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Cross center single-cell RNA sequencing study of the immune
microenvironment in rapid progressing multiple myeloma
William Pilcher1,2, Beena E. Thomas1,3, Swati S. Bhasin1,3, Reyka G. Jayasinghe 4, Lijun Yao4, Edgar Gonzalez-Kozlova 5,6,
Surendra Dasari7, Seunghee Kim-Schulze5,8, Adeeb Rahman5,6, Jonathan Patton 1, Mark Fiala4, Giulia Cheloni9, Taxiarchis Kourelis10,
Madhav V. Dhodapkar 11,12, Ravi Vij13, Shaadi Mehr14, Mark Hamilton14, Hearn Jay Cho5,14, Daniel Auclair14, David E. Avigan9,16,
Shaji K. Kumar10,16, Sacha Gnjatic 5,8,16, Li Ding4,16 and Manoj Bhasin1,2,3,12,15,16✉

Despite advancements in understanding the pathophysiology of Multiple Myeloma (MM), the cause of rapid progressing disease in
a subset of patients is still unclear. MM’s progression is facilitated by complex interactions with the surrounding bone marrow (BM)
cells, forming a microenvironment that supports tumor growth and drug resistance. Understanding the immune microenvironment
is key to identifying factors that promote rapid progression of MM. To accomplish this, we performed a multi-center single-cell RNA
sequencing (scRNA-seq) study on 102,207 cells from 48 CD138- BM samples collected at the time of disease diagnosis from 18
patients with either rapid progressing (progression-free survival (PFS) < 18 months) or non-progressing (PFS > 4 years) disease.
Comparative analysis of data from three centers demonstrated similar transcriptome profiles and cell type distributions, indicating
subtle technical variation in scRNA-seq, opening avenues for an expanded multicenter trial. Rapid progressors depicted significantly
higher enrichment of GZMK+ and TIGIT+ exhausted CD8+ T-cells (P= 0.022) along with decreased expression of cytolytic markers
(PRF1, GZMB, GNLY). We also observed a significantly higher enrichment of M2 tolerogenic macrophages in rapid progressors and
activation of pro-proliferative signaling pathways, such as BAFF, CCL, and IL16. On the other hand, non-progressive patients
depicted higher enrichment for immature B Cells (i.e., Pre/Pro B cells), with elevated expression for markers of B cell development
(IGLL1, SOX4, DNTT). This multi-center study identifies the enrichment of various pro-tumorigenic cell populations and pathways in
those with rapid progressing disease and further validates the robustness of scRNA-seq data generated at different study centers.
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INTRODUCTION
Multiple myeloma (MM) is one of the most frequent hematolo-
gical cancers, representing 10% of hematological malignancies in
the US, and 1.7% of malignancies overall1. Though significant
advances have been made in MM therapeutics, such as the
development of immunomodulatory drugs like lenalidomide and
proteasome inhibitors (bortezomib), MM remains incurable. The
prognosis following diagnosis remains poor, with a median
survival of four to five years after treatment2. The bone marrow
(BM) microenvironment is altered by the myeloma cells to
support proliferation, drug resistance, and immune evasion3–5.
MM patients commonly relapse following initial treatment, after
which the prognosis notably worsens, and patients eventually
succumb to their disease6.
Given the significance of the BM microenvironment (BME) in

the progression of MM, the understanding of what factors comprise
anti- or pro-tumor roles in the BME is critical for developing the next
generation of MM therapies. Genomics studies have shown that
complex interactions among genetic variants, gene fusions, and
translocations together with epigenetics, translate into heteroge-
neous outcomes and kinetics of disease progression7–9. The

accumulating evidence shows that the composition and expression
profiles of immune and stromal cells in BME are significantly
associated with disease progression and therapeutic outcomes
across solid and hematological cancers2,6,10–14. Immune cells of BME
make up a crucial immunosuppressive pre-malignant niche with
enrichment of regulatory T cells (Tregs), myeloid-derived suppressor
cells (MDSCs), tumor-associated macrophages (TAMs), and scarcity
of CD4+ or CD8+ T cells, and NK cells2.
Previous studies have identified disruptions that contribute to

immune escape (angiogenesis, pro-proliferation, etc.) in the BME.
Adhesion to BM stromal cells contributes to the release of
angiogenic signals, such as VEGF, that promote tumor growth.
Production of cytokines, such as IL-6, by the myeloma cells, have
not only been associated with the enrichment of anti-apoptotic
factors in myeloma cells but also impaired dendritic cell function
and T-cell activation13. Alterations in the number of cells
expressing a NK phenotype have been noted in the BM of MM
patients13, along with impairment of these cells through the
downregulation of activating receptors15. BM T-cells from MM
patients with advanced disease show elevation of immune-
inhibitory receptors and markers related to senescence, relative
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to healthy controls16. A recent single-cell RNA-sequencing (scRNA-
seq) study has shown dysregulation of cytotoxic T cells and major
histocompatibility complex class II expression in CD14+ mono-
cytes over the course of progression from premalignant to
symptomatic MM11. Collectively, all these disruptions in the BME
form an environment that allows myeloma cells to thrive and
aggressively proliferate.
In this study, we use scRNA-seq to compare the BME in BM

aspirates taken at diagnosis from 18 MM patients classified as
either ‘Rapid Progressors’ (RP; PFS < 18 months) or ‘Non-Progres-
sors’ (NP; PFS > 4 years) as part of the MMRF CoMMpass study
(Supplementary Table 1). We studied the overall changes in the
immune cell composition within the BM of these patients, along
with differentially expressed genes between the two groups for
common cell types. In addition, technical biases in the scRNA-seq
data were investigated by comparative analysis of scRNA-seq
libraries prepared and sequenced from the same samples
(aliquots) across three medical centers (Beth Israel Deaconess
Medical Center, Boston (BIDMC), Washington University in St.
Louis (WashU), and Mount Sinai School of Medicine, NYC (MSSM)).
The technical evaluation of the single-cell assays depicted similar
gene expression profiles of different cell types across three
medical centers, demonstrating the feasibility of the multi-center
trials. Comparative analysis of RP and NP showed significant
enrichment of an exhausted T-cell population, associated with the
expression of GZMK and decreased cytolytic markers (PRF1, GZMB,
GNLY) in the rapid progressors. We also observed the enrichment
of interferon- alpha and -gamma downstream targets in RP
myeloid cells along with the enrichment of M2 tolerogenic
macrophages. The cellular communication and interaction analysis
depicted enriched communication of the BAFF and CCL signaling
pathways in rapid progressors T and myeloid cells.

RESULTS
Overview of the CD138− cell fraction
ScRNA-seq data from the CD138- cells fraction of 48 BM biopsies
from 18 patients were combined into an integrated dataset of
102,207 single-cells generated at three different medical centers.
Low-quality cells are filtered out by removing cells with <200
unique genes, <500 UMI reads, and >30% mitochondrial UMIs. The
malignant plasma cells, identified based on marker genes
expression (MZB1+, JCHAIN+, SDC1+) (Supplementary Fig. 1a,
b), heterogeneity as well as CNV analysis, were filtered out. The
filtering of low-quality and malignant plasma cells resulted in a
final integrated dataset of 90,502 CD138- single-cells.
Bone marrow cells were clustered based on gene expression

profile (Fig. 1a) and annotated to cell types from various lineages
using canonical marker genes: erythrocytes (HBA+, HBD+),
erythroblasts (BLVRB+, PRDX2+), T-cells (IL7R+, CD3D+), CD8+

T-cells (CD8A+, CCL4+, GZMK+), CD8+ effector T-cells (GNLY+,
GZMB+, CD3D+), NK Cells (GNLY+, GZMB+, CD3D-), monocytes/
macrophages (CD14+, CD68+), CD1c+ dendritic cells (CD1c+),
Granulocyte-Macrophage Progenitors-GMP (ELANE+, MPO+), plas-
macytoid dendritic cells-pDC (IRF8+, MZB1+), hematopoietic stem
cells-HSC (CD34+), Pro B-Cells (IGLL1+), and B-Cells (MS4A1+,
CD79A+) (Fig. 1a, b). All the defined 24 cell types were detected in
samples from both NP and RP groups (Fig. 1c). Most of the cell
type clusters contained samples from multiple patients with none
of the clusters being dominated exclusively by a single patient or
sample (Fig. 1d). On average, CD4+ T-cells were the largest cluster
among all patients, followed by erythrocytes, myeloid cells, CD8+

T-cells, and B-cells (Fig. 1e). Some cell types such as CD8+

exhausted T-cells and Memory B-cells are slightly elevated in RP,
though currently these differences are not significant as a
proportion of all cells. Further generation of unbiased cell type
signature based on supervised analysis (P < 0.01, FC > 2) identified

top markers that generally correspond with what is expected for
each cell type (e.g., GNLY for CD8+ effector T-cells, LTB for CD4+

naive T-cells) (Fig. 1f). We observed overexpression of some
immune markers such as IGHA1 that correspond to samples from
an individual patient and may represent contamination from
apoptotic plasma cells. Additional more stringent mitochondrial
cutoff (filtering out cells with >20% mitochondrial DNA content)
analysis depicted similar clustering patterns across all cell types
(Supplementary Fig. 2a) and within the T-cell, Myeloid, and B-cell
compartments (Supplementary Figs. 3–5). We also observed a
significantly higher ratio of exhausted T cells (P= 0.049) (Supple-
mentary Fig. 3b) as well as a significant enrichment of M2
macrophages (P= 0.049) (Supplementary Fig. 4b) in the RP
compared to the NP samples.
To assess the potential malignancy of our plasma cell

population (Supplementary Fig. 1b), we performed copy number
variation (CNV) analysis17 using either normal plasma cells from
the Human Cell Atlas (HCA) Census of Immune Cells18 or the naive
and memory B cell populations from the current study dataset as
reference cells. The clustering and UMAP analysis depicted that
plasma cells formed multiple patient clusters with no co-clustering
with the mature B cell populations indicating heterogeneity and
difference in transcriptomes profiles (Supplementary Fig. 6a). CNV
analysis identified multiple amplifications and deletions in a
patient-specific manner on several chromosomes as well as
promiscuous deletions on chromosomes 1 and 6 in the plasma
cells (Supplementary Fig. 6b). These deletions/amplifications in
the plasma cells as compared to B cell populations likely
correspond to the malignant phenotype of plasma cells. Further
comparative analysis of plasma cells from this study with the
normal plasma cells from HCA also depicted significant hetero-
geneity and CNVs pointing toward the malignant phenotype of
plasma cells identified in this study (Supplementary Fig. 7).

CD138− microenvironment cells exhibited similar single-cell
profiles for three different testing centers
To assess the center/sample processing technical variations in the
single-cell profiles, samples were processed from the same
patients at three different medical centers/universities (BIDMC,
WashU, and MSSM). All the samples were processed with droplet-
based single-cell barcoding techniques for scRNA-seq alone
(WashU, MSSM) or CITE-Seq (BIDMC). Twenty samples from 18
patients were processed at BIDMC, seven samples from seven
patients were processed at MSSM, and 21 samples from 17
patients were processed at WashU (Supplementary Table 1).
Samples had similar age distributions between both RP and NP
groups, however, RPs had higher risk assessments at diagnosis as
defined by the IMWG risk class (Supplementary Table 1).
Prior to the batch correction, most of the cell types from the three

centers depicted similar clustering patterns with subtle variations
among processing centers (Supplementary Fig. 8a). Shannon’s
entropy was computed per cell to assess the degree of mixing of
samples from centers, and low entropy values, indicating poor
mixing, can be observed in MSSM samples, and in the ‘CD4+ T-cell’
class from BIDMC (Supplementary Fig. 9b, d). The batch effect
correction improved the entropy values indicating better mixing of
cells from different centers (Supplementary Fig. 9c, e). The evaluation
of batch effect and corrections in the other cellular compartments
(monocytes/macrophages, B cells) also depicted that batch effect
correction improved the mixing of cell types/subtypes from different
processing centers effectively alleviating site-dependent batch effect
(Supplementary Figs. 10–11). All major cell types (Fig. 1a) are
uniformly detected in samples processed at each center as well as
co-embed in the clustering indicating similarity in transcriptome
profiles (Fig. 2a). This includes even rare cell populations such as
the stromal and CD4+ regulatory T-cells, which represent <1% of the
total cells profiled. Samples from MSSM and WashU had a similar
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ratio for all cell types. The comparative analysis of cellular proportions
among the centers depicted subtle variation, which might be
due to differences in the number of cells captured for single-cell
assay, sequencing depth, and assays performed. All three centers
captured striking similar proportions of pDCs, HSCs, B cells, and

stromal cells (Fig. 2b). The samples processed at BIDMC depicted
variation in the proportion of T/NK and myeloid cells compared to
MSSM and WashU.
Samples processed at BIDMC showed a higher proportion of

CD4+ T-cells and a lower proportion of myeloid cells relative to
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samples processed at other centers (Fig. 2b). Some of these
differences may be explained by the additional processing time
required for BIDMC samples (simultaneous measurement of
surface marker expression along with gene expression via the
CITE-seq approach). A high proportion of the CD4+ T-cells in the
BIDMC group belong to the general “CD4+ T-cell” clusters
(Supplementary Fig. 12a, b), which tend to consist of lower
viability samples with higher mitochondrial reads compared to
other clusters. Furthermore, the comparative analysis of cellular
subtypes for myeloid and B cells depicted striking similarities
among the three centers (Supplementary Fig. 12c, d).
Further correlation of cell type proportions of individual

samples processed at different centers depicted no specific
pattern (Supplementary Fig. 13). To further explore the impact
of sample processing from different centers on gene expression,
we performed a comparative gene expression profile analysis of
cell types and subtypes obtained from the three centers
(Supplementary Fig. 14). Without batch correction, correlation is
primarily driven by the cell compartment over the processing
center, with T-cells, myeloid cells, B cells, and Erythroid cells
clustering strongly regardless of the processing center. Within
these compartments, there is a similar pattern as observed in the
uncorrected embeddings, that is that WashU and BIDMC samples
tend to have higher correlations relative to MSSM samples.
MDSCs, a very small myeloid population, show the largest
differences between centers. This appears to be driven by the
lower viability of this cluster based on mitochondrial expression,
along with a low cell count.
Next, we assessed the similarity in canonical markers expression

for various centers. The canonical markers for each cell type
depicted similar expressions for most cell types (Fig. 2c), with the
primary exception being the previously noted MDSC cluster. The
consistency of key marker expression ensures that cell types can
be identified reliably across all three centers, and comparative
analysis can be performed among the samples generated at
different centers. This is further evident in violin plots of select
markers illustrating the consistency in both the average expres-
sion and the distribution of gene expression within a cell
population (Fig. 2d). The primary difference in gene expression
between the centers is higher percentages of mitochondria-
associated transcripts from samples processed at BIDMC (Supple-
mentary Fig. 15). This may be attributed to a decrease in cell
viability associated with the longer processing times for cell

surface protein labeling before proceeding with the single-cell
gene expression library preparation protocols at BIDMC.
To further validate the consistency of cell type labeling across

centers, we assessed the similarity of the differentially expressed
markers for each of the 24 cell types across each center. To achieve
this, cells from each center were subset, and the top differentially
expressed markers for each cell type with respect to all other cells
from the same center were identified. Cell types from each center
were clustered hierarchically based on the binary distance between
these differentially expressed markers (Supplementary Fig. 16). We
observed that overall, the differentially expressed cell type markers
from all three centers strongly correlated with the matching cell type
from other centers. This includes closely related cell types such as
CD8+ T-cells and CD8+ exhausted T-cells (Fig. 2e). A few cell types,
e.g., CD4+ Memory T-cells from BIDMC, HSCs, and Erythroblasts from
MSSM, and certain myeloid cell types, such as CD1C+ DC, monocytes,
and MDSCs, showed weaker correlation between centers. Some of
these weaker correlations may be driven by large contributions from
individual patient samples processed at certain centers. For example,
a relatively large proportion of CD4+ Memory T-cells from BIDMC are
from MMRF1413, which has a higher degree of plasma cell
contamination, notably IGHA1, relative to other samples (Supple-
mentary Fig. 17). In summary, the single-cell profiles generated at
three different centers with different approaches have considerable
similarities in their overall gene expression profiles. These results
demonstrate that center-independent analysis can be implemented
for a large cohort of samples processed at different centers after
implementing appropriate batch correction approach.

Rapid progressors depicted significant enrichment of T cell
exhaustion and attenuation of CD8+ effector T-cells
Focused analysis was carried out on T-lymphocyte and NK cells to
understand their role in the progression of MM (rapid or non-
progression). The analysis included 43,039 cells; 25,381 cells from NP
samples and 17,658 cells from RP samples, which were identified as
eight different subtypes of T and NK cells following further clustering
(Fig. 3a). These cells were classified based on RNA and protein/ADT
data: CD4+ T-cells (CD4+), CD4+ naive T-cells (CD4+, TCF7+, CCR7+,
CD45RO+), CD4+ memory T-cells (CD4+,IL7R+, CD45RA+), CD4+

regulatory T-cells (CD4+, FOXP3+), CD8+ T-cell (CD8A+, KLRB1+, IL7R+,
GATA3+, GZMK low), CD8+ exhausted T-cells (CD8A+, GZMK+, TIGIT+),

Fig. 1 Single-cell profiling of bone marrow from MM patients with rapid (RP) and no progression (NP). Clinical samples with rapid and no
progression were identified from the Multiple Myeloma Research Foundation (MMRF) CoMMpass study, a longitudinal genomic study of
patients with newly diagnosed, active multiple myeloma (NCT01454297). In the study, 48 bone marrow aliquots from 18 patients diagnosed
with Multiple Myeloma (MM) were processed for scRNA-seq at three medical centers, Beth Israel Deaconess Medical Center (BIDMC), Mount
Sinai School of Medicine (MSSM), and Washington University (WashU). Patients are classified as either rapid progressors (RP) or non-
progressors (NP) based on the rate of disease progression, <18 months or >4 years post-diagnosis, respectively. a Uniform manifold
approximation and projection (UMAP) embedding of scRNA samples across all patients consisting of 90,502 high quality single-cells portioned
into 24 cell types. Plasma cells were removed prior to embedding. These clusters are colored based on canonical cell types based on the
expression of marker genes that include erythrocytes (HBA+, HBD+), erythroblasts (BLVRB+, PRDX2+), T-cells (IL7R+, CD3D+), CD8+ T-cells
(CD8A+, CCL4+, GZMK+), CD8+ effector T-cells (GNLY+, GZMB+, CD3D+), NK Cells (GNLY+, GZMB+, CD3D-), monocytes/macrophages (CD14+,
CD68+), CD1c+ DC (CD1c+), Granulocyte-Macrophage Progenitors-GMP (ELANE+, MPO+), plasmacytoid dendritic cells-pDC (IRF8+, MZB1+), HSC
(CD34+), Pro B-Cells (IGLL1+), and B-cells (MS4A1+, CD79A+). b Dot Plot depicting expression profile of markers genes used for annotating
different cell type clusters. The over and under expression of specific markers is shown by red and cyan colors, respectively. c Clinical
phenotype based split UMAP showing the distribution of cell types in the RP and NP groups. There is slightly elevated NK, CD8+ effector, Pro
B-Cell, GMP, and pDC counts in the NP group, while RP samples show elevation of exhausted T-cells, naive and memory B-cells, and
erythrocytes. d A stacked bar plot showing the relative patient contribution to each individual cell type cluster. The patients from RP and NP
groups are shown with shades of red and blue, respectively. Each cluster depicted the varying levels of contribution from multiple samples of
NP and RP groups. e Comparative analysis of cell types enriched in the RP and NP groups. Each bar plot depicts the mean and ±standard error
of the mean in NP and RP groups. Each dot represents an individual patient sample. f A heatmap displaying the top markers expressed by
each cell type. Columns represent individual cells, grouped by cell type, while rows display individual genes. Horizontal colored bars above
the heatmap indicate the cell type, with the legend on the right listing the cell type for each colored bar. Cell type labels are also displayed
above their corresponding bar for all cell types except for the three smallest populations (M2 macrophages, MDSCs, and stromal cells).
Relative gene expression is shown in pseudo color, where blue represents downregulation, and red represents upregulation. Top markers
generally correlate with well-established canonical markers for each cell type.
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CD8+ effector T-cells (CD3D+, GNLY+, GZMB+), and NK cells (CD3D-,
GNLY+, GZMB+) (Fig. 3b).
In both NP and RP groups, various subtypes of CD4+ T-cells

were the dominant T-cells (~60%), with the remaining cells
consisting primarily of CD8+ T-cells (30%) along with some NK

cells (10%) (Supplementary Fig. 18). There are no significant
differences in the CD4:CD8 ratio across clinical groups. Compara-
tive analysis of cellular proportion among RP and NP groups
depicted a significantly higher proportion of CD8+ exhausted
T-cells in the RP samples (P= 0.022), whereas NK and CD8+
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effector T-cells were non-significantly enriched in the NP samples
(Fig. 3c, d). The higher enrichment of CD8+ exhausted T-cells in
the RP samples indicates that RP patients with rapid progression
of the disease have a prevalence of exhausted T cells even at the
baseline/diagnosis. Pathway analysis was performed to compare
the general CD4+ and CD8+ populations between clinical groups.
Pathway analysis on these CD4+ T-cells depicted significantly
higher enrichment of metabolic pathways such as Hallmark
glycolysis and fatty acid metabolism in the patients with rapid
progression. In addition, RP CD4+ T-cells depicted enrichment for
downstream targets of both interferon alpha and gamma
(Supplementary Fig. 19a). The pathway analysis on CD8+ T subset
showed that RP samples were enriched in xenobiotic metabolism,
while NP samples were enriched in TNFα signaling (Supplemen-
tary Fig. 19b). Survival analysis was performed using the
MMRF CoMMpass dataset in the Survival Genie tool19, and the
metabolic pathways which are enriched in rapid progressors, such
as, fatty acid metabolism, glycolysis, and xenobiotic metabolism,
were found to be associated with poor overall survival (Supple-
mentary Fig. 19c).
We further investigated the gene expression profiles of the

three CD8+ T-cell subtypes, revealing a range of cells with various
degrees of exhaustion or cytotoxic activity. The CD8+ memory
subset had high expression of markers associated with memory
T-cells, such as KLRB1 and IL7R, but had low expression of
cytotoxic markers such as GZMK, GZMB, or NKG7. CD8+ exhausted
T-cells, in addition to elevated expression of TIGIT and multiple
genes related to chemokine signaling, such as CCL3 and XCL2, had
enriched expression of GZMK relative to other T-cell clusters. CD8+

effector T-cells show a shift away from GZMK and towards GZMB
and GZMH, along with enrichment of cytotoxic and NK cells
markers such as NKG7, GNLY, and PRF1 (Fig. 3e). CD8+ T-cells from
the NP group show enrichment of markers related to the NK cells
(GZMB, GZMA), whereas the RP group CD8+ cells show enrichment
of many of the CD8+ exhausted T-cell markers, such as chemokine
signaling genes XCL2 and CCL3L1 (Fig. 3f). The ratio of these more
cytotoxic cells to the CD8+ exhausted T-cells was significantly
enriched in NP group (P= 0.048). As aforementioned, the CD8+

exhausted T-cell subset shows higher expression of TIGIT
compared to other CD8+ cells (Fig. 3g), along with other
exhaustion markers such as EOMES and CD160 which are primarily
found in RP samples. Additional CITE-Seq data (ADT) further
confirms enriched expression of TIGIT and PD-1 (PDCD1/CD279) in
the CD8+ exhausted T-cells, and that expression of TIGIT and PD-1
are generally enriched in all RP CD8+ T-cell types compared to NP
CD8+ T-cell types. Overall, the CD8+ T-cell compartment shows a
shift towards more exhausted effector-memory T-cells in RPs,
compared to a more cytotoxic effector phenotype in NPs. Lastly,
differential expression between clinical groups within the GZMB+
CD8+ effector T-cells subset showed significant enrichment of
multiple genes related to cytotoxicity and T-cell activation in NP

samples (GZMB, GNLY, TNF), potentially indicating a better effector
function and T-cell activation in NPs (Supplementary Fig. 20,
Supplementary Table 2).

Rapid progressors depicted a higher proportion of
alternatively activated M2 macrophages along with activation
of complement cascade and lipid processing pathways
To study the alterations in cells of the myeloid lineage, focused
analysis was performed after subsetting the myeloid cells. The
myeloid subset comprised 16,245 cells of which 10,517 were derived
from NP samples and 5728 from RP samples. NP samples show a
much higher count of most myeloid cell subtypes compared to RP
samples, with a nearly 2:1 ratio of myeloid-lineage cells overall. Based
on the correlation of gene expression profiles, myeloid cells clustered
into seven different subtypes (Fig. 4a). Cells were annotated as
Granulocyte-Macrophage Progenitors (GMP) (MPO+, ELANE+,
MKI67+), monocytes (CD14+, S100A9+, S100A12+), M1 macrophages
(CD14+, CD44+, VCAN+, ITGAX+, CD86+), M2 macrophages (CD163+,
MRC1+), MDSCs (HLA-DRA low, ITGAM+, ARG1+), CD16+ monocytes
(CD14-, FCGR3A+), or CD1c+ DCs (CD1c+, CLEC10A+, MHC-II High)
(Fig. 4b). Most of the myeloid cell clusters consist of cells from both
NP and RP groups without any patient-specific clusters (Fig. 4c).
Comparative analysis of cellular proportion across patient groups
reveals significant enrichment of the M2 macrophage cluster in the
RPs (P= 0.046) (Fig. 4d). However, NPs depicted higher enrichment
of immature cell types, such as GMPs, and CD1c+ DCs relative to RPs.
To explore pathways level dysregulation (if any) among various
subtypes of myeloid cells, pathways enrichment analysis was
performed. Similar to the T-cell subsets, monocyte, and macrophages
from RP samples show enrichment for pathways related to IFNα and
IFNγ, whereas NP samples predominantly show enrichment for TNFα
via NFkB-related signaling pathways (Fig. 4e, f).
Differential gene expression analysis on M1 Macrophages, the

largest myeloid cell subtype, was performed between NP and RP
groups. RP samples showed enrichment of multiple genes
consistent with enriched interferon signaling, such as EGR1, IFI6,
and IFI16, while M1 Macrophages from NP samples show
enrichment of proliferative genes, such as G0S2 and CEBPB
(Fig. 4g). Pathway analysis on these DEGs further confirms the
enrichment of interferon signaling in RP samples (Fig. 4h).
Differential gene expression between M1 and M2 macrophages

was also performed as M2 macrophages are enriched in patients
with rapid progression of the disease. M1 macrophages showed
enrichment of inflammatory markers, including multiple S100A
genes, whereas, M2 macrophages were enriched in multiple genes
involved in the immune complement cascade (C1QB, C1QA), and
lipid processing (APOE) (Fig. 4i). M2 macrophages also highly
expressed VCAM-1, which is known to interact with myeloma cells
through VLA-420. M2 macrophages also showed enrichment of
tumor-promoting pathways, such as the platelet-derived growth
factor (PDGF) signaling21 (Fig. 4j).

Fig. 2 Comparison of scRNA profiles of samples processed at three different centers. Bone marrow aspirates from the same set of patients
were processed at three different centers, BIDMC, MSSM, and WashU, and analyzed using a uniform bioinformatics workflow for comparative
analysis. The comparative analysis was performed on 20 samples processed at BIDMC, 7 processed at MSSM, and 21 processed at WashU.
a Split UMAP based on sample processing centers of scRNA samples. All major cell types are captured in the single-cell profile from each
center. Clusters are colored based on cell types identified in Fig. 1a. b Comparative analysis of cell type proportion across centers. Each bar
represents the mean ratio for a given cell type for all samples processed at a specific center. Error bars show the standard error of the mean.
Individual dots represent individual patient cell type ratios. Samples from MSSM and WashU had similar ratios across the cell types. BIDMC
shows a higher proportion of CD4+ T-cells and a lower ratio of Myeloid cells. c Comparative analysis of canonical cell type-specific markers
across three centers. Most of the cell type defining markers are concordantly expressed across cell types indicating strong similarity in the
single-cell profiles generated across centers. BIDMC, which performed CITE-Seq, tends to have higher percent.mt relative to other centers this
might be due to longer processing time for CITE-Seq due to antibody labeling. d Violin Plots comparing the expression of various cell markers
among different centers. Overall, the level of expression of these markers are consistent among centers indicating no batch effect or center-
based expression artifact. e A Circos plot showing the correlation between expression profiles of cell types profiled at different centers. The
individual cell types across centers depict significant similarity in the expression profiles. Some cell types with lower correlations include CD4+

memory T-cells from BIDMC, and monocytes and CD1c+ DCs from WashU.
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Non-Progressors depicted higher enrichment of immature B
cell lineages
To determine dysregulations in B cell repertoire, we performed
focused analysis on the clusters enriched with B-Lymphoid lineage
cells. This subset consisted of 8009 cells; 4094 derived from NP

samples and 3915 derived from RP samples, which formed clusters
corresponding to four identified cell types (Fig. 5a). Cells were
identified as naive B-cells (IGHM+, IGHD+, MS4A1+), memory
B-cells (MS4A1+, CD27+), pre-B-cells (IGHM+, MS4A1-Low, IGLL1−),
or progenitor B-cells (IGLL1+, RAG1+, RAG2+) (Fig. 5b). The profile
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of RP group reflects more mature B cell types (naive, memory),
compared to the NP group. On the other hand, NP samples
depicted higher enrichment of immature B cells (pre B-cells,
pro B-cells) (Fig. 5c, d).
Differential gene expression was performed across the cell

types to investigate the differences between the more mature and
immature B-cell subtypes. Many of the DEGs are consistent with
the standard markers for each category, such as IGHD and IL4R in
the naive B-cells22, AIM2 in memory B-cells23, IRF4 in pre B-cells24,
and IGLL1, DNTT, and VPREB1 in pro B-cells25 (Fig. 5e). In addition,
the mature B Cells, show higher expression of MHC-II receptors
and receptors involved in BAFF signaling, such as TNFRSF13B.
Pathway analysis performed on these top markers show that the
more mature B cell types are significantly enriched in BAFF and
IL6 signaling (P < 0.01), both of which are involved in B cell and
plasma cell maturation and proliferation (Fig. 5f). The decreases
observed in the immature B cell population in the rapid
progression group are consistent with previous studies showing
the association of decreased progenitor B cell populations with
symptomatic or relapsed MM26–28.

Cellular communication predicted dysregulation in BAFF, CCL,
and IL16 signaling network
To further investigate potential signaling differences within the
immune micro-environment in rapid or non-progressors we
performed cellular communication analysis29. The potential for
cell communication was measured by comparing the average
expression of various ligands and receptors among the defined
cell types. Using the ligand-receptor expression, an information-
flow score is computed for each ligand-receptor pathway between
all cell types to indicate communication patterns that are most
likely to occur. If two cell types have a high expression of both the
ligand and the receptor, then the information flow score between
these cell types for this pathway will be higher relative to the
other pathways.
First, the overall signaling structure was compared between the

NP and RP samples. In both NP and RP, the CD8+ T-cells are the
primary receivers of cell–cell signaling, and B-cells, monocytes,
and macrophages act as primary senders (Fig. 6a). The overall
communication structure is similar, and there are no cell types
where ligand-receptor interactions are exclusively restricted to

one cell population. CD8+ effector T-cells show increased
signaling received in the NP group relative to the RP group from
all cell types, while CD4+ memory T-cells, CD1c+ DCs, and CD16+

monocytes show higher signaling received in RP samples from
other myeloid or B-lymphoid cells (Fig. 6b). These differences
seem to be primarily driven by MHC-II–CD8a interactions in NP
CD8+ effector T-cells, and MHC-I–CD4 interactions in CD4+ RP
cells (Supplementary Fig. 21).
We also compared the signaling structure and expression of

individual ligand-receptor interactions in non-progressors and
rapid progressors. First, to compare the signaling structure, ligands
were embedded based on the sender and receiver cell types
involved in their signaling pathway. Ligands that share closely
related sender or receiver cell types will have similar embeddings.
These embeddings resulted in four clusters, with cluster 2
consisting of ligands associated predominantly with the stromal
cell population, and clusters 1, 3, and 4 with the immune cell
population. To identify pathways with large differences in
structures, the embedding distance between each pathway in
NP and RP was computed (Fig. 6c). APP, IL16, and CCL were
identified as ligands with the largest differences in their structural
embedding. Three signaling pathways were selected for further
investigation based on both the signaling structure (Fig. 6d) and
differential gene expression (Fig. 6e) between NP and RP samples:
BAFF, CCL, and IL16.
The BAFF signaling pathway overall has a similar structure in NP

and RP, with myeloid cells being the primary secretors of the
ligand TNFSF13B, and the memory and naive B-cells populations
being the primary receivers through receptors TNFRSF13B and
TNFRSF13C. Elevated serum levels of TNFSF13B have been noted
previously in MM patients30, and BAFF signaling can have pro-
proliferative effects on myeloma cell lines31,32. Interestingly, our
analysis reveals that although the receptors on B Cells, TNFRSF13B
and TNFRSF13C, are similarly observed in both groups of samples,
the RP samples show consistent enrichment of the ligand,
TNFSF13B, in multiple myeloid cell types compared to NP samples.
Survival analysis using survival genie tool19 indicates that
disproportionately elevated expression of the ligand (TNFSF13B)
relative to the B cell receptor (TNFRSF13B) is significantly
associated with poorer overall survival across the MMRF CoMM-
pass dataset (P= 0.0067) (Supplementary Fig. 22).

Fig. 3 Comparative analysis of T and NK cell subpopulations in multiple myeloma patients with rapid- and no- progression of the
disease. a A UMAP displaying the T-cell subclusters split based on clinical groups (i.e., NP, RP). Subclusters were manually labeled as CD4+

T-cells (naive, memory, regulatory), CD8+ T-cells (memory, exhausted, effector), or NK cells based on the expression of specific markers.
Limited CITE-Seq data from BIDMC was used to confirm some cellular annotations. NK and CD8+ effector T-cells show elevated counts from
NP samples, while RP samples contain higher counts of CD8+ exhausted T-cells. b Dot plot demonstrating the expression profile of key
markers for each T-cell subtype from both the scRNA-seq and CITE-Seq (ADT) assays. Markers for cell types used were CD4+ T-cells (CD4+),
CD4+ naive T-cells (CD4+, TCF7+, CCR7+, CD45RO+), CD4+ Memory T-cells (CD4+,IL7R+, CD45RA+), CD4+ regulatory T-cells (CD4+, FOXP3+),
CD8+ T-cell (CD8A+, KLRB1+, IL7R+, GATA3+, GZMK low), CD8+ exhausted T-cells (CD8A+, GZMK+, TIGIT+), CD8+ effector T-cells (CD3D+, GNLY+,
GZMB+), and NK cells (CD3D-, GNLY+, GZMB+). c The patient contribution to each cell type cluster indicates that most of the clusters consist of
cells from multiple patients. The patients from RP and NP groups are shown with shades of red and blue respectively. d Comparative analysis
of the T-cell types enriched in the RP and NP T-cell subsets. Each bar plot depicts mean and standard error of mean. Significant enrichment
(P= 0.022) of the CD8+ exhausted T-cells was observed in the RP population. e Differential expression analysis of the three CD8+ T-cell
subtypes (CD8+ memory T-cells, CD8+ exhausted T-cells, CD8+ effector T-cells). Columns represent individual cells, grouped by cell type, while
rows display individual genes. CD8+ T-cells depicted upregulation of markers related to T-cell memory, such as IL7R, but has under-expression
of cytotoxic markers such as GZMK, GZMB, or NKG7 as compared to other CD8 T-cell subtypes. CD8+ exhausted T-cells depicted upregulation
of GZMK and multiple genes related to chemokine signaling, such as CCL3 and XCL2. CD8+ effector T-cells showed downregulation of GZMK
and upregulation of GZMB and GZMH, along with cytotoxic markers such as PRF1 and GNLY. f Comparative analysis of the CD8+ subset
between NP and RP groups. Differential expression analysis was performed based on the Wilcoxon rank sum test of NP and RP CD8+ T-cells.
NP CD8+ T-cells showed upregulation of markers related to NK cells, such as GZMB and GZMH. RP CD8+ T-cells instead show upregulation of
the CD8+ exhausted T-cell markers, specifically chemokines like CCL3L1 and XCL2. These differences are reflected in the average cell type ratios
in the CD8+ subset in NP and RP samples. The ratio of these CD8+ exhausted T-cells to the GZMB+ effector cells is significantly higher in RP
samples (P= 0.048). g Expression profile of markers of exhaustion in the CD8+ and NK subsets. CD8+ exhausted T-cells, predominantly found
in the RP group, show the highest expression of TIGIT and EOMES in the RNA assay relative to other CD8+ T-cells. CD160 is detectable in CD8+

T-cells and CD8+ exhausted T-cells, though only in samples from the RP population. CITE-Seq confirms elevated expression of TIGIT and PD-1
(CD279) in the CD8+ exhausted T-cell cluster, and general enrichment of exhaustion markers in the RP group over the NP group across
multiple CD8+ cell types.
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The CCL signaling pathway involves the secretion of CCL3 and
CCL5 from CD8+ T-cells and some myeloid cells and the expression
of the receptor CCR1 on various myeloid cells. Previously, we noted
that the CD8+ exhausted T-cells, primarily found in RP samples,
were enriched for multiple chemokine-related genes, including

XCL2, CCL3L1, and CCL4L2. Here, we see additional receivers and
senders in RP samples compared to NP samples, primarily in the
myeloid subset. DCs, monocytes, and M2 macrophages express
higher levels of the receptor CCR1 in RP samples, whereas prior
CCR1 was primarily elevated in M1 macrophages. In addition, we
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observed the expression of CCL3 in RP monocytes, DCs, and
macrophages. The ligand CCL3 specifically has a pro-survival and
pro-proliferative effect on myeloma cell lines33, and can disrupt the
natural progenitor population34,35. Elevated expression of CCL3,
CCL5, and CCR1 is significantly associated with poorer outcomes in
the MMRF CoMMpass dataset (P= 0.001) (Supplementary Fig. 22).
Lastly, IL16 shows large structural differences in the signaling

pathway between NP and RP samples. IL16 involves secretion
from CD8+ exhausted T-cells and CD4+ regulatory T-cells in both
NP and RP samples and binds to CD4 on myeloid and T-lymphoid
cells. RP samples exclusively show IL16 secretion from B cells, and
show additional expression in NK cells, CD4+ memory T-cells, and
CD4+ naive T-cells. Previous studies have shown IL16 elevation in
MM marrow samples, and pro-proliferative effects on myeloma
cell lines36. However, within the myeloma cell compartment,
overexpression of IL16 relative to the CD4 receptor is associated
with slightly better outcomes in the MMRF CoMMpass dataset
(P= 0.038) (Supplementary Fig. 22).

DISCUSSION
The long-term outlook for patients with advanced MM remains
dismal. The therapeutics for MM have undergone a paradigm
shift in the last decade with the advent of immune therapy,
resulting in sustained disease responses in a subset of previously
incurable patients. Immune therapy recruits multiple effectors
that target mutated tumor antigens, develop lasting memory
responses, and overcome mechanisms of therapeutic resistance.
Clinical trials for immunotherapies across multiple cancers have
established that this anti-tumor immune response is a key
determinant of positive treatment outcome37. Even though
targeted and antibody-mediated therapies have improved
progression-free survival in MM patients, many patients still
develop resistance or eventually relapse, due to the existence of
a small number of therapy-resistant tumor stem cells or minimal
residual disease38. It is imperative to develop cancer therapies
that disrupt tumor-associated tolerance, activate, and selectively
expand tumor-specific lymphocytes, and at the same time
maintain immune-regulatory protection. Therefore, it is key to

study the tumor microenvironment in-depth to decipher its role
in achieving long-term remission. In the current era of single-cell
profiling, studying the contribution of individual tumor micro-
environment cells in a high-throughput manner is feasible. In
the last 5 years, ~2000 single-cell studies have been conducted
to study tumor cells along with microenvironment. A recent
study from Zhang et al.10 investigating the temporal progression
of MM from the precursor stage, revealed the role of a
compromised immune microenvironment, specifically T-cells,
in the progression and poor outcome of MM. The major
limitation of single-cell approaches is the requirement of viably
frozen or fresh patient samples for performing high-quality
cellular profiling. In this study, we optimized experimental
protocols for thawing cells and analytical workflows after
implementing multiple batch correction approaches to generate
high-quality single-cell profiling data from viably frozen clinical
bone marrow samples.
The first question that we attempted to answer in this pilot

study was on technical variations in the single-cell profiling data
obtained from geographically different processing centers. We
performed single-cell profiling on samples from the same set of
patients at three medical centers across the United States (BIDMC
in Boston, WashU in St. Louis, and MSSM in NYC). All major cell
populations are consistently identified in samples processed
across three centers, and marker genes for these cell types have
consistent expression across centers. The relative cellular abun-
dance for each sample showed subtle differences in samples
processed at BIDMC, which performed CITE-Seq, compared to
those processed at MSSM and WashU, which only performed
scRNA-seq. These differences might be due to additional
processing time for CITE-Seq antibody labeling impacting the
viability of these samples. These variations in cell abundance can
be mitigated in future studies by utilizing the same protocol to
generate single-cell profiling data across various processing
centers (including with incorporation of dead cell removal steps
to ensure high viability of single-cell preps). A previous study
comparing scRNA-seq data derived from fresh and frozen samples
of the same patient identified a similar pattern, where gene
expression between fresh and frozen samples was consistent, but

Fig. 4 Comparative analysis of the “monocyte and macrophage” and “GMP” immune microenvironment cell subpopulations in multiple
myeloma patients with rapid- and no- progression of the disease. a A UMAP displaying the monocyte and macrophage subcluster split
based on clinical groups (NP and RP). Subclusters were labeled as either Granulocyte-Monocyte Progenitors (GMP), monocyte,
CD16+monocytes, M1 macrophages, M2 macrophage, MDSCs, or CD1c+ dendritic cells (DC) based on expression of specific markers.
GMP and CD1c+DCs show elevated counts in NP samples. b Dot plot demonstrating the key markers for the monocyte and macrophage
subtypes. Markers to identify cell types include GMP (MPO+, ELANE+, MKI67+), monocytes (CD14+, S100A9+, S100A12+), M1 macrophages
(CD14+, CD44+), M2 macrophages (CD163+, MRC1+), MDSCs (HLA-DRA low, ITGAM+, ARG1+), CD16+monocytes (CD14-, FCGR3A+), and CD1c+

DCs (CD1c+). c The patient contribution to each cell type cluster indicating most of the clusters consist of cells from multiple patients. The
patients from the RP and NP groups are shown with shades of red and blue. Overall, the NP group had a higher proportion of monocytes and
macrophages relative to the RP group. d Comparative analysis of the myeloid cell types in the RP and NP myeloid subset. Each bar plot depicts
the mean proportion of a specific cell type across clinical groups, with error bars displaying standard error of the mean. Individual dots show
individual patient samples. M2 macrophages were significantly enriched (P= 0.045) within the RP population. e Pathway enrichment analysis
on the monocyte and macrophage clusters. The Violin plots display the ssGSEA enrichment score of significantly differentially enriched
pathways/gene sets between RP and NP groups. The RP group showed significant enrichment of interferon alpha and interferon gamma
signaling pathways, while the NP group showed enrichment for TNF signaling and epithelial-mesenchymal transition pathways. f A bar graph
displaying the top differentially enriched genesets of the monocyte and macrophage clusters based on FDR analysis between NP and RP is
also shown. g A heatmap, displaying the top differentially expressed markers genes for NP and RP M1 macrophages. Columns represent
individual cells, grouped by the RP or NP clinical groups, while rows display individual genes. Relative gene expression is shown in pseudo
color, where blue represents downregulation, and red represents upregulation. h Selected pathways that are significantly (P < 0.01) enriched
in the markers differentially expressed in the RP and NP M1 macrophage groups. Each bar represents a pathway with significant activation and
inhibition in the RP group based on Z-score calculated using the IPA analysis platform. The pathways that are significantly activated (Z-
score > 2) and inhibited (Z-score <−2) in the RP group are shown with orange and blue bars, respectively. i A heatmap, displaying the top
differentially expressed genes for M1 and M2 macrophages. Columns represent individual cells, grouped by the type of macrophage (i.e., M1,
M2), while rows display individual genes. Relative gene expression is shown in pseudo color, where blue represents downregulation, and red
represents upregulation. j Selected pathways that are significantly (P < 0.01) enriched in the markers differentially expressed in the M1 and M2
macrophages. Each bar represents a pathway with significant activation and inhibition in the M1 macrophages group based on Z-score
calculated using the IPA analysis platform. The pathways that are significantly activated and inhibited in the M1 macrophages are shown with
orange and blue bars, respectively.
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cell type indicates most of the clusters consist of cells from multiple patients. The patients from the RP and NP groups are shown with shades
of red and blue respectively. The majority of naive and memory B-cells are derived from samples of the RP group, while the majority of pre
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represent the abundance of a cell type within an individual sample. Within the B-cell subtypes, there is no significant difference in the average
patient ratio. e A heatmap, displaying the top differentially expressed marker genes for naive B-cells, memory B-cells, pre B-cells, and pro
B-cells. Relative gene expression is shown in pseudo color, where blue represents downregulation, and red represents upregulation. f Pathway
analysis was performed on the differentially expressed markers between mature and memory B-cell groups versus the pre and pro B-cells.
Selected pathways that are significantly (P-value < 0.01) enriched in these markers are displayed in the bar chart. Each bar represents a
pathway with significant activation and inhibition in naive or memory B-cells based on Z-score calculated using the IPA analysis platform. The
pathways that are significantly activated and inhibited in the naive and memory B-cells are shown with orange and blue bars respectively.
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the relative cell abundance changed, with frozen samples tending
to have higher mitochondrial transcripts39. This study demon-
strates the feasibility of integrating single-cell profiling data
generated in multi-center national and international clinical trials
with minimal technical variations.

Further comparative analysis of the cellular abundance of
different cell types depicted significant alterations in cellular
abundance and the transcriptome profile of cells from T-cell and
myeloid lineages between RPs and NPs of multiple myeloma. In
the T-cell lineage, significant alterations were identified within the
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CD8+ T-cell population resulting in impaired effector functions in
the T-cells of RPs. Rapid progressor samples contain a higher
number of exhausted CD8+ T-cells compared to other T-cells. The
subset of CD8+ T-cells expressing these exhaustion markers (TIGIT,
EOMES, CD160, PD-1) corresponds with high GZMK expression and
multiple chemokines signaling markers (CCL3, CCL4, XCL2, CMC1).
This is in contrast with NP samples, whose CD8+ T-cells showed
high expression of GZMB and cytolytic markers (PRF1, GNLY). A
similar exhaustive GZMK+ phenotype has recently been described
as a pre-dysfunctional exhaustive progenitor T-cells, distinguished
by high surface expression of PD-1 and TIGIT along with the
expression of effector-memory like marker40,41. This exhausted
GZMK+ cell type has also been described in other studies as an
inflammatory aging-associated T-cells, as their abundance shows a
correlation with the age42. These T-cells are associated with
reduced proliferation and effector functions in response to
stimulation, which ultimately would impair anti-tumor immune
response. Exhausted T-cells with the enriched expression of CTLA-
4, PD-1, CD160, and 2B4 have been previously linked with poor
outcomes in MM patients16,43.
In addition, we observed significant enrichment of GZMB+

CD8+ effector T-cells in NP patients relative to GZMK+ CD8+

exhausted T-cells. Cytotoxic T-cells normally play a critical role in
anti-cancer immune responses. Previous studies have noted that,
relative to healthy controls, MM patients typically show a
depletion of the CD8+ T memory subset, with enrichment of
the effector T-cell population2,16. However, studies comparing
patients with long-term disease remission following autologous
stem cell transplantation observed to have a higher abundance
of the cytotoxic CD8+ T-cell and NK subsets as compared to
symptomatic MM, MGUS, and healthy controls26. It is possible
that the enrichment of the effector T-cell subset is required for
anti-tumor control, and patients with an enriched exhausted
effector memory subset, fail to clonally expand a functional
effector T-cell population. Within the effector GZMB+ subset, we
do see significant enrichment of effector and signaling genes,
such as GNLY, GZMB, and TNF in the NP samples, potentially
indicating improved effector function (Supplementary Table 2,
Supplementary Fig. 20).
Other immune cell populations, such as the monocytes and

macrophages, also depicted dysregulation between RP and NP
patients. The myeloid subset shows a significant enrichment of M2
macrophages in rapid progressors. M2 macrophages were
identified based on the expression of CD163, and are typically
considered to promote tumor growth and survival, compared to
the more inflammatory M1 macrophage phenotype44. A previous
study investigating the role of tumor-associated macrophages in

MM identified that patients with a higher M2 macrophages
involvement showed both poor response to dexamethasone, and
lower progression-free and overall survival compared to those
with a higher M1 macrophage contribution45. In addition, M2
macrophages in MM bone marrow demonstrated high VCAM-1
expression relative to other myeloid cell types. Myeloma cells are
known to adhere to bone marrow stromal cells through VCAM-
1–VLA4 interaction, which can activate pro-proliferative signaling
pathways in the myeloma cell lines20.
In addition to dysregulation of certain cell populations

between RPs and NPs, we also observed alterations in specific
signaling pathways across the immune cells, including enriched
signaling of BAFF, CCL, and IL16 from myeloid cells, T and
myeloid cells, and B cells, respectively. Dysregulation of these
signaling pathways have been previously associated with MM
progression. For example, BAFF/TNFSF13B, APRIL, and TNFSF13C,
bind to TNFRSF13B, TNFRSF17C, and TNFRSF13C receptors,
found on mature B-cells, memory B-cells, and plasma cells,
respectively. Multiple studies have correlated elevated serum
levels of BAFF with cancer progression31,46. Though BAFF’s
highest binding affinity is with the B-cell receptor variants,
TNFRSF13B/C, there have been reported in vivo cases where
myeloma cells aberrantly express these receptors in addition to
the normal plasma cell variant, TNFRSF17, further increasing the
sensitivity of myeloma cells to BAFF secretion47. Interaction of
these ligands with the corresponding receptors on myeloma
cells can activate the NFkB pathway, ultimately aiding myeloma
cell survival through the enrichment of anti-apoptotic markers
such as MCL-132,48. Though it is possible for mutations in the
malignant plasma cells to activate the NFkB pathway indepen-
dent of signaling from the bone marrow, this is an event that
typically occurs in advanced stages of disease progression,
indicating that external activation of NFkB through signaling
pathways such as BAFF could play a critical role in the
therapeutic resistance of malignant plasma cells during the
early phases of disease49. The therapeutic Ataciept47, which
specifically targets the BAFF/APRIL ligands secreted by the BME,
has been explored in MM treatment. A phase I study of Atacicept
showed stabilization of the disease following treatment50,
though targeting the ligand directly does increase the risk of
secondary infection through the depletion of normal mature B
cells. Overall, this supports the critical role these signaling
pathways can play in the progression of the disease. Other
signaling molecules notably enriched in fast-progressors, such as
CCL3 and IL16, can be associated with pro-proliferative effects on
malignant plasma cells33,36, impaired progenitor differentiation
in the bone marrow34, and anemia due to disruption of normal

Fig. 6 Cell communication analysis reveals enriched signaling pathways and ligand-receptor interactions that are associated with poorer
outcome in the rapid progressor group. a A circle plot showing the overall communication between cell types in NP and RP groups. The lines
in the plot depict the communication among the cell types. Lines are colored by the ‘sender’ cell type, with their thickness corresponding to
the relative intensity of cellular communication measured based on ligand and receptor correlation. RP and NP samples showed similar
communication patterns between cell types. b Heatmap comparing the interaction weights between each cell type in NP and RP groups.
Rows correspond to different sender cells, while columns correspond to receivers. The enriched signaling intensity between two cell types in
the RP and NP groups are shown in red and blue colors, respectively. Cytotoxic T-cells show enriched received signaling in NP samples from all
cell types, while memory and regulatory CD4+ T-cells show enriched signaling with myeloid and B-cells in RP samples. c Comparison of the
signaling structure for individual ligands in NP and RP. On the left, A UMAP embedding of the ligand-receptor pathways was generated based
on the similarity of the sender and receiver populations, as defined by CellChat’s functional embedding. Ligands with similar sender and
receiver cell types will have similar embeddings. On the right, a bar plot displaying the distance between NP and RP embeddings for each
ligand is displayed. Dashed gray lines connect the NP and RP functional embeddings of the top three pathways by pathway distance, APP,
IL16, and CCL. d Three ligand receptor pairs were isolated for further analysis: BAFF, IL16, and CCL. For each ligand, two chord diagrams are
shown indicating the sender and receiver cell types involved in NP and RP. Chords are colored by the sender cell type. BAFF shows a similar
signaling structure, with myeloid cells as senders and B-cells as receivers. CCL signaling involves T-cells as senders and myeloid cells as
receivers in NP and RP samples, though RP shows additional myeloid cell types as receivers, along with some CCL secretion by myeloid cells.
IL16 shows large structural differences, in which both groups have CD8+ exhausted and CD4+ regulatory T-cells as senders and myeloid cells
as receivers, but RP samples show additional expression by B-cells and other CD4+ T-cells. e Violin plot comparing the expression of the
ligands and receptors involved in BAFF, IL16, and CCL between NP and RP samples across all cell types.
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erythropoiesis in the bone marrow35.. We hypothesize that these
enriched signaling pathways in the immune compartment may
contribute to a favorable BME for myeloma cells in the rapid
progressor population. Therapies directly targeting these path-
ways could improve the outcome in these non-responsive
rapidly progressing patients.
This pilot study lays the cornerstone for the development of a

MM single-cell immune atlas that will include treatment-naive
(baseline or diagnosis) as well as post-therapy samples to
enlighten the role of the tumor microenvironment in multiple
myeloma. This multi-center study demonstrated that gene
expression and key cell markers in scRNA-seq data are similar
across different centers, allowing us to obtain and process more
bone marrow biopsy samples at multiple centers instead of
restricting to a single medical center. Integrating single-cell
profiling data from multi-center national and international trials
will enable the identification of novel potent biomarker(s) for
disease diagnosis and therapeutic interventions critical for a better
prognosis for MM patients. Furthermore, the pilot study identified
the enrichment of exhausted T-cells with impaired effector
functions and M2 macrophage as potential contributing factors
in rapid progressing MM samples collected at the time of disease
diagnosis. These findings will be further validated in an expanded
cohort in collaboration with Multiple Myeloma Research Founda-
tion immune atlas consortium. The analysis on baseline samples
will assist in identifying the high-risk patients to plan a
personalized follow-up and treatment approach. The identified
association of T-cells and macrophages phenotypes with clinical
outcome opens avenues for developing novel biomarkers for
monitoring therapeutic response. In addition to samples collected
at the time of disease diagnosis, single-cell profiling of bone
marrow biopsies obtained at relapse and remission will be used to
further expand these findings.

METHODS
Ethics approval and participant consent
All samples involved were obtained from the MMRF CoMMpass
clinical trial (NCT01454297). Procedures involving human
participants as part of this trial were performed in accordance
with the ethical standards of the MMRF research committee.
Written informed consent was obtained from all patients for
the collection and analysis of their samples and clinical
information by the MMRF. The Institutional Review Board at
each participating medical center approved the study protocol.
The list of all participating institutes which have approved the
study protocol is viewable under the ClinicalTrials.gov identifier
NCT01454297.

Experimental model and human subject details
Newly diagnosed MM patients (n= 18) from the MMRF CoMMpass
study (NCT01454297), comprising both RPs (n= 9) and NPs (n= 9)
were included in the study (Supplementary Table 1). Demo-
graphic, clinical, and genetic information about these patients is
also available in Supplementary Table 1. Forty-eight aliquots of
viably frozen CD138- BM samples (acquired at diagnosis prior to
any treatment) from these 18 patients were processed at
three medical centers/universities (Beth Israel Deaconess
Medical Center (BIDMC), Boston, Washington University (WASHU)
in St. Louis, and Mount Sinai School of Medicine (MSSM), NYC)
with technical replicates of select patients. BIDMC processed
20 samples from 18 patients, MSSM processed 7 samples from 7
patients, and WashU processed 21 samples from 17 patients.
BIDMC captured both cell surface proteins (n= 29) and gene
expression of single cells via CITE-Seq (Supplementary Table 3)
while WashU and MSSM processed samples for only gene
expression of single cells.

Method details
CD138− cells isolation and cryopreservation of cell samples. Bone
marrow aspirates from the Multiple Myeloma Research Con-
sortium (MMRC) tissue bank were separated into CD138+

(myeloma cells) and CD138− (immune, bone marrow cells)
fractions using immunomagnetic cells selection targeting
CD138 surface expression (automated RoboSep and manual
EasySep from StemCell Technologies Inc.). Following magnetic
separation, the CD138- cells fractions were viably frozen. Briefly,
the CD138- cells were centrifuged at 400 × g for 5 min. The
resulting cell pellet was resuspended in freezing media consisting
of 90% FCS and 10% DSMO at a concentration of 5–30 million cells
per ml. Cell concentrations and vial locations were documented,
before being stored in liquid nitrogen for future use.

Processing frozen single-cell suspensions for RNA sequencing
Single-Cell RNA sequencing (scRNA-seq) was performed on viably
thawed BM samples using a droplet-based high throughput
system (10x Genomics Inc.), which captures single-cells along with
uniquely barcoded primer beads together in tiny oil droplets
enabling large-scale parallel single-cell transcriptome studies.
Briefly, the frozen MM samples were thawed rapidly at 37 oC,
serially diluted in warm media, followed by centrifugation at
400 × g for five minutes to pellet cells (viability after thawing
ranged from 75 to 100%). The pelleted cells were resuspended
one more time in warm media to wash off the remaining freezing
media/dead cells. For 10x Genomics compatible single-cell
suspensions, the final washed cell pellets were resuspended in
PBS+ 0.04%BSA, before proceeding with the scRNA-seq workflow
(WashU, MSSM) or CITE-Seq workflow (BIDMC). The single-cell
suspensions (verified microscopically for the absence of clumps)
mixed with gel beads and reverse transcription (RT) mix were
processed using 10x Genomics workflow to generate digitally
barcoded stable and uniform single-cell droplets (gel bead-in-
emulsions; GEMs) in the Chromium Controller (10x Genomics, PN:
110211). Following RT and cDNA amplification, the scRNA-seq
libraries were prepared using the Chromium Single cell 3’ Reagent
kits v3 (10x Genomics, PN: 1000075). Massive parallel sequencing
was performed on the scRNA-seq libraries using the Novaseq S4
(Illumina Inc.) platform. We aimed to capture the expression of
8000 cells per sample with ~50,000–100,000 reads per cell. We
captured a median of 3628 cells per sample prior to filtering with
~1000–2000 genes per cell.

Single-cell surface protein expression and gene expression
assay
Cellular indexing of transcriptomes and epitopes by sequencing
(CITE-Seq) using TotalSeq B antibody-oligo conjugates (Biolegend)
along with 10x Genomics 3’ reagent kits enable simultaneous
detection of proteins and mRNA in single-cells. TotalSeq B
antibodies along with 10x Genomics 3’GEM library and gel bead
kit v3 (PN: 1000075) and feature barcode library kit (PN: 1000079)
were used to process samples at BIDMC, Boston to simultaneously
capture select cell surface proteins expression and gene expres-
sion. A panel of 29 select antibody-oligo conjugates or antibody-
derived tags (ADT), along with three IgG isotype control ADTs,
were used to capture surface marker expression (Supplementary
Table 3). Briefly, viably thawed single-cell suspensions (as
explained in the above section for processing single-cells) were
labeled with the ADTs, washed to remove unbound antibodies,
and used to generate ADT-labeled single-cell GEMs according to
10x Genomics protocol. Following RT and cDNA amplification, the
two types of cDNA (ADT and GEX) were separated using SPRIselect
beads (Beckman Coulter, cat. no. 23318), which were then used to
generate ADT and GEX libraries, that were pooled and sequenced
according to manufacturer’s protocol.
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Analysis of single-cell RNA sequencing data
Demultiplexed fastQ files from each sample were aligned using
cellranger count51 against a reference human genome (hg38).
Count matrices of all samples processed at each center were then
combined and normalized using the cellranger aggr pipeline to
create a per-center feature matrix. Low quality cells were filtered
using Seurat52 to keep only cells with >200 unique genes, >500
UMI reads, and <30% mitochondrial UMIs. Potential doublets
were also removed by keeping only cells with <10,000 UMI reads.
In addition, to determine the impact of more stringent
mitochondrial cutoff on cellular clustering pattern and abun-
dance, we also performed the analysis with 20% mitochondrial
cutoff (Supplementary Figs. 2–5). The feature matrices were
normalized using the SCTransform algorithm, regressing out the
per cell UMI count, the number of unique features per cell, and
the percent mitochondrial reads mapped to a cell. To correct for
any batch effect the samples count matrices from three centers
were normalized and integrated using integration anchors-based
batch correction approach using the Seurat package. The cells in
the resulting integrated assay were visualized using a Uniform
Manifold Approximation and Projection (UMAP) embedding.
Similar cells were clustered together via Louvain clustering on
the top principal components of the integrated assay using
Seurat package52.

Subcluster analysis and cell labeling
Clusters were first manually labeled as “erythrocytes”, “erythro-
blasts”, “T-cells”, “Cyto-T”, “NK/T”, “monocyte/macrophage”, “GMP”,
“B-Cells”, “HSC”, and “Plasma/Myeloma cells” based on cell-specific
canonical marker expression (Supplementary Table 4). Cells
identified as “T-cells”, “monocytes/macrophages”, or “B-Cells” were
isolated, and the integration process for these cells were repeated
for detailed analysis within these specific cell types. Plasma cells
were identified based on the plasma cell-specific gene markers
including JCHAIN, MZB1, and SDC1 (Supplementary Fig. 1a, b). We
further evaluated the heterogeneity of plasma cell clusters by
analyzing the composition of different clusters. To ascertain the
malignant phenotype of the plasma cells we also performed copy
number variation (CNV) analysis described in the next section. The
malignant plasma cells were removed from the subsequent
analysis to determine the impact of the non-malignant BME on
clinical outcomes.
Clusters were manually labeled as various cell types (M1

macrophage, CD8+ exhausted T-cell, etc.) based on the
differentially expressed gene markers for a given cluster
(Supplementary Table 4). For some clusters, surface marker
expression from samples processed at BIDMC was used to further
confirm cell type (CD4 expression for CD4+ T-cells, CD45RA and
CD45RO for naive and memory T-cells respectively), and to verify
the presence of T-cell exhaustion markers (TIGIT, PD-1). Refined
cell labels, identified during subcluster analysis, were transferred
back to the full object for analysis involving all cell types. In
situations where cluster identity was ambiguous, individual
clusters were subclustered further at a higher resolution until
specific cell subtypes could be assigned. Markers to identify cell
types were derived from a variety of sources. A supplementary
table with the markers used for annotation is available
(Supplementary Table 4)25,53–59.

Single-cell copy number variation analysis
The malignant phenotype of the MM plasma cells is associated
with somatic copy number alterations resulting in gene amplifica-
tions and gene deletions. In this study, we used InferCNV
algorithm17,60 to predict the CNVs in the plasma cells identified
based on the expression of specific markers. The algorithm
determines dysregulations of genes across chromosomal positions

in the tumor cells and normal cells to identify regions in
chromosomes of tumor cells that are over- or less-abundant as
compared to normal cells. We performed CNV analysis comparing
plasma cells with either mature B cells from this study or normal
plasma cells from the human single-cell atlas initiative18. Gene
expression intensities are represented in a heatmap where genes
in the scRNA-seq dataset were sorted by genomic position and
were further ordered within each chromosome.

Correlation of cell types across centers
To determine the correlation of the cell types across different
centers, we used the Clustermap tool61. The final cell type labels
from the integrated object were transferred to the un-integrated
Seurat objects for each center. For each center, the top
differentially expressed markers were computed for each cell
type relative to all other cells from a given center. These were
computed with Seurat’s “FindAllMarkers” command filtering genes
expressed in <25% of cells of a given type, a minimum log-fold
change of 0.25, and a maximum P value of 0.01. These markers
were correlated with the top markers for all other cell types from
all other centers to ensure that the cell type definitions were
consistent across all three centers.

CITE-Seq data normalization/processing
The raw read counts for the ADT analytes that included 29 protein
targets, and three isotype controls (Supplementary Table 3) were
generated using the cell ranger package from 10x Genomics. The
preliminary analysis and quality control depicted non-specific
signals for the multiple ADTs. To reduce the noise due to non-
specific antibody binding, the background signal was subtracted
based on the signal of control isotype antibodies. The gene
expression data were preprocessed to remove outlier cell types.
The background-subtracted ADT data was normalized using the
“CLR” method in the Seurat Package and scaled before integrating
the normalized gene expression data from each sample.

Analysis of CITE-Seq with scRNA-seq data
After clustering and labeling was performed on scRNA-seq data,
cells with corresponding surface marker data were subset and
RNA and Surface Marker assays were merged. Surface marker
expression was used to confirm and refine cell labels for the
previously identified clusters. Differential expression of surface
protein markers was performed using the Wilcoxon signed-rank
test to identify clusters or clinical groups which are enriched for
specific surface markers.

Pathways and systems biology analysis
Pathways and systems biology analysis was performed using the
Ingenuity Pathway Analysis (IPA) software package (Qiagen)62. The
differentially expressed genes (DEGs) for different cell types or
phenotypes (i.e., M1 vs M2 macrophages, RP vs NP M1
macrophages, and Immature vs Mature B-Cells) were obtained
based on an absolute log-fold change ≥0.25, >10% of cells
expressing gene, and P < 0.01 based on Wilcoxon signed-rank test.
These DEGs were used to identify significantly affected pathways
using the IPA platform. The knowledge base of IPA platform
consists of functions, pathways, and network models derived by
systematically exploring the peer-reviewed scientific literature. A
detailed description of IPA analysis is available at the Ingenuity
Systems’ website (http://www.ingenuity.com). It calculates the
multiple test corrected P value for each pathway according to the
fit of user’s data to the IPA database using one-tailed Fisher exact
test. The pathways with raw P < 0.01 were considered significantly
affected. In addition, IPA also calculates Z score indicating
directional effects on pathways with the Z-score >2 was defined
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as the threshold of significant activation, while Z-score <−2 was
defined as the threshold of significant inhibition.

Gene set enrichment analysis
Single-cell gene set enrichment analysis (ssGSEA) was performed
using the escape R package63. The package was modified to operate
on the SCT normalized data and to assume a gaussian distribution for
the expression data. ssGSEA scores were computed for each cell
using the Hallmark gene sets acquired from MSigDB database64. A
Welch T-test was performed on the distribution of ssGSEA scores
using escapeR’s getSignificance function to identify significantly
enriched pathways between clinical groups within specific cell
subsets. The gene sets with multiple tests corrected P< 0.05 were
considered significantly different.

Survival analysis
All survival analysis was performed using the Survival Genie
platform19 with the MMRF CoMMpass dataset (dbGaP Accession
phs000748.v7.p4). This dataset includes bulk RNA-seq data from the
CD138+ fraction derived from MM patients. Survival analysis was
performed using the gene set option across primary MM samples.
Survival analysis on the ssGSEA pathways was performed using all
genes included in the corresponding Hallmark gene set. Survival
analyses for cell communication ligands and receptors data were
performed using gene set (if both ligand and receptor were
overexpressed) or gene ratio if only the ligand is overexpressed.
Tumor samples were categorized into high and low gene expression
groups using an optimal cut point (cutp) estimated based on
martingale residuals65 of the GSEA score for determining association
with overall survival. The results were considered significant if the
P values from the log-rank t-test < 0.05.

Cellular communication and interaction analysis
Cellular communication analysis was performed using the
CellChat software platform29. Cells from each clinical group were
isolated, and ligand-receptor (L-R) analysis was performed on
the clinical groups independently using the standard CellChat
analysis workflow. Information flow scores for each signaling
pathway provided by the CellChat L-R interaction database were
computed between all previously defined cell types. Information
flow characterizes the likelihood of cell–cell interaction occurring
through a given pathway. Cells with high expression of a known
ligand will have high information flow scores with cells that have
high expression of the matching receptor. The resulting CellChat
objects on the RP and NP clinical groups were merged to
compare information flow scores for specific cell types and
pathways. To compare the overall signaling structure between
cells in NP and RP samples, interaction weights were used, which
sum the information flow of all L-R interactions between two cell
types. To compare the signaling structure of individual L-R
interactions, we first used CellChat’s network embedding feature
to identify pathways with large differences in the sources or
targets between RP and NP clinical groups. We used a functional
embedding, which creates a two-dimensional embedding of all
L-R interactions based on the gene expression of the source and
target cells involved in an individual L-R network. The Euclidean
distance between the same L-R pathway in both NP and RP
clinical groups was used to identify pathways with large
differences in signaling structure. Select pathways were high-
lighted based on the differential expression of the given genes
between clinical groups, degree of signaling structural differ-
ences, and potential clinical relevance.

Quantification and statistical analysis
All statistical analysis was performed with R. Cellular abundance
across samples is displayed as the mean ± standard error.

Significance for cell ratios is computed with Welch’s T-test without
multiple test corrections. The significance of differentially expressed
genes is determined based on the Wilcoxon rank test with Bonferroni
multiple test correction66. Significance for ssGSEA pathways is
computed with escape’s getSignificance function, internally using
multiple tests corrected P value estimated using Welch’s T-Test with
Benjamini-Hochberg multiple test correction. Heatmaps of gene
expression were made with DoHeatmap function in the Seurat
package. Volcano Plots based on differentially expressed genes were
made using the EnhancedVolcano R package. Violin plots to compare
expression across cell types or clinical groups were made using
VlnPlot function in R. Circos and Chord diagrams are rendered using
the Circlize R package67. Shannon’s entropy was computed per cell
using 100 neighbors and 20 principal components using the CellMixS
R package68 for assessing the impact of different processing centers
on cellular expression profiles.
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