Table 1.
Strain | Source | Pathogen/Crop | Mechanism/Effect | References |
---|---|---|---|---|
(i) Biocontrol | ||||
Lactobacillus plantarum | Cucumber pickle | Pseudomonas campestris, Ralstonia solanacearum, Xanthomonas campestris pv. vesicatoria, Pectobacterium carotovorum | Organic acids | Visser et al., 1986 |
Lactobacillus sp. | Tomato rhizosphere |
Ralstonia solanacearum, Xanthomonas
axonopodis pv. citri, X. campestris pv. vesicatoria, Erwinia pyrifoliae, Pectobacterium carotovorum |
None | Shrestha et al., 2009a; Shrestha et al., 2009b |
Lactobacillus plantarum | Kimchi | Aspergillus flavus | 3,6-bis(2-methylpropyl)-2,5-piperazinedion | Yang & Chang, 2010 |
Lactobacillus sp. | Dairy products | Fusarium oxysporum | SAR, antifungal metabolites | Hamed et al., 2011 |
Lactobacillus plantarum | Fermented mare milk |
Botrytis cinerea, Alternaria solani, Phytophthora drechsleri, Fusarium
oxysporum and Glomerella cingulate |
Proteinaceous and non-proteinaceous antifungal compounds | Wang et al., 2011 |
L. fermentum | Fermented food, dairy products | A. niger, Fusarium graminearum, A. oryzae | Proteinaceous, PLA | Muhialdin et al., 2011; Gerez et al., 2013 |
Lactobacillus plantarum | Durian fruit | Colletotrichum capsici, broad spectrum | Unknown | El-Mabrok et al., 2012 |
Lactobacillus plantarum | Ginger root | Colletotrichum capsici, broad spectrum | Unknown | El-Mabrok et al., 2012 |
Lactobacillus paracasei | Tomato, soil | Ralstonia solanacearum | Unknown | Murthy et al., 2012 |
W. paramesenteroides | Fermented wax gourd | Rhizopus stolonifera, Sclerotium oryzae, Rhizoctonia solani, Botrytis cinerea, Sclerotinia minor, Rhodotorula sp. | Organic acids | Lan et al., 2012; Sathe et al., 2007 |
Lactobacillus acidophilus | Chicken intestine | Fusarium sp., Alternaria alternata, P. paneum, Cladosporium sp., Rhizopus oryzae | Organic acids | Oliveira et al., 2014; Schnürer and Magnusson, 2005 |
Lactobacillus paracasei | Tomato, soil | Ralstonia solanacearum | SAR | Konappa et al., 2016 |
Weisella cibaria, Lactococcus lactis subsp. lactis | Papaya seed | Erwinia mallotivora | Organic acids, hydrogen peroxide | Taha et al., 2019 |
L. pentosus | Fruit, fermented food | A.oryzae, A. niger, Fusarium sp. | PLA | Ouiddir et al., 2019 |
Lactobacillus pentosus, Leuconostoc fallax | Fermented vegetables | Alternaria brassicicola, Xanthomonas campestris pv. campestris, Pectobacterium caratovorum | Unknown | Lin et al., 2020 |
Lactobacillus plantarum | Yellow pithaya | Fusarium fujikuroi | Unknown | Valencia-Hernandez et al., 2021 |
Lactobacillus acidophilus | Mango | C. gloeosporioides | Antifungal compound, lytic enzyme | Ranjith et al., 2021 |
Lactiplantibacillus
plantarum |
Collection of Pure Cultures of Industrial Microorganisms ŁOCK at the Lodz University of Technology, pickled vegetables, milk | Pectobacterium carotovorum, Streptomyces scabiei, Alternaria solani, Alternaria tenuissima, Alternaria alternata, Phoma exigua, Rhizoctonia solani, Colletotrichum coccodes | Organic acids | Steglińska et al., 2022 |
(ii) Biostimulant | ||||
Lactobacillus sp. | Rhizosphere soil of tomato | Pepper | IAA, phosphate solubilization, and biocontrol property Increased root and shoot length, root fresh weight and chlorophyll content |
Steglińska et al., 2022 |
Enterococcus faecium | Rhizosphere soil of oriental melon (Cucumis melo L.) | Rice | Phytohormones (GA, IAA), mineral solubilization, and biocontrol property -Increased shoot and root length, plant fresh weight, chlorophyll content, nutrient uptake |
Lee et al., 2015 |
L. plantarum | PGPR Corp. (Korea) | Cucumber | Succinic acid, lactic acid increased growth, nutrient availability and amino acid content |
Kang et al., 2015 |
Lactobacillus sp. | Sugarcane fermentation | Citrus seedling | Nitrogen fixation, phosphate solubilization increased height, stem diameter, root and shoot weight |
Giassi et al., 2016 |
Enterococcus sp. | Rhizosphere soil of grass pea | Fusarium oxysporum f. sp. lentis | IAA, phosphate solubilization, stress response and biocontrol property | Mussa et al., 2018 |
E. faecium LB5, L. lactis LB6, LB7, and LB9 | Rhizosphere soil of wheat | Fusarium graminearum | -Phosphate solubilization and biocontrol property | Strafella et al., 2021 |
Lactobacillus sp. | Vietnamese traditional Nem chua | Peanut seed | IAA, phosphate solubilization, and biofilm formation -Increased seed germination, vigor index, plant length, and total fresh weight |
Nguyen et al., 2021 |
Lactobacillus sp. | Silage and rhizosphere soil | Adzuki bean (Vigna angularis), Arabidopsis | 3-phenyllactic acid (PLA) -Root promoting activity in Adzuki bean, promote auxin signaling pathway – increased lateral root density in Arabidopsis |
Maki et al., 2021, 2022 |
Weisella cibaria, Lactococcus lactis subsp. lactis | Papaya seed | Papaya | Synthesis of ammonia, siderophores, and phosphate solubilization - increased the dry weight of the shoot and root of papaya plants |
Jaini et al., 2022 |
Lactobacillus sp. | The aerial part of pomegranate plants | Fusarium sp. | Phytohormones (GA, IAA) and biocontrol property - |
Abhyankar et al., 2022 |