Skip to main content
. 2023 Jan 13;9:1040562. doi: 10.3389/fmed.2022.1040562

Table 3C.

The comparison of the STARE data set's segmentation results using various segmentation techniques.

Method Year Se Sp Acc
ECB method (43) 2012 0.7548 0.9763 0.9543
SP model (19) 2016 0.7867 0.9754 0.9566
CRF model (20) 2016 0.7680 0.9738
Cross modality learning (17) 2016 0.7726 0.9844 0.9628
DSM-UNet (44) 2018 0.7673 0.9901 0.9712
U-Net+joint losses (23) 2018 0.7581 0.9846 0.9612
CRF-Net (45) 2018 0.7543 0.9814 0.9632
SD-UNet (32) 2019 0.7548 0.9899 0.9725
Three-stage DL Model (25) 2019 0.7735 0.9857 0.9638
Ipn-v2 and octa-500 (27) 2019 0.7595 0.9878 0.9641
AA-UNet (34) 2020 0.7598 0.9878 0.9640
Iternet (36) 2020 0.7715 0.9886 0.9701
NFN+ Net (46) 2020 0.7963 0.9863 0.9672
D-GaussianNet (47) 2021 0.7904 0.9843 0.9837
HDS-Net (30) 2021 0.7946 0.9821 0.9626
ResDo-UNet (39) 2021 0.7963 0.9792 0.9567
FPM-Net (proposed) 2022 0.8618 0.9819 0.9727