Skip to main content
. 2023 Jan 13;9:1040562. doi: 10.3389/fmed.2022.1040562

Table 3A.

The comparison of the DRIVE data set's segmentation results using various segmentation techniques.

Method Year Se Sp Acc
Cross modality learning (17) 2015 0.7569 0.9816 0.9527
GMM classifier (18) 2015 0.7249 0.9830 0.9620
SP model (19) 2016 0.7811 0.9807 0.9535
CRF model (20) 2016 0.7897 0.9684
VS method (21) 2017 0.7779 0.9780 0.9521
RU-Net and R2U-Net (9) 2018 0.7792 0.9813 0.9556
LadderNet (22) 2018 0.7856 0.9810 0.9561
U-Net+joint losses (23) 2018 0.7653 0.9818 0.9542
CTF-Net (24) 2018 0.7979 0.9857 0.9685
Three-stage DL Model (25) 2019 0.7631 0.9820 0.9538
SD-Unet (32) 2019 0.7891 0.9848 0.9674
Dilated Conv. (33) 2019 0.7903 0.9813 0.9567
GFM (15) 2020 0.7614 0.9837 0.9604
DL methods (10) 2020 0.7979 0.9794 0.9563
AA-UNet (34) 2020 0.7941 0.9798 0.9558
EDC-Net (35) 2020 0.7092 0.9820 0.9447
Iternet (36) 2020 0.7735 0.9838 0.9673
MLC scheme (37) 2021 0.7761 0.9792 0.9519
LAC network (38) 2021 0.7921 0.9810 0.9568
ResDo-UNet (39) 2021 0.7985 0.9791 0.9561
FPM-Net (proposed) 2022 0.8285 0.98270 0.96920

“–” means the value is not available in the relevant research study.