
REV I EW

The role of HMGB1 in COVID-19-induced cytokine storm
and its potential therapeutic targets: A review

Sri Wulandari1,2 | Hartono2 | Tri Wibawa3

1Doctorate Program of Medicine and
Health Science, Faculty of Medicine,
Public Health and Nursing Universitas
Gadjah Mada, Yogyakarta, Indonesia
2Department of Physiology, Faculty of
Medicine, Universitas Sebelas Maret,
Surakarta, Indonesia
3Department of Microbiology, Faculty of
Medicine, Public Health and Nursing
Universitas Gadjah Mada, Yogyakarta,
Indonesia

Correspondence
Tri Wibawa, Department of Microbiology,
Faculty of Medicine, Public Health and
Nursing, Universitas Gadjah Mada, Jl
Farmaco, Sekip Utara, Depok, Sleman,
Yogyakarta, Indonesia.
Email: twibawa@ugm.ac.id

Abstract

Hyperinflammation characterized by elevated proinflammatory cytokines known

as ‘cytokine storms’ is the major cause of high severity and mortality seen in

COVID-19 patients. The pathology behind the cytokine storms is currently

unknown. Increased HMGB1 levels in serum/plasma of COVID-19 patients were

reported by many studies, which positively correlated with the level of proinflam-

matory cytokines. Dead cells following SARS-CoV-2 infection might release a

large amount of HMGB1 and RNA of SARS-CoV-2 into extracellular space.

HMGB1 is a well-known inflammatory mediator. Additionally, extracellular

HMGB1 might interact with SARS-CoV-2 RNA because of its high capability to

bind with a wide variety of molecules including nucleic acids and could trigger

massive proinflammatory immune responses. This review aimed to critically

explore the many possible pathways by which HMGB1-SARS-CoV-2 RNA com-

plexes mediate proinflammatory responses in COVID-19. The contribution of

these pathways to impair host immune responses against SARS-CoV-2 infection

leading to a cytokine storm was also evaluated. Moreover, since blocking the

HMGB1-SARS-CoV-2 RNA interaction might have therapeutic value, some of the

HMGB1 antagonists have been reviewed. The HMGB1- SARS-CoV-2 RNA com-

plexes might trigger endocytosis via RAGE which is linked to lysosomal rupture,

PRRs activation, and pyroptotic death. High levels of the proinflammatory cyto-

kines produced might suppress many immune cells leading to uncontrolled viral

infection and cell damage with more HMGB1 released. Altogether these mecha-

nisms might initiate a proinflammatory cycle leading to a cytokine storm. HMGB1

antagonists could be considered to give benefit in alleviating cytokine storms and

serve as a potential candidate for COVID-19 therapy.
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INTRODUCTION

Severe Acute Respiratory Syndrome-Coronavirus-2
(SARS-CoV-2) belongs to the genus β-coronavirus, which
are enveloped viruses containing a positive single-stranded
ribonucleic acid (RNA). The virus binds to the receptor

Angiotensin Converting Enzyme 2 (ACE2) which facili-
tates its entry into the host cell [1]. The illness caused
by SARS-CoV-2 is termed Coronavirus Disease-2019
(COVID-19) which continues to be a global public health
threat. Confirmed cases have risen to over 630 million
cases with more than 6.5 million deaths worldwide by
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November 2022 [2]. Hyperinflammation characterized by
elevated proinflammatory cytokines known as ‘cytokine
storms’ is the major cause of high severity and mortality
seen in COVID-19. Increased levels of Interleukin-2
(IL-2), IL-4, IL-6, IL-8, IL-10, and tumour necrosis factor
(TNF) have been observed in patients with severe
COVID-19 [3, 4]. This condition becomes exacerbated by
decreased levels of interferon (IFN) and CD4+ T cells,
CD8+ T cells, and B cells as well as natural killer
(NK) cell counts [5].

The host immune response to SARS-CoV-2 infection
causes clinical manifestations of COVID-19 that vary
from mild to severe. In most cases, the immune response
works properly to resolve the infection. However, in
severe conditions, an uncontrolled host immune response
creates vicious cycles between cytokine storms, coagulo-
pathy, and acute respiratory distress syndrome (ARDS)
which could rapidly progress to disease worsening and
fatalities [6]. Patients with severe COVID-19 showed high
viral load in their blood, lymphocytopenia, and an
increase in monocyte-derived macrophages in the
patient’s bronchoalveolar fluid. There was also a wide-
spread inflammatory reaction in the form of increased
innate immune response and hypercytokinemia. Higher
levels of IL-6 and TNF were detected in critically ill
patients compared to mild–moderate patients [7, 8].

Pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) have
crucial roles in mounting an exaggerated SARS-CoV-2
immune response. Lipids, proteins, and viral RNA pro-
duced throughout the virus life cycle are referred to as
PAMPs and activate their receptors, pattern recognition
receptors (PRRs) in membranes, endosomes, and cell
cytoplasm. PRRs activate downstream signalling path-
ways that lead to the secretion of ILs, TNF, and IFN [9].
Other substances capable of interacting with PRRs and
triggering an inflammatory response are DAMPs, which
are endogenous molecules released after cellular damage
or stress. The release of excessive amounts of DAMPs
leads to dysregulated life-threatening hyperinflammatory
responses as seen in patients with severe COVID-19 [10].

One of the most known DAMPs is high mobility
group box 1 (HMGB1) [11]. Accumulation of extracellu-
lar HMGB1 affects the progression of various respiratory
diseases [12]. HMGB1 has been shown to induce inflam-
matory pathways by triggering the release of cytokines or
chemokines in viral respiratory infections. Serum
HMGB1 levels were associated with viral replication and
the degree of lung pathology. HMGB1 is a potential bio-
marker to predict the severity of viral infections in the
respiratory tract [13, 14]. In line with this finding,
HMGB1 is predicted to have an important role in trigger-
ing the inflammatory response and is a potential

therapeutic target for SARS-CoV-2 infection [15–18]. In
this review, we hypothesized that HMGB1 plays a crucial
role in SARS-CoV-2 infection through its possible interac-
tion with RNA of SARS-CoV-2 in triggering the cytokine
storm in COVID-19. This review also discusses the poten-
tial for HMGB1 antagonists as therapeutic candidates for
COVID-19.

HIGH MOBILITY GROUP BOX
1 (HMGB1)

HMGB1 is a non-histone protein involved in the conden-
sation and packing of intranuclear DNA through its non-
specific interactions with DNA. HMGB1 has been
reported to be involved in transcription, replication,
repair, and recombination due to its binding to DNA
[19]. HMGB1, a highly conserved protein, is composed of
215 amino acids and has a molecular weight of ⁓25 kDa.
This protein consists of a DNA binding domain and a C-
terminal region. Two homologous N-terminal boxes in
the DNA binding domain, namely A box and B box, are
linked by a short basic domain. The A box is located at
1–79 loci and the B box is located at 86–162 loci of the
HMGB1 amino acid sequence [20, 21]. The B box can
bind Toll-like receptor 4 (TLR4) and receptor for
advanced glycation end products (RAGE) which regulate
the production of proinflammatory cytokines. TLR4
binds to the B box at residues 89–108 while RAGE binds
to residues 150–183 [22]. Another RAGE binding site
identified at residues 23–50 is responsible for reversing
apoptosis-induced tolerance [23]. The acidic C tail com-
posed of 30 amino acid residues of aspartates and gluta-
mates stabilizes HMGB1 under various conditions and
enhances its ability to bend DNA [19]. This acidic C-
terminal tail also plays a role in amplifying the anti-
inflammatory effect induced by the A box [24]. The
HMGB1 molecule has two nuclear localization sequences
located at residues 28–44 in the A box and residues 179–
185 located between the B box and the C-terminal tail.
NLS sites are critical for HMGB1 translocation from the
nucleus to the cytoplasm. In addition, three cysteine resi-
dues at amino acid positions 23 and 45 (A box) and
106 (B box) determine the reduction status and influethe
nce biological activity of the extracellular HMGB1 [19,
25, 26] (Figure 1).

Extracellular HMGB1 is secreted under certain condi-
tions and acts as a cytokine that triggers an immune
response, thereby acting as a DAMPs. HMGB1 is
expressed by almost all cell types, including all haemato-
poietic cells. Monocytes, macrophages, mature dendritic
cells (DCs), and NK cells induce active secretion through
mechanisms triggered by certain factors such as
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lipopolysaccharides (LPS), IFN-γ, TNF, and tumour
growth factor-beta (TGF-β) [25]. HMGB1 can also be
released passively by dead cells [11]. The process of
releasing HMGB1 requires two steps. In the first step,
DAMPs or PAMPs trigger post-translational modification
within nuclear localization signal (NLS) sites which
translocate HMGB1 from the nucleus to the cytoplasm.
Subsequently, HMGB1 is released into extracellular fluid
facilitated by the secretory lysosomes formation or pro-
grammed cell death such as pyroptosis or necroptosis
[26]. HMGB1 cytoplasm translocation can be induced by
type I and II IFN [27, 28].

The biological function of extracellular HMGB1 is
influenced by its receptor type, binding complex, and
redox state. HMGB1 capacity to regulate inflammation
depends on the three cysteine residues redox state: totally
reduced (all thiol), partially oxidized (disulfide), and
completely oxidized (sulfonyl). All thiol HMGB1 is
formed if all cysteine residues (C23, C45, and C106)
reside in the fully reduced state with thiol residues. Disul-
fide bonds between C23 and C45 can be easily formed
under mild oxidative conditions. Various cell damage
models, such as necrosis, necroptosis, pyroptosis, and
apoptosis will influence the isoform of HMGB1 released
into the extracellular environment. Necrotic cells secrete
HMGB1 in a fully reduced state without acetylation.
However, during apoptosis, HMGB1 will be retained in
apoptotic bodies, tightly bound to DNA. If phagocytic
clearance is not effective, apoptotic bodies undergo sec-
ondary necrosis and HMGB1 will be secreted in sulfo-
nyl and disulfide isoforms. Necroptosis cells release
HMGB1 in hyperacetylated and fully reduced forms.
Pyroptosis is a major pathway for the release of the
dangerous disulfide HMGB1. Different redox states of
HMGB1 influence its functions. All thiol forms a com-
plex with stromal cell-derived factor 1 (CXCL12) and
triggers immune cells migration via C-X-C chemokine
receptor type 4 (CXCR4) and RAGE. Only disulfide

HMGB1 can interact with TLR4 which exhibits a
cytokine-induced inflammatory response. Totally oxi-
dized HMGB1 molecules have no ability to activate
chemokines or cytokines [29].

CORRELATION OF HMGB1 WITH
PROINFLAMMATORY CYTOKINES
IN COVID-19: THE PRELIMINARY
RESEARCH

The contribution of HMGB1 in the inflammatory
response has drawn attention to the role of this protein
in SARS-CoV-2 infection. SARS-CoV-2 infection was
shown to trigger HMGB1 secretion which increased over
time in cell culture supernatants of Vero-E6 and Huh7.5.
HMGB1 inhibition significantly decreased the cell mor-
tality rate. HMGB1 also has another role in facilitating
the SARS-CoV-2 infection process, in addition to its role
in inflammation. HMGB1 has been reported to induce
ACE2 receptor expression [30]. Regulation of ACE2 is
maintained by extracellular HMGB1 via RAGE [31].
Effective viral infection is a major cause of cell death
which in turn induces a vicious cycle of HMGB1 and
massive releases of proinflammatory cytokines, leading
to a cytokine storm [10].

Increased HMGB1 levels in serum/plasma of COVID-
19 patients were reported by many studies [31–34].
HMGB1 levels were significantly increased in COVID-19
patients compared to healthy controls [33, 34]. The
increased HMGB1 levels were positively correlated with
the severity of the disease. The average serum level of
HMGB1 was significantly elevated in severe compared to
moderate COVID-19 patients. Patients admitted to the
intensive care unit (ICU) compared to non-ICU patients
also had higher levels of HMGB1 [31, 32]. Patients’ clini-
cal improvement was associated with a decrease in
HMGB1 level [31, 34].
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F I GURE 1 HMGB1 structure. HMGB1 molecule is composed of 215 amino acids, and consists of two boxes for DNA binding domain

(A box: aa 1–79 and B box: aa 86–162) and acidic tail (aa 186–215). Two nuclear localization sequences (NLS) sites (aa 28–44 and aa 179–
185) are responsible for HMGB1 translocation. Three cysteine residues at positions 23, 45, and 106 determine HMGB1 redox state. HMGB1

triggers inflammation by binding to its receptor. Aa 89–108 and aa 150–183 were considered as HMGB1’s binding sites to TLR4 and RAGE.

Aa 23–50 is required for RAGE-dependent reversal of apoptosis-induced tolerance.
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The levels of proinflammatory cytokines such as IL-8,
MCP-3, MCP-1, IL-1ra, β-NGF, IL-7, IL-10, RANTES, G-
CSF, IL-1α, CTACK, and IL-17A were elevated in
COVID-19 patients and positively correlated with the
HMGB1 levels. These data indicated that the overproduc-
tion of HMGB1 in COVID-19 patients was associated
with an increase in specific cytokines that characterize a
cytokine storm [31, 32]. HMGB1 can be used to deter-
mine the prognosis of severe COVID-19 patients. HMGB1
and IL-6 levels in COVID-19 patients were positively cor-
related with high Sequential Organ Failure Assessment
(SOFA) scores, septic shock, acute renal failure, poor oxy-
genation status, and longer duration of ventilation [34].
Although all of the above studies had limited partici-
pants, these studies consistently showed that HMGB1
played a critical role in the outcome of SARS-CoV-2
infection, possibly by triggering a cytokine storm. The
pathophysiology of how HMGB1 induces cytokine storms
needs further exploration.

DYSREGULATION OF THE INNATE
AND ADAPTIVE IMMUNE SYSTEMS
TRIGGERS PAMPS AND DAMPS
SECRETION: THE VIRAL IMMUNE
RESPONSE

Cytokines such as IL-6, TNF, and IFN-I/III released from
SARS-CoV-2 infected pulmonary epithelial cells activate
the inflammatory response in the resident macrophages
and recruit other immune cells such as monocytes, gran-
ulocytes, and lymphocytes. NK cells travel to the lungs
led by chemokines CCL2, CCL3, and CXCL9/10/11 [35].
DCs, NK cells, and macrophages are the main cells of the
innate immune response that act as the first line of
defence against SARS-CoV-2 infection [36]. Except for tis-
sue macrophages, immune cells express low levels of
ACE2 receptors [37]. Although SARS-CoV might have
the ability to infect immune cells, the infection could be
abortive [38, 39]. IFN-α influences the inability of viral
replication in the immune cells. Monocyte/macrophages
isolated from blood donors expressing IFN-α did not
show the presence of SARS-CoV antigen. When an anti-
IFN antibody was added to the culture, minimal viral
replication was observed [40].

The antiviral activity of IFN plays an important role
in modulating the immune response against the SARS
virus. IFN blocks viral spreading by inhibiting viral repli-
cation and inducing apoptosis of the infected cells [41].
In addition, type I IFN has an immunomodulatory role
by promoting upregulation of Major Histocompatibility
Complex-I (MHC-I) expression in various cells, which is
required to optimize the elimination of infected cells by T

cells. IFN-I signalling enhances the cytolytic capacity and
survival of NK cells [42]. However, SARS-CoV-2 may
likely have developed several mechanisms to inhibit IFN
production and signalling [35]. It was reported that
COVID-19 patients had a lower level of serum IFN com-
pared to healthy controls. A significant increase in blood
IFN levels was correlated with patient clinical improve-
ment and survival [43].

Inhibition of IFN signalling functionally impairs the
activity of T cells and NK cells. Evidence showed that
SARS-CoV-2 acute infection suppressed T and NK cells
and caused a broad immune cell reduction including DCs
and classic monocytes from peripheral blood of COVID-
19 patients [44]. These DCs have an important role in
host defence against SARS-CoV-2 infection. Plasmacytoid
DCs are the main type I IFN-producing cells. IL-12 pro-
duced by DC mobilizes NK cells. These DCs are antigen-
presenting cells that present viral antigens in association
with MHC-I and II molecules [45]. Immature DCs reach
their maturity after processing viral antigens. The anti-
gens bound to MHC-I and II are recognized by CD8+ and
CD4+ T cells. CD8+ cells proliferate after antigen recog-
nition via MHC-I on DCs and initiate their cytotoxic
activity to kill virus-infected cells. The introduction of
CD4+ cells to viral antigens bound to MHC-II trigger the
activation of CD8+ cells and B cells. Active B cells prolif-
erate into producing antibody plasma cells and memory
cells [46]. Antibody production in COVID-19 patients
was predicted to be ineffective due to DCs inhibition.
Inadequate antibodies, both in terms of quality and quan-
tity, could mediate the viral entry into host cells. SARS-
CoV-2 might have the ability to infect cells by binding to
antibodies, known as antibody-dependent enhancement
(ADE) [47]. Evidence suggested that ADE response most
likely occurred in severe COVID-19. Increased ADE
response induced cytokine production and exacerbated
disease progression [48].

DCs isolated from COVID-19 patients exhibit impaired
maturity [44]. These immature DCs express low levels of
MHC-I, MHC-II, CD80/86, and IFN. The defective DCs
could not properly activate CD4+ T cells, CD8+ T cells,
and NK cells. In addition, NK cells might induce apoptosis
in DCs for their low ability to express MHC-I [46]. NK cell
activity is inhibited in COVID-19 patients, possibly even
undergoing apoptosis [49]. Dysregulation of the immune
system, low levels of IFN, and inadequate antibodies could
trigger uncontrolled viral infections. High levels of cellular
damage induce the release of PAMPs and DAMPs.

The release of PAMPs and DAMPs acts as a ‘signal
0 s’ to initiate an immune response. One of the major
PAMPs is derived from microbial nucleic acids, such as
viral RNA [50]. The impact of SARS-CoV-2 infection goes
well beyond the lungs. Viral components such as RNA
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and protein were identified in multiple organs and body
fluids of COVID-19 patients. The abundance of viral
RNA and protein does not always indicate active infec-
tion [51]. However, the viral component remains poten-
tially dangerous for its ability to stimulate immune
responses [50].

HIGH MOBILITY GROUP BOX
1 TRIGGERS A CYTOKINE STORM IN
COVID-19: THE
PATHOPHYSIOLOGY

Extracellular HMGB1 as DAMPs will bind to its receptor,
the PRR. TLR4 and RAGE are functional PRRs for
HMGB1 [52]. As HMGB1 interacts with TLR4, it stimu-
lates downstream signalling leading to the activation of
Nuclear factor kappa B (NF-KB) and interferon regula-
tor factor 3 (IRF3) [53]. TLR4 is the only TLR capable of
activating signalling pathways via two main adapter
molecules, Myeloid differentiation primary response
88 (MyD88) and TIR-domain-containing adapter-
inducing interferon-β (TRIF), which trigger NF-KB and
IRF3 activation resulting in the production of inflamma-
tory cytokines and IFNs [54]. HMGB1 interaction with
RAGE triggers the activation of Ras which also stimu-
lates signal transduction to the NF-KB pathway. This
pathway involves extracellular signal-regulated kinases
1 and 2 and p38 mitogen-activated protein kinase,
which stimulates NF-KB translocation from cytoplasm
to nucleus to trigger transcription of proinflammatory
cytokines [53].

HMGB1 could also interact with several molecules
including nucleic acids. Binding these molecules
increases signalling at the HMGB1 receptor (56). Expo-
sure to HMGB1 in the presence of LPS, which is a com-
ponent of the wall of Gram-negative bacteria,
significantly increases the proinflammatory cytokines
production compared to HMGB1 or LPS exposure alone.
The underlying mechanism is the ability of HMGB1 to
facilitate the internalization of the partner molecules.
Several studies have shown that HMGB1 and its molecu-
lar partners were internalized via RAGE [55–57].
HMGB1 facilitated extracellular LPS to gain access to the
cytosol via RAGE which was subsequently followed by
caspase 11 activation in a murine model. This step is crit-
ical for caspase 11-dependent lethality in endotoxemia
and bacterial sepsis [58]. Caspase 11 is homologous to
caspase 4 and 5 in humans [59]. All HMGB1 isoforms
could be internalized [56]. Endocytosis of the HMGB1
complex would be followed by a transport process to the
endo-lysosomal system [55–57]. Under normal physiolog-
ical HMGB1 level, this mechanism is required to

eliminate foreign particles. However, in pathological con-
ditions when HMGB1 levels are too high, it acts like a
detergent that stimulates lysosomal rupture. It triggers
the release of partner molecules into the cytosol [52]. It
was demonstrated that macrophage’s lysosomes under-
went swelling after endocytosis of HMGB1, followed by
lysosomal rupture and leakage of its content into the
cytosol [55].

HMGB1 has been shown to be able to bind to viral
RNA which could be a precondition for the recognition
and activation of cytosolic receptors, such as Retinoic
acid-inducible gene (RIG)-I-like receptor (RLR) and TLR
[60]. The RNA of SARS CoV-2 is predicted to be able to
gain access to the cytosolic receptors mediated by
HMGB1 [55]. Endosomal receptors, TLR7 and 8, recog-
nize single-stranded RNA (ssRNA) of SARS-CoV-2 when
it accumulates in the endosome. Downstream signal of
this interaction is the production of proinflammatory
cytokines via the MyD88 pathway [61]. When the RNA
of SARS-CoV-2 escapes into the cytosol, it could interact
with the cytosolic receptors. Retinoic acid-inducible gene
(RIG)-I-like receptor (RLR) is a cytoplasmic PRR capable
of detecting ssRNA. The RLRs include retinoic acid-
inducible gene (RIG)-I, melanoma differentiation-
associated gene 5 (MDA5), and laboratory of genetics and
physiology 2. Exposure to the ssRNA of SARS CoV-2
might activate RLR, especially RIG-1 and MDA5. RLR
interacts with a mitochondrial activator of virus signal-
ling (MAVS) which leads to the recruitment and activa-
tion of protein kinases TANK-binding kinase 1 (TBK1)/
IKKϵ and IKKα/IKKβ. These protein kinases play a role
in the production of IFNs and proinflammatory cytokines
through the upregulation of IRF3, IRF7, and NF-KB [62].
NF-KB activates the transcription of several pro-
inflammatory genes such as the Nod-like receptor family,
and pyrin domain containing 3 (NLRP3). This pathway
induces the formation of the inflammasome and the pro-
duction of pro-IL-1β, pro-IL-18, IL-6, and TNF-α [63].

The upregulation of cytoplasmic sensors such as
NLRP3 triggers inflammasome formation. The inflamma-
some is a multiprotein complex in the cytoplasm playing
a role in the host’s reaction to pathogens or tissue dam-
age. NLRP3 inflammasome was activated in severe
COVID-19 patients [16]. Inflammasome formation via
NLRP3 triggers the recruitment of complex molecules
including adapter protein apoptosis-associated speck-like
protein containing a CARD (ASC) which in turn activates
caspase 1. Caspase 1 cleaves inactive form pro-IL-1β and
pro-IL-18 to mature IL-1β and IL-18. Caspase 1 also
cleaves gasdermin-D (GSDMD) which triggers pyroptosis
through pore formation at the cell membrane. Later, IL-
1β and IL-18 are released into the extracellular space
[64]. GSDMD is dispensable for the maturation of
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another IL-1 family cytokine, IL-1α. GSDMD pore forma-
tion triggers Ca2+ influx which mediates calpains activa-
tion. Pro-IL-1α is processed into the mature form, IL-1α,
by this protease [65]. It was confirmed that IL-1α contrib-
uted to the deterioration and adverse outcomes of
COVID-19 [66, 67]. GSDMD pore formation-mediated
Ca2+ influx plays a role in coagulation by inducing phos-
phatidylserine exposure through transmembrane protein
16F which leads to markedly enhanced activation of tis-
sue factor (TF), an initiator of coagulation [68].

Pyroptotic cell death also induces the release of more
HMGB1. HMGB1 secretion during pyroptosis is triggered
by inflammasome assembly and caspase 1 activation [69].
GSDMD, which inserts the membrane, causes water leak-
age and cell lysis. HMGB1 is released into the extracellu-
lar fluid [70]. The SARS-CoV viral protein, viroporin
protein 3a, can directly activate NLRP3 triggering pyrop-
totic cell death. SARS-CoV-2 genome also contains the
sequence which encodes for this protein. It was suspected
that SARS-CoV-2 also induces a similar response (16).
COVID-19 patients showed an increase in caspase 1 activ-
ity accompanied with elevated levels of IL-1β which
could be promoted by the activation of inflammasomes
during SARS-CoV-2 infection [71]. The interaction
between HMGB1 and SARS-CoV-2 RNA might trigger an
alternative pathway of pyroptosis without the need to
activate NLRP3. The leakage of lysosomes after HMGB1
endocytosis led to the release of endosomal enzyme,
cathepsin B, into cytosol. Cathepsin B triggers cleavage of
caspase 1, by inducing pyroptosome, ASC. Furthermore,
ASC activates caspase 1 triggering macrophage pyropto-
sis. This pathway induces NLRP3 inflammasome-
independent pyroptosis [55] which needs further explora-
tion in COVID-19.

Many factors might influence the mechanism involv-
ing HMGB1 in the pathogenesis of COVID-19. The
HMGB1 redox state might change in the extracellular
environment under certain conditions. All thiol HMGB1
could become shifted to disulfide or sulfonyl HMGB1
when exposed to large amounts of reactive oxygen species
[22]. In addition, the expression and function of TLRs are
regulated by cellular processes (e.g., cell cycle and migra-
tion, apoptosis), air pollution, depression, certain drugs
(e.g., glucocorticoids, antibiotics), stress, depression, poly-
morphisms, aging, nutrients, and micronutrients (vita-
mins and minerals) [72]. Gender affects inflammasome
activation. Polymorphonuclear cells in males compared
to women showed significantly higher levels of mRNA
molecules involved in inflammasome activity such as
AIM2, NLRP3, ASC, Casp1, Casp5, and IL-1β [73]. The
mortality rate of confirmed COVID-19 male patients is
higher than that of women in Central Java, Indonesia
[74]. Similar data were obtained from many regions

worldwide. Male patients are predicted to have a higher
risk than women for COVID-19 severity and admission
to the ICU [75]. Aging is associated with low-grade sub-
clinical inflammation characterized by increased DAMPs
and proinflammatory cytokines, and the inflammasome
activation, especially NLRP3 [76]. Impairment of the cho-
linergic system which is known to modulate anti-
inflammatory responses via the vagus nerve is thought to
be associated with older age [77]. Sirtuin 1 (SIRT1), a nic-
otinamide adenine dinucleotide (NAD+) dependent dea-
cetylase, delays cellular senescence and ameliorates the
inflammatory effects of HMGB1 [78, 79]. SIRT1 expres-
sions showed a significant decline in aging [80]. This fac-
tor might help explain the high mortality rate of elderly
patients with COVID-19 [74]. Excess nutrients could
form DAMPs molecules which in turn activate PRRs
[81]. PRR mutations are associated with an increase of
proinflammatory cytokines [82].

The increased production of proinflammatory cyto-
kines triggered by the HMGB1-SARS-CoV-2 RNA com-
plexes in COVID-19 patients creates a vicious cycle
that compromises the host condition. IL-6 is responsi-
ble for modulating the host immune response during
viral infection and suppressing viral replication, which
means it has an antiviral role. However, increased sys-
temic level of IL-6 might have a pro-viral effect. Imbal-
anced IL-6 production after virus infection could
induce viral survival and disease expansion [83].
COVID-19 patients experienced a decrease in both
CD4+ and CD8+ T cells, as well as NK cells both in
terms of number and function. Inhibition of T cells and
NK cells was correlated with high levels of IL-6 and
TNF-α. High levels of IL-6 resulted in suppression of
the cytolytic activity of NK cells and CD8+ T cells. Both
of these cells play a critical role in the lysing of the
infected cells. Inhibition of NK cell and CD8+ T cell
activity amplifies the proinflammatory cytokine cas-
cade leading to disease worsening [84, 85]. The IL-1
family including IL-1β is capable of inducing the secre-
tion of other proinflammatory cytokines such as IL-6.
IL-1 is also able to induce itself thereby creating a
proinflammatory cycle [86]. Another IL-1 family, IL-
18, is known as a factor that triggers IFN-γ production.
Together with other cytokines, IL-18 stimulates T cells,
CD4+ NKT, mast cells, and basophils [87]. Elevated
levels of IL-18 were correlated with acute respiratory
syndrome in patients with severe COVID-19 [88, 89].
Cytokine storms trigger macrophage activation known
as macrophage activation syndrome (MAS) contribut-
ing to multi-organ dysfunction and increasing the rate
of mortality [90]. MAS is thought to be involved in the
pathogenesis of ARDS due to SARS-CoV-2 infection
[36, 91] (Figure 2).
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DAMPs such as proteins, nucleic acids, and extracel-
lular matrix are harmless until they engage with specific
PRRs to initiate innate immune responses [10]. Severely
ill COVID-19 patients displayed abundant DAMPs and
PAMPs present in their blood and lungs [92]. HMGB1

interaction with other DAMPs or PAMPs could facilitate
them to engage with proinflammatory cytosolic receptors
via RAGE. This interaction might also affect HMGB1
quantification. Plasma samples pretreatment with perchlo-
ric acid capable of dissociating HMGB1-molecules-bound
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F I GURE 2 The role of HMGB1 in the cytokine storm in SARS-CoV-2 infection. Cell death due to SARS-CoV-2 infection releases many

DAMPs and PAMPs including HMGB1 and RNA of SARS-CoV-2 into the extracellular space. HMGB1 activates TLR4 which triggers an

inflammatory response via TRIF and MyD88. HMGB1 binds to viral RNA and triggers endocytosis via RAGE. The HMGB1-RNA complex

induces endo-lysosomal rupture due to the high acidity of HMGB1. While in the endosome, viral RNA can activate TLR7/8 which in turn

triggers an inflammatory response via the MyD88 pathway. The rupture of lysosomes induces viral RNA release into the cytosol. RLR detects

this viral RNA and triggers the transcription of inflammasome NLRP3 and pro-inflammatory cytokine genes such as IL-6, TNF-α, pro-IL-1β,
and pro-IL-18 via the NF-KB pathway. Lysosomal lysis also induces the release of Cathepsin B to mediate pyroptosome ASC which

subsequently activates caspase 1. Caspase 1 cleaves GSDMD to trigger pyroptosis. Active caspase 1 cleaves pro-IL-1β and pro-IL-18 into

mature IL-1β and IL-18. GSDMD pores mediate calpain activation, resulting in IL-1α maturation and induce phosphatidylserine

(PS) exposure-mediated tissue factor (TF) activation. Pyroptosis triggers extracellular secretion of IL-6, TNF, IL-1α, IL-1β, IL-18, and
HMGB1. High levels of IL-6 and TNF-α inhibit NK cells and T cells. On the other hand, SARS-CoV-2 infection inhibits DCs which further

suppressed NK cells, T cells, and B cells. Inadequate antibodies production might trigger antibody-dependent enhancement (ADE)

phenomenon. This condition leads to an uncontrolled viral infection and cell damage with more HMGB1 released. Altogether these

mechanisms trigger a proinflammatory cycle leading to a cytokine storm.
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complexes revealed higher HMGB1 concentration com-
pared to untreated samples. It seems that HMGB1-
DAMPs/PAMPs complexes might interfere with antibody
recognition during ELISA assays which could lead to an
underestimated HMGB1 concentration [93].

HMGB1 ANTAGONISTS AS
POTENTIAL CANDIDATES FOR
COVID-19 THERAPY

The COVID-19 treatment guidelines recommend using
SARS-CoV-2 monoclonal antibodies, antivirals, and corti-
costeroids or their combination according to certain con-
ditions. Management guidelines are under periodic
revisions because of the lack of specific treatment for
COVID-19 [94]. This situation opens an opportunity for
COVID-19 candidate therapy exploration. HMGB1 is
known as a candidate for therapeutic targets in inflam-
matory diseases [95]. Administrations of anti-HMGB1
were reported to be able to modulate the cytokine profile
which was associated with clinical improvement in the
in vitro and in vivo sepsis model [56, 96]. Some of the
HMGB1 antagonists are potential candidates for COVID-
19 therapy.

Glycyrrhizin.
Glycyrrhizin (GL) was isolated from the root of the

plant Glycyrrhiza glabra/licorice. Glycyrrhetinic acid
(GA) is a major metabolite of GL [97]. Several reviews
highlight the strong potential of GL and its derivatives as
candidates for COVID-19 therapy [98–100]. Bioinformat-
ics analysis predicts antiviral, antioxidant, and anti-
inflammatory activities of GA could inhibit SARS-CoV-2
infection [101].

GL inhibits HMGB1 by direct binding. Molecular
docking visualization demonstrated the binding of GL to
the HMGB1 surface receptor at residues R23, K42, R109,
and K126 in the A and B boxes [102, 103]. GA can also
bind to HMGB1 domain although it is less stable than
GL, which binds to HMGB1 extracellularly and intra-
cellularly due to its ability to penetrate membrane
phospholipids [98]. In addition, both GL and GA are
able to inhibit other intracellular and extracellular
inflammatory mediators, such as ILs, chemokines, NF-
KB, and mitogen-activated protein kinase (MAPK)
[104]. In addition to its direct binding to HMGB1, GL
inhibits HMGB1 translocation from the nucleus to the
cytoplasm, thereby blocking its extracellular secretion,
both in vitro [105] and in vivo [106]. The inhibition of
HMGB1 translocation was done by increasing the
expression of the SIRT6 protein [107]. The SARS-CoV-
2S protein in the receptor binding domain and Orf3a
causes cell death through pyroptosis. IL-1β and

HMGB1 are secreted in pyroptosis. GL inhibits this
mechanism by decreasing HMGB1 secretion [108].

GL binds to extracellular HMGB1 thereby inhibiting
its interaction with TLR4 and RAGE which in turn
decreases the expressions of JNK, p38, ERK and IkB. This
effect indicated the inhibition of the NF-KB/MAPK path-
way that triggered proinflammatory cytokines. This
mechanism was confirmed by the low expression of
proinflammatory cytokines in GL therapy. GL had a pro-
tective role against acute lung injury (ALI) [105,
109, 110].

In addition to its potential as an HMGB1 antagonist,
GL has other mechanisms to inhibit SARS-CoV-2 infec-
tion. The highly conserved N-terminal domain of the
SARS-CoV-2S protein at residues 111–158 enhances viral
binding to lipid rafts and facilitates contact with the
ACE2 receptors [111]. GL interacts with cholesterol in
the membrane and lipid rafts thereby modulating their
permeability and interfering with viral attachment and
release from host cells [98]. GL’s antiviral activity was
demonstrated by its ability to inhibit the main protease
SARS-CoV-2, MPRO. This protease plays a vital role in
processing viral polyproteins. Furthermore, MPRO inhibi-
tion blocks viral replication [112].

Epigallocatechin-3-Gallate (EGCG)

Epigallocatechin-3-Gallate inhibits HMGB1 secretion in
LPS-induced macrophage culture even when adminis-
tered 2–6 h after LPS stimulation. Systemic inhibition of
HMGB1 secretion occurred when EGCG was adminis-
tered intraperitoneally in a septic rat model. Adminis-
tration of EGCG reduced the mortality rate. The
mechanism of how EGCG inhibits HMGB1 secretion is
unclear [113]. Epigallocatechin-3-Gallate in green tea
also triggers the degradation of HMGB1 thereby inhibit-
ing HMGB1 secretion into extracellular space. EGCG
binds to HMGB1 in the cytoplasm and forms the EGCG-
HMGB1 complex. This complex triggers the formation
of autophagosomes. The fusion of autophagosomes and
lysosomes formed auto-phagolysosomes that degraded
HMGB1 [102]. EGCG binds to HMGB1 at residues close
to Cy106 and acts as a glue to the A box and B box
together. This binding induced a conformational change
of the protein, with an increase in polarity and a unique
surface electrostatic potential. This change led to the
aggregation of HMGB1 which triggered its degradation
via autophagy [114]. Molecular docking analysis con-
firmed by in vitro studies indicated that EGCG also had
the ability to inhibit SARS-CoV-2 through its activity as
an inhibitor to MPRO. This protease is also known as
3-chymotrypsin-like protease (3CLPRO) [115, 116].
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Cholinergic agonists

Cholinergic agonists such as nicotine and acetylcholine
interacted with nicotinic acetylcholine receptor
(α7nAChR) to further activate anti-inflammatory mecha-
nisms. Downstream signalling of this mechanism was the
inhibition of HMGB1 secretion and its interaction with
TLR4 and RAGE thereby blocking the inflammatory
response. Overall, activation of α7nAChR had the poten-
tial to attenuate ALI and ARDS [117]. Activation of
α7nAChR enhanced NAD+-SIRT1 pathways [118]. SIRT1
deacetylated specific lysine site of HMGB1 which subse-
quently prevented HMGB1 translocation from nucleus
to cytoplasm and extracellular secretion [79]. Nicotine
stimulated α7nAChR resulted in the inhibition of NF-
KB pathway and HMGB1 secretion from human mac-
rophages. This mechanism was protective against sep-
sis and increased survival in vivo [119]. Choline is a
precursor of acetylcholine which is the main neuro-
transmitter in the cholinergic system. Administration
of choline to RAW264.7 macrophage cell culture
induced by endotoxin resulted in a decrease in
HMGB1 secretion. Similar result was observed in an
in vivo study [120]. Acetylcholine and GTS-21 inhib-
ited HMGB1 endocytosis via RAGE. This inhibitory
potential was dose-dependent and able to suppress
TNF release in human macrophage and RAW264.7 cul-
ture. The mechanism of how acetylcholine and GTS-21
inhibit HMGB1 endocytosis is unknown [56]. In silico
analysis showed the SARS-CoV-2 spike protein binds
to α7nAChR and induces dysregulation of the nicotinic
cholinergic system which was thought to trigger the
inflammatory response in COVID-19. Cholinergic ago-
nists interfere with this interaction to further activate
the anti-inflammatory response [121].

Haptoglobin

Haptoglobin is a plasma protein that plays a role in the
binding of free haemoglobin (Hb). The haptoglobin-Hb
complex binds to the CD163 receptors to further trigger
the complex endocytosis process. This mechanism leads
to the degradation of free Hb [122]. The role of haptoglo-
bin in triggering Hb degradation was a potential thera-
peutic candidate for sickle cell anaemia, sepsis, blood
transfusion, and subarachnoid haemorrhage [123]. Hap-
toglobin subunits β bind to HMGB1 A box at residues
F18, T22, R24, E25, K28, H31, A54 and K55. Only all
thiol and disulfide HMGB1 could bind with the full-
length haptoglobin. Haptoglobin binds to HMGB1 and
interacts with CD163 to trigger endocytosis of the
haptoglobin-HMGB1 complex. This process induces the

polarization of M2 macrophages which further triggers
the production of IL-10 and an increase in the production
of Heme oxygenase-1 (HO-1). Haptoglobin-HMGB1 bind-
ing via CD163 triggered anti-inflammatory activity which
was strengthened by a decrease in TNF and IL-6 levels.
These mechanisms protected the host against sepsis
[124]. The inhibitory potential of haptoglobin to HMGB1
in COVID-19 needs to be further explored.

Thrombomodulin

Thrombomodulin (TM) is a thrombin-binding anticoagu-
lant cofactor expressed on the surface of endothelial cells.
The TM structure consists of five domains, with domain
D1 binding to HMGB1 while D2 binds to thrombin.
Thrombomodulin had anti-coagulation and anti-
inflammatory activities. Thrombin forms a complex with
TM to activate protein C which causes inactivation of fac-
tors Va and VIIIa which further blocks subsequent
thrombin formation. Thus, TM triggered the anti-
coagulation activity [125]. The anti-inflammatory activity
of TM was triggered by several mechanisms. The activa-
tion of protein C triggered the endothelial protein C
receptor (EPCR) to activate the protease-activated recep-
tor 1 (PAR-1) system. PAR-1 was induced by thrombin
triggering the inflammatory process, but protein C via
ECPR induced the anti-inflammatory activity. TM also
inhibited the interaction of TLR4 with its ligands such as
HMGB1, histones, and endotoxins thereby inhibiting its
proinflammatory activity [126].

The lectin-like domain on TM could bind to HMGB1
and stimulate its degradation by thrombin [127]. TM
induced all thiol and disulfide HMGB1 degradation. Sup-
pression of HMGB1 by this mechanism inhibited allody-
nia in mice [128]. Administration of recombinant human
soluble TM led to a decrease in the expressions of
HMGB1, RAGE protein, and mRNA in the cerebrospinal
sinus thrombosis model. Thus, TM protective role was
not limited to decreasing the level of HMGB1 but also by
inhibiting the HMGB1–RAGE interaction. Inhibition of
RAGE prevented the production of proinflammatory
cytokines characterized by the decreased levels of protein
and mRNA of IL-6, TNF-α, and IL-1β [129]. Thrombomo-
dulin had been shown to reduce mortality in septic
patients with relatively no side effects [130].

Heparin

Heparin binds directly to HMGB1 thereby blocking its
interaction with the receptors on the surface of macro-
phages. As a result, p38 and ERK1/2 phosphorylation
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were suppressed characterized by decreased secretion of
TNF-α. Heparin also reduced lethality in mice exposed to
LPS and HMGB1 [131]. Inhibition of p38 stimulated a
decrease in pulmonary endothelial permeability
induced by HMGB1. This inhibitory effect was exerted
by unfractionated heparin (UFH) [132]. UFH is a
branched glycosaminoglycan. The use of heparin has
the potential to cause thrombocytopenia (Heparin-
induced thrombocytopenia/HIT). Low molecular
weight heparin (LMWH) has a lower risk of developing
HIT [133]. Dociparstat (DSTAT) is a derivative of hepa-
rin (UFH) with decreased anticoagulant activity. It can
be administered in higher dosages than heparin.
DSTAT could inhibit the interaction of HMGB1 with
RAGE [134]. DSTAT has undergone phase 2 and 3 clini-
cal trials for COVID-19 therapy, but unfortunately, it
was discontinued due to the low number of partici-
pants (ClinicalTrials.gov Identifier: NCT04389840).

Metformin

Metformin is an antidiabetic drug that also has an anti-
inflammatory property. Metformin was able to inhibit
HMGB1 activity on LPS stimulation. In vitro study on
rabbit annular stem cell culture showed that metformin
administration in LPS stimulation led to a decrease in
HMGB1 secretion, which accumulated the HMGB1 in
the nucleus [135]. Metformin increased Adenosine
monophosphate-activated protein kinase (AMPK) activ-
ity. Metformin activated AMPK indirectly through the
inhibition of the reaction of ADP to ATP. When the
ADP:ATP ratio increased, the AMP:ATP ratio would also
increase and trigger AMPK activity [136]. AMPK plays a
role in activating the elimination of dead cells or efferocy-
tosis. HMGB1 induces a decrease in efferocytosis. The
mechanism of metformin in inhibiting HMGB1 and acti-
vating AMPK played a role in improving lung function in
patients with ARDS [137]. Metformin binds directly to
HMGB1 on the acidic C-terminal tail, inhibiting p38
phosphorylation in macrophage cells and TNF-α secre-
tion in mouse serum [138].

Although the above-mentioned compounds success-
fully inhibited HMGB1 in the in vitro and in vivo stud-
ies, none of the HMGB1 antagonists have been
recommended as a standard regiment for COVID-19
patients in the clinical setting. There is a concern that
HMGB1–PAMPs/DAMPs complexes might interfere
with HMGB1 antagonist binding causing reduced effec-
tiveness of these compounds which could be misinter-
preted as if HMGB1 was not involved in the disease
pathogenesis. This challenging issue urgently needs to
be resolved in the future.

CONCLUSIONS

DAMPs and PAMPs interaction might impair the host
immune response and trigger unintended negative out-
comes. This field has not been explored extensively in
COVID-19. In this review, we proposed the pathophysiol-
ogy of HMGB1-RNA of SARS-CoV-2 complexes induces
cytokine storms in COVID-19. The downstream signals
triggered by this interaction also have been described in
detailed and comprehensive ways. This pathway needs to
be explored further in in vitro and in vivo studies. Elderly,
male, and excessive nutrition could exaggerate downstream
signalling of this mechanism. When extracellular HMGB1
and SARS-CoV-2 RNA accumulations are present in these
high-risk patients, special precautions should be taken.
HMGB1 has been shown as a potential molecular target of
COVID-19 therapy. Several identified potential antagonist
compounds have been described. Some of these compounds
have a double action, such as HMGB1 and SARS-CoV-2
downstream signal inhibitors. Glycyrrhizin might have
more potential than other compounds for its ability to
inhibit intracellularly as well as extracellular HMGB1 and
antiviral activity. These compounds should be considered
to give benefit in alleviating cytokine storms and may serve
as potential candidates for COVID-19 therapy.
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