clinical data to identify children who are at
risk of developing high myopia (5-year prediction) later in their
teenage years.
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RESULTS
From a total of 965 children (1878 eyes) with 7456 retina images
from school 2 and 3, the deep learning model was trained with
fivefold cross validation for detection of high myopia using 769
children (1502 eyes) with 5945 retina images and tested on 196
children (376 eyes) with 1511 retina images. The models were
externally validated on the test dataset using 99 children (189
eyes) with 821 retina images from school 1. The overall subjects’
demographics, myopic status at baseline and in teenage years
are listed in Supplementary Table 1. Comparison of baseline
characteristics of subjects from the different schools showed that
School 1 is generally statistically different from Schools 2 and 3
with the exception of proportion of males (P= 0.056) using Chi-
squared test (Supplementary Table 2).
In the primary dataset for internal validation, among the 1502

eyes used in training and fivefold cross validation, 60.7% had no
myopia, 29.8% had low myopia and 9.5% had moderate myopia at
baseline. In teenage years, 5 years after the initial visit, 31.8% had
no myopia, 36.9% had low myopia, 26.8% had moderate myopia
and 4.6% had high myopia. In the 376 eyes used in testing, 62.2%,
28.7% and 9.0% had no, low, moderate myopia at baseline,
respectively. After 5 years, 39.6%, 31.1%, 25.8% and 3.5% had no,
low, moderate and high myopia, respectively. In the test dataset
for external validation (189 eyes), 33.9%, 37.0% and 29.1% had no,
low, moderate myopia at baseline, respectively. After 5 years,
23.3%, 33.9%, 34.4% and 8.5% had no, low, moderate and high
myopia, respectively.
Using only variables at baseline, all our models achieved

clinically acceptable performance. In the fundus image-only
models, fundus image alone achieved an AUC of 0.93 in both
the primary as well as the test dataset while in the clinical data-
only models, baseline SE alone achieved an AUC of 0.90 and 0.93
in the primary and the test dataset, respectively. In the mixed
models (image+ clinical), the combination of fundus image and
baseline SE achieved an AUC of 0.97 in both the primary as well as
the test dataset. The addition of 1 year SE progression to the
clinical and mixed models provided only marginal improvement
or decline in model performance. The performance of the
algorithm for image models, clinical models and mixed models
is presented in Table 1.

Fundus image-only models
The algorithm with baseline childhood fundus imaging input
alone achieved clinically acceptable prediction of high myopia in
teenage years. The AUC and accuracy in classification was 0.93,
0.84 and 0.93, 0.86 for internal and external validation,
respectively. The addition of age, race and gender resulted in
marginal improvement or decline in performance (AUC 0.95 in
primary dataset, 0.91 in test dataset). The AUC curves and
confusion matrixes for internal and external validation are shown
in Fig. 1.

Clinical data-only models
Two baseline clinical models were developed for (i) Baseline SE, (ii)
Age+ Race+ Gender+ Baseline SE. The AUC and accuracy
achieved was 0.90–0.97, 0.80–0.87 and 0.93–0.94, 0.65–0.74 for
internal and external validation, respectively. Similar to the fundus
image-only model, additional input with 1 year progression data
led to marginal improvement in performance (AUC 0.98 in primary
dataset, 0.97 in test dataset). The addition of parental myopia did
not further improve the performance. The AUC and confusion
matrixes for internal and external validation are shown in Fig. 2,
while the random forest feature importance for clinical models
can be found in Supplementary Fig. 1. Ta
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Mixed Models
The algorithm with baseline childhood fundus imaging together
with clinical data input achieved the highest performance in
prediction of high myopia in teenagers. Two baseline mixed

models were developed for (i) Fundus photo+ Baseline SE and (ii)
Fundus photo+ Age+ Race+ Gender+ Baseline SE with AUC
and accuracy in classification of 0.97, 0.93 and 0.97–0.98, 0.82 for
internal and external validation, respectively. The addition of

Fig. 1 Performance of image models. AUC and confusion matrixes for internal and external validation of image models—(i) Fundus photo
only and (ii) Fundus photo+ Age+ Race+Gender.

Fig. 2 Performance of clinical models. AUC and confusion matrixes for internal and external validation of clinical models – (i) Baseline SE, (ii)
Baseline SE+ Age+ Race+Gender, and (iii) Baseline SE+ Age+ Race+Gender+ 1-year SE progression.
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1 year progression input data delivered marginal improvement or
decline in performance (AUC 0.99 in primary dataset, 0.95 in test
dataset). Similar to the clinical model, the addition of parental
myopia did not further improve the performance. The AUC and
confusion matrixes are shown in Fig. 3, respectively- The random
forest feature importance for mixed models can be found in
Supplementary Fig. 1.

Performance of models for AL prediction
We have also attempted to perform long axial length (AL ≥ 26.5mm)
prediction in image models, clinical models and mixed models. In
the primary dataset for internal validation, among the 1502 eyes
used in training and fivefold cross validation, 100% had AL < 26.5
mm at baseline. In teenage years, five years after the initial visit,
98.1% had AL < 26.5mmwhile 1.86% (28 eyes) had AL ≥ 26.5mm. In
the 376 eyes used in testing, 100% had AL <26.5mm at baseline
and 2.13% (8 eyes) had AL ≥ 26.5 mm after 5 years. In the test
dataset for external validation (189 eyes), 100% had AL <26.5 mm at
baseline and 8.47% (16 eyes) had AL ≥ 26.5 mm after five years
(Supplementary Table 1).
In the fundus image-only models, fundus image alone achieved

an AUC of 0.67 and 0.57 while in the clinical data-only models,
baseline AL alone achieved an AUC of 0.83 and 0.91 in the primary
and the test dataset, respectively. In the mixed models (image+
clinical), the combination of fundus image and baseline AL
achieved an AUC of 0.98 and 0.88 in the primary and the test
dataset, respectively. The addition of 1 year SE progression to the
clinical and mixed models provided only marginal or no
improvement in model performance. The performance of the
algorithm for image models, clinical models and mixed models
were presented in Table 2.

DISCUSSION
In this study, we developed a modular DLS based on single-time
point objective data and fundus imaging to predict the 5-year
development of high myopia in a multi-ethnic group of children
aged between 6 and 12 years old at baseline. Our models
demonstrated clinically acceptable predictive performance with
AUCs ranging from 0.90 to 0.98. Importantly, the fundus image-
only model demonstrated comparable performance (AUC= 0.94)
against clinical models (AUC 0.90–0.97). Marginal benefit or
decline in performance was noticed with additional 1 year
follow-up progression data of SE. The performance of our fundus
image-only model has the potential to be translated and
implemented into community or school-based programs to
identify at-risk children for further assessment and intervention
if required.
In the recent report Impact of Myopia by the International

Myopia Institute (IMI), the global cost of myopia care is expected
to increase from an estimated USD$358.7 billion in 2019 to USD$
870 billion by 205030. In particular, these reports indicate that high
and pathologic myopia place significant financial burden on both
the individual and society, with annual costs increasing substan-
tially with age30. Thus, the IMI Clinical Management Guidelines
Report advocates for myopia control, which includes risk assess-
ment, followed by clinical evaluation, and treatment selection31. In
addition, identifying children “at risk” of high myopia and those
with “premyopia” are important for early intervention32. Though
such broad definitions could support clinical decision making, in
reality, accurately identifying a child at risk of developing high
myopia in clinical practice is challenging. High-risk features such
as family history33–36 and environmental factors (near work and
outdoor exposure)37–41 are helpful but not deterministic, hence
current childhood myopia management is heavily reliant on
eyecare professionals’ judgment and experience. Based on the

Fig. 3 Performance of mixed models. AUC and confusion matrixes for internal and external validation of mixed models—(i) Fundus
photo+ Baseline SE, (ii) Fundus photo+ Baseline SE+Age+ Race+Gender, and (iii) Fundus photo+ Baseline SE+Age+ Race+Gender+ 1-year
SE progression.
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current available clinical evidence42–48, children who are already
myopic may be started on myopia control therapies to prevent
further progression; while environmental and behavioral mod-
ifications should be encouraged in ‘pre-myopic’ high-risk children.
However, current clinical management requires a more precise
approach that is individualized, to reliably identify and initiate
timely treatment for high-risk children.
Our predictive DLS is designed to address these specific

challenges, and with the most clinical impact. First, we have a
target age group of children aged 6–12 years old who are most
vulnerable to myopia progression and also amenable to myopia
control therapies31,49. Second, we used only objective inputs to
avoid biases related to subjective recall—and these are obtained at
one single time point (baseline), thereby eliminating the need for
repeated, longitudinal follow-up before a clinical decision can be
made and avoiding unnecessary delay of treatment for high-risk
individuals. Third, our various image-based and mixed-clinical
models produced clinically acceptable performances, allowing for
implementation in various clinical settings with the availability of
imaging systems. As a further enhancement, our DLS was trained
and tested using a multi-ethnic population which improves the
overall generalizability of the results. Fourth, our DLS delivered
robust predictive performance against an external validation
dataset which was dissimilar to the training datasets. This suggests
that our DLS could have the capacity to achieve good performance
against unique external datasets, which would require substantia-
tion through further validations.
Comparing our fundus image-only model with other models in

this study that require clinical predictors input, using baseline
fundus image alone appeared to be comparable in performance
and adequate in predicting 5-year high myopia. We also
compared our fundus image-only model to previous studies using
regression methods19 and machine learning (ML)20 to predict high
myopia in childhood (Supplementary Table 3). Our approach
provided several distinct advantages. Firstly, our DLS based
baseline fundus image as a single input variable, was able to
exceed or was at least on par with the performance of the 5-year
high myopia prediction ML algorithms, using big data (age and
refraction) from electronic medical records, proposed by Lin et al.
However, the ML algorithms required cycloplegic refraction and a
minimum of three repeated annual visits before a prediction could
be made20. Secondly, the statistical models in Chen et al were only
able to predict the development of high myopia at 18 years old (5
or 6-year prediction) in 12 to 13 years old children, using age,
gender and cycloplegic SE ranging from 1–3 visits19. However, by
18 years of age, myopia progression and axial elongation would
have occurred, missing the window period for myopia control
treatment. In comparison, our models target children aged 6–12
years old in order for potential myopia interventions to remain
effective. Moreover, our DLS was also able to achieve comparable
performance utilizing the same variables used in models proposed
by Chen et al. (Supplementary Table 3).
Logistically, utilizing baseline fundus image alone can eliminate

the need for cycloplegic refraction19 without significant degrada-
tion in predictive performance. Cycloplegic refraction is a time
consuming process with a waiting time ranging between 1 and
2 h. Additionally, the children routinely experience side effects of
pupil dilation and glare lasting up to 72 h. Hence, this procedure is
not routinely performed in clinical assessments or myopia
screening programs50. On the other hand, predictive utility of
non-cycloplegic SE alternatives such as manifest refraction or basic
autorefraction could be confounded by the spurious effects of
pseudomyopia. In comparison, our approach utilizing fundal
imaging coincides with the maturation of non-mydriatic imaging
technology. It is now feasible to obtain high quality images with
minimal latency. This provides comparative advantages, including
significant time savings versus cycloplegic SE and better accuracy
versus non-cycloplegic SE modalities.Ta
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The implementation of AI into myopia screening or evaluation
programs will depend on the availability of skilled manpower,
imaging systems and infrastructure support, and therefore the
selection (or design) of a candidate system needs to consider
these issues51–54. The World Report on Vision highlighted the
increasing demand for trained eye health human resources to
address the substantial burden of vision and eye health issues
globally55. With 19 million children with visual impairment,
including blindness in 1.4 million and low vision in 17.5
million56, the shortage of trained eye care professionals
particularly optometrists and ophthalmologists, represent major
barriers to accessing quality childhood myopia management21.
Majority of these children reside in developing countries56 which
are chronically underserved due to a paucity of optometrists and
unequal optometrist workforce distribution57. This gap would
likely widen with time, given the increasing trend in economic
inequality.
For example, our image-only model based on a single baseline

fundus photograph may be implemented easily without the need
for other sophisticated, costly equipment to measure AL and
autorefraction. It also eliminates the need to perform cycloplegic
refraction which requires skilled manpower and is difficult to
conduct in primary healthcare settings58. In the future, such DLS
image analysis could be integrated into the fundus camera or
performed using cloud computing59. Separately, our DLS system
may be integrated into national myopia screening programs60,61,
or even in less developed healthcare systems that have access to
portable fundal cameras62. However, this would need to be
balanced against the higher false-negative rate in comparison
with models solely based on clinical data or a mixture of both. This
may result in misclassification of children at-risk, resulting in the
subsequent development of high myopia. It is therefore important
for public health experts and policies makers to weigh the risk of
screening inaccuracies against the benefit of scalable large-scale
screening based on a single fundus photograph. In addition,
incidences of misclassification may also be minimized through
regular annual screenings. On the other hand, the mixed-model
would be better suited to a tertiary healthcare setting where
imaging equipment and cycloplegic refraction are readily avail-
able. This would then function as a clinical-decision support tool
by identifying suitable candidates for treatment.

In order to identify at risk individuals, we postulate that our DLS
could have indirectly detected the early phases of accelerated
myopia development through higher presenting SE as well as
subtle morphological changes on fundus imaging. This could
include differences in macular choroidal thickness or topographical
differences at the macular and disc. Moreover, post-processing
techniques applied to saliency heatmaps, generated using Inte-
grated Gradient techniques, had identified the disc and macular as
areas of interest (Fig. 4), consistent with areas of future myopic disc
changes and myopic macular degeneration63.
Our study has several limitations. Firstly the distribution of

children with and without high myopia in our current cohort after 5
years exhibited significant imbalance. While this could affect the
utility of our results, it would be an unavoidable challenge as our
dataset is reflective of the naturally skewed-distribution of the
disease. Furthermore, with Singapore ranking amongst the highest
in the world in terms of high myopia prevalence, our current data
distribution is likely to reflect the upper end of high myopia disease
frequency in the real world. Hence, augmenting with population
data from other studies would represent an impractical effort to
address this constraint.
While our algorithm was developed using a longitudinal school-

based dataset, the algorithm would require further testing in other
cohorts with different study population. Ideally, external validation
involving children of different ethnicity and geographical locations
could be performed—but similar longitudinal cohorts that capture
fundus images from childhood and with 5-year longitudinal follow
up, are not widely available. Furthermore, it is challenging to locate
treatment naïve longitudinal cohorts in children for external
validation, due to ethical considerations in withholding treatment.
To address this, we are in active engagements with international
partners to create a consortium to collate required data prospec-
tively in the future.
Next, fundal images were obtained by a single mydriatic fundus

camera platform (CR6-NM45, EOS-D60, Cannon) under cycloplegic
conditions. However, with the introduction of non-mydriatic
fundus cameras, fundus image capture is now more widely
available without the need for application of eyedrops for pupil
dilation. Thus, further studies are required to assess the
performance of our DLS across various fundus image systems
including non-mydriatic fundus cameras. However, it should be

Fig. 4 Saliency heatmaps. Integrated Gradients technique (Top) and post-processed images demonstrating areas of interest through
collation of high saliency pixels (Bottom) for a Non-high myopia and b High myopia.
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noted that studies have established that the performance of
automated AI analysis between non-mydriatic and mydriatic
cameras platforms for screening of undiagnosed diabetic retino-
pathy has been shown to be highly comparable64.
In addition, we were unable to achieve clinically acceptable

performance in AI prediction for AL, particularly in fundus image-
only model due to the small dataset available for training and
testing with limited numbers of subjects with AL ≥ 26.5mm at
5-years (internal validation= 36 eyes, external validation= 16
eyes). Further studies with larger datasets would be required to
assess the performance of AL prediction.
In summary, we have developed a DLS using a baseline fundus

image and objective clinical data (age, race, gender, baseline SE)
to identify schoolchildren at risk of developing high myopia later
on in their teenage years. Through early identification, targeted
and timely myopia control therapies may be instituted to reduce
the risk of developing high myopia in these children. The fundus
image-only model may be implemented via integration into
fundus camera systems or cloud-based computing. However,
further external validation in various treatment naïve populations
and using new non-mydriatic cameras will further strengthen the
potential application of this AI system. Nonetheless, we present
promising results from a DLS that addresses several clinical
challenges faced by myopia evaluation and prevention programs,
by reducing reliance on cycloplegic refraction, axial length
measurements or repeated reviews. With further development
of this AI system, it may be used as a clinical assistive tool to
identify children “at risk” of developing high myopia with greater
precision and introduce myopia control therapies if needed.

METHODS
Study design
In this retrospective population-based study, high myopia was
defined as spherical equivalent (SE) ≤−6 D or axial length
(AL) ≥ 26.5 mm15,32. We predicted the development of each class
using fundus images and/or clinical data. Three types of models
were developed—image-only, clinical data-only and mixed
(clinical+ image). The models were trained, validated and tested
using the Singapore Cohort of Risk factors for Myopia (SCORM)
dataset65–67.
The image-only models were developed using pre-processed

fundus images and pre-trained DenseNet-121 deep neural
network models. These image models were then used to generate
image-based risk scores for each eye. The clinical data-only
models utilized random forest to extract the relevant clinical
features and generate a clinical data-based risk score for each eye.
For the mixed model, the image-based scores, which represented
clinical features extracted from image data, were combined with
the clinical data-based scores to derive an overall mixed-model
risk score.
The study was approved by the Ethics Committee at the

Singapore Eye Research Institute and the Centralized Institutional
Review Boards of the Singapore Health Services (2016/2215) and
conducted in accordance with the tenets of the Declaration of
Helsinki. Written informed consent was obtained from the parents
after the nature of the study was explained.

Clinical training, validation, and testing datasets
In the SCORM study cohort, children from grades 1 to 3 were
recruited from three Singapore schools (n= 1979) based on
methodology previously described65–67. The exclusion criteria
included children with serious medical conditions or syndromes
associated with myopia or any eye disorders at baseline.
Questionnaires in the three most common languages (English,
Chinese, and Malay) were administered to parents by a trained
interviewer during the baseline visit. This was performed to obtain

demographic data, including the number of parents with myopia65.
Parents were considered myopic if they required corrective lenses
for distance vision. Data for this study was derived from 1979
children (aged 6–12 years), who attended the visit in 2001
(baseline), 2002 (1-year follow up) and 2006 (5-year follow up)
visits. Fundus imaging was only performed at 2001 (baseline). None
of these children had myopia control treatment during the follow-
up period. The primary dataset comprised of 1666 subjects from
schools 2 and 3, of which 701 subjects were excluded due to
baseline high myopia and/or missing data (clinical/fundus image).
For the primary validation, 965 subjects (1878 eyes) with 7456 retina
images were included in training/validation and testing of AI
algorithm. The training/validation to testing data set was split
randomly using a 4:1 ratio, with 769 subjects (1502 eyes) in the
training set and 196 subjects (376 eyes) in the test set (Fig. 5). The
independent test dataset comprised of 313 subjects from schools 1,
of which 214 subjects were excluded due to baseline high myopia
and/or missing data (clinical/fundus image). For the external
validation, 99 subjects (189 eyes) with 821 retina images were
included.

Eye measurements and imaging
Annual cycloplegic refraction was performed for the participants.
One drop of topical proparacaine 0.5% was first instilled followed
by three drops of 1% cyclopentolate instilled at 5 min intervals to
achieve sufficient cycloplegic response. Cycloplegic autorefraction
was then performed after an interval of at least 30 min after the
last eye drop. This was performed using a table-mounted
autorefractor (model RK5; Canon, Japan). In total, five measure-
ments were performed per eye (ensuring maximum difference
between readings were <0.25 D apart) and total mean was used
for analysis. AL measurements were obtained using contact
ultrasound biometry (Echoscan model US-800, probe frequency
10mHz; Nidek Co., Ltd., Tokyo Japan) after instillation of 1 drop of
0.5% proparacaine. The average of six measurements was taken
and accepted only if the SD of these readings was less than
0.12mm. Subsequently, the SE for each eye was calculated based
on the formula sphere power plus half cylinder power. After pupil
dilatation, digital retinal photographs centered on the optic disc
were taken for both eyes using standardized settings (6.3 mega-
pixel, resolution 3072 × 2048; CR6-NM45, EOS-D60; Canon USA,
Lake Success, NY). Myopia was defined as an SE ≤−0.5 D with low
myopia (-3.0 D < SE ≤−0.5 D), moderate myopia (−6.0
D < SE ≤−3.0 D) and high myopia (SE ≤−6 D). One-year mean
SE and AL progression were calculated as SE at year 2002 visit
minus SE at year 2001 (baseline) and AL at year 2002 visit minus
AL at year 2001 (baseline), respectively.

Architecture of deep learning system
We utilized baseline childhood fundus photographs as the input
for the development of the image-only models. All fundus
photographs were first pre-processed into a square template to
extract the central circular region, which then underwent contrast
normalization. Pre-trained DenseNet-121 deep neural network
models were employed, with a batch size of 16, an initial learning
rate of 0.001, Nesterov momentum of 0.90 and categorical cross-
entropy loss. In addition, image augmentation procedures were
used, as follows, in order to increase the dataset size and to
strengthen model generalizability: (1) rotation (clockwise by
0–180°, selected randomly), (2) horizontal flip, and (3) vertical flip.
Brightness and scale adjustment were also performed for training
inputs. Local contrast normalization of the retinal fundus photos
took place after the central disc of the photo had been extracted
to a template image of 512 × 512 pixels. The Contrast Limited
Adaptive Histogram Equalization (CLAHE) method was then
applied with a kernel size of 51 pixels. These networks were
trained with two output nodes corresponding to the two target
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classes for SE (SE ≤−6 D or >−6 D) and AL (AL > 26.5 mm
or ≥ 26.5 mm). Training was performed until convergence on
accuracy was demonstrated with the internal validation data. An
early stop procedure was applied to avoid overfitting: the training
was stopped if the loss on the validation set no longer decreased
for 5 epochs.
Saliency heatmaps were generated on the template images by

employing the Integrated Gradients technique68. The Integrated
Gradients technique has the advantage of fulfilling theoretical
sensitivity and implementation invariance axioms by design, and
being able to generate pixel-level saliency estimates, unlike other
popular visualization methods. The heatmaps were subsequently
post-processed by applying thresholding techniques to the
Integrated Gradients pixel-level outputs, thereby emphasizing
the pixels with the highest saliency. This is followed by the
application of an image morphology operation to collate these
high-saliency pixels into larger representative regions.
Development of the clinical data-only models involved extraction

of the relevant clinical feature scores for each eye. Subsequently,
grid search with five-fold cross-validation was used to determine
the optimal random forest hyperparameter values for each model.
The hyperparameters were optimized for the number of estimators,
the maximum number of features, the maximum depth and the
split quality criterion. Once the optimal hyperparameter values were
determined, the actual random forest model was trained on the
entire training data.
Preliminary experiments had been attempted with using

feature vectors extracted just before the output node layer, of
10 and 100 nodes, respectively. The final random forest model
utilizing just the output node values generally outperformed
models utilizing a larger number of features extracted from
previous intermediate layers. As such, the output node layer
values were used to develop the actual experimental models as
described below.
From the trained image-only models, image-based scores were

generated for each eye. All images for an eye were first processed
by the model, to produce an image-level score. These image-level
scores were calculated from the individual output node value, by
multiplying the value of each node with the index of the node

(which corresponds to the severity of the condition), and then
summing these values into a single representative score for that
condition. In predicting myopia severity, the corresponding image
model would predict four separate probabilities at its four output
nodes, including the development of no myopia (node index 0),
low myopia (node index 1), moderate myopia (node index 2) and
high myopia (node index 3), respectively. These four probabilities
were constrained to add up to the value of 1, with the use of the
softmax function. To convert these four probabilities into a single
value for the final predicted severity of myopia, each individual
probability were multiplied by the node index and then added
together. For example, if an image was predicted to have no
myopia with a probability of 1, its image-level score would be 0
(1 × 0). If an image was predicted to have moderate myopia with a
probability of 0.5 and high myopia with a probability of 0.5, the
resulting image-level score would be 2.5 (0.5 × 2+ 0.5 × 3). Next,
the eye-level score was computed as the average of all image-
level scores from the images of that particular eye. The resulting
eye-level scores can then be considered as a clinical feature that is
automatically obtained from image data. These scores were
subsequently integrated with the clinical data-only models, in the
same manner as other clinical features, during the development of
mixed models.

Statistical analysis
For each of the AI algorithms for detection of high myopia against
ground truths, we calculated the area under the receiver
operating characteristic (ROC) curve (AUC), accuracy, sensitivity
and specificity for each classification threshold applied to the
validation datasets. A classification threshold to achieve pre-
determined sensitivity and specificity of at least 75% was set. The
algorithms were tested on the independent testing datasets on
different AI models—1) fundus image-only, 2) clinical data-only
and 3) mixed model, with the previously-found output thresholds
applied as operating points. For computing confidence interval
estimation, bootstrapping was used only to estimate 95%
confidence interval (CI) for the performance metrics of our
classification results (i.e., AUC, sensitivity, specificity and accuracy).

Fig. 5 Flowchart of dataset. Singapore Cohort of Risk factors for Myopia was used in Deep Learning System training/internal validation
(School 2 and 3) and external validation (School 1).
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We applied n-out-of-n bootstrap with replacement at eye level
from our dataset. For each bootstrap sample, we calculated and
reserved the performance metrics for that bootstrap sample. The
bootstrap sampling was repeated for 1000 times. We then
estimated the 95% CI by using the 2.5 and 97.5 percentiles of
the empirical distribution of corresponding metrics. Confusion
matrices were used to assess the differences in classification
performance for each model with the row and column represent-
ing predicted and true results, respectively. Comparison of
baseline characteristics amongst the three schools was performed
using analysis of variance and Chi-squared test for continuous and
categorical variables, respectively. P values < 0.05 were considered
statistically significant. All statistical analyses were performed
using Python version 3.6.8 and SciPy version 1.5.4.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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