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Abstract

Predictive modeling of neuroimaging data (predictive neuroimaging) for evaluating individual 

differences in various behavioral phenotypes and clinical outcomes is of growing interest. 

However, the field is experiencing challenges regarding the interpretability of the results. 

Approaches to defining the specific contribution of functional connections, regions, or networks 

in prediction models are urgently needed, which may help explore the underlying mechanisms. In 

this article, we systematically review the methods and applications for interpreting brain signatures 

derived from predictive neuroimaging based on a survey of 326 research articles. Strengths, 

limitations, and the suitable conditions for major interpretation strategies are also deliberated. In-

depth discussion of common issues in existing literature and the corresponding recommendations 

to address these pitfalls are provided. We highly recommend exhaustive validation on the 

reliability and interpretability of the biomarkers across multiple datasets and contexts, which 

thereby could translate technical advances in neuroimaging into concrete improvements in 

precision medicine.
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Introduction

The past few decades have witnessed significant improvements toward a cumulative 

understanding of neural mechanisms underlying high-order cognitive functioning [1], by 

investigating how these constructs map to the brain [2] or are impaired in complex 

brain disorders. These advances have led to compelling insights into human brain 

function. Specifically, research paradigm shift from group-level inference to individual-level 

prediction is exceedingly impressive, with analytical tools transferring from mass-univariate 

correlation to multivariate data mining in parallel [3].

Tremendous effort has been devoted to predicting individual differences on a continuum for 

both health and disease using regression-based predictive modeling approaches (hereafter 

referred to as predictive neuroimaging), in an extensive battery of behavioral phenotypes [4, 

5], or clinical outcomes [6, 7]. Nevertheless, the field is experiencing immense challenges 

in translating neuroimaging findings into concrete improvements in real-world settings 

[8]. One of the key factors that may lead to the translational failure is the low or fair 

interpretability of prediction models, where interpretability means identifying the unique 

contribution of individual brain features to the models decoding predictions, thereby hoping 

to identify the underlying neuro-substrates of the decoded target variable [9]. Although 

interpretability has attracted substantial attention from other research fields, it is often an 

overlooked issue in predictive neuroimaging, compared to classification or diagnosis [9–11] 

in many of research hotspots based on deep learning models [12–16]. Few previous studies 

have provided a systematical review summarizing the strategies and recommendations for 

interpreting regression-based predictive neuroimaging markers. Therefore, we provide a 

detailed review of approaches and applications for interpreting brain signatures here, and 

more importantly, offer a guideline on how to use them in predictive neuroimaging.

Our primary focus is connectome-based prediction, due to its ability to leverage 

functionally coherent but spatially distributed whole-brain patterns [17] and to yield more 

reproducible biomarkers [18]. We first outline multiple essential aspects that distinguish 

predictive neuroimaging from traditional brain mapping studies. Then, based on 326 

research studies, we systematically summarize methodological solutions to interrogating 

predictor contribution, discuss the strengths and limitations for each of them, and provide 

recommendations and cautions against scenarios that may potentially result in bias and 

misleading findings when interpreting brain findings. Moreover, in an experimental analysis, 

we compared these interpretation approaches by applying each representative method to 

the same data. Finally, some encouraging and challenging directions were presented, which 

show promise to make the black-box transparent of this active field.

Common issues in current neuroimaging study

Group mean vs individual differences

For over two decades, neuroimaging research has predominately focused on revealing group 

differences. However, focusing on group effects may ignore the rich information that makes 

an individual unique, and obscure true neural signal. Specifically, voxels showing large 

variations across individuals do not necessarily correspond well to those showing large 
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mean activation [19] (Figure 1a, Supplementary File S1), implying that brain regions 

with weak average activation may also carry valuable, individualized information. In 

contrast, predictive neuroimaging emphasizes both intra- and inter-subject variabilities. For 

example, functional connectivity can serve as a unique and reliable fingerprint distinguishing 

oneself from others [18] and is capable of predicting individual cognitive abilities or 

specific symptoms [5, 20]. Convergent evidence suggests that the inter-subject variability 

in multimodal brain measurements shapes the substantial variance in human behavior [3, 21, 

22].

Inference vs prediction

Conventional brain mapping investigations usually aim at making inferences about which 

brain regions are involved in the manipulated mental process by assessing the probability 

of P(brain|behavior) [20]. In this framework, the behavioral outcomes are independent 

variables and neural measures are dependent variables (Figure 1b). Predictive neuroimaging 

is instead focusing on evaluating how well the behavioral outcomes can be predicted from 

measured brain features, i.e., P(behavior|brain). Traditional analyses are often evaluated 

based on ‘goodness of fit’ to the entire dataset, which increases the likelihood of 

overfitting [23] (Figure 1c). Moreover, they have a heavy reliance on in-sample population 

inference, leaving the generalizability of established relationship to out-of-sample data 

largely unknown. In contrast, predictive neuroimaging employs cross-validation to mitigate 

overfitting, and increases the likelihood that the established relationship will hold in 

independent data, offering more translational implications [24].

Furthermore, the emphasis of correlational study is on examining whether the association 

reaches significance beyond the chance level, and whether the direction of effect 

matches existing evidence [25]. However, a statistically significant in-sample correlation 

is descriptive and may be insufficient to guarantee robust and useful generalization [26]. 

When sample size is small, the correlational results are sensitive to outliers; whereas 

working with very large datasets can also lead to serious problems [1], e.g., generating 

extremely small p-values but with tiny effect sizes (Figure 1d). In comparison, predictive 

neuroimaging quantitatively predicts the value of a continuously behavioral dimension, 

which is able to better characterize the full range of target metrics [27]. Being trained within 

a cross-validation framework, models built using predictive neuroimaging can be directly 

applied to brain features from out-of-sample individuals, enabling the model to generalize to 

more accurately predict behavioral scores.

Univariate analysis vs multivariate integrated model

Brain mapping studies typically analyze brain-behavior associations across a myriad of 

isolated brain features (i.e., voxels or regions) in parallel [28]. Performing massive statistical 

comparisons can increase false positives. In addition, a correction for multiple tests can in 

turn lead to false negatives when the feature dimension is much larger than the sample size 

[20].

Another issue is that univariate analysis focuses on information from circumscribed voxels 

or brain regions. However, decades of research has shown that there exists an intricate 
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interplay among distinct brain regions, and the generation of mental traits is not constrained 

to any a priori region but engages multiple interacting systems spanning across the whole 

brain [29]. Consequently, many behavioral constructs can’t be decoded from isolated brain 

regions. A predictive neuroimaging approach can tap into the rich multimodal information 

by jointly combining individual features that have selective relationships with the target 

outcome within an integrated model [30].

Why interpretability is an overlooked ingredient in predictive neuroimaging

Although the specific implementations vary across studies, the workflow for predictive 

neuroimaging analyses generally includes similar steps [24] (Supplementary File S2). The 

interpretability step, however, has received much less attention in predictive neuroimaging. 

One potential reason is that the neuroimaging community tends to reward higher prediction 

performance over neurobiologically meaningful interpretation. Specifically, existing studies 

often incorporate prediction accuracy as the gold standard to evaluate model quality, no 

matter whether the research objective is to develop novel algorithms or to determine 

the involved neural circuits [9]. Another reason is that many researchers in predictive 

neuroimaging are not domain experts in neuroscience, but experts in machine learning, 

and thus they are more enthusiastic about and better at developing effective models than 

interpreting the results.

However, in addition to pursuing higher predictive performance, determining which specific 

connections, regions, or functional networks contribute to the prediction may significantly 

advance our knowledge of how the brain implements cognition; and more importantly, 

facilitate the translation of neuroimaging findings into clinical practice [20, 31]. Moreover, 

machine learning methods tend to be treated as a black-box, which results in focusing on the 

highest-possible predictive performance rather than mechanism understanding [2]. This may 

lead to the current dilemma that researchers treat interpretation as a secondary goal, e.g., 
explaining feature importance in their own way and attempting to link with neurobiological 

significance in a relatively shallow manner without taking full advantage of interpretable 

models. In this regard, the arbitrary interpretation of models may be hard to reveal the neural 

underpinnings of behavioral traits [9].

Approaches to build interpretable models in predictive neuroimaging

As listed in Table 1, we systematically describe three most popular interpretation strategies 

in the context of regression-based predictive neuroimaging by reviewing 326 relevant 

articles published since 2010 via keyword searching from Google Scholar and PubMed [5]. 

The searching strategy was provided in supplementary file. Key points such as interpretation 

method, imaging modality, sample size, prediction algorithm, and validation strategy are 

listed in supplementary Table S1 and Figure S1. Moreover, to better demonstrate the utility 

of the interpretation strategies, we constructed predictive models for working memory 

performance based on HCP activation maps and extracted the most predictive features using 

each of the three interpretation strategies (Figure 2, details can be found in Supplementary 

File S3).

Jiang et al. Page 4

IEEE Signal Process Mag. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beta weights-based quantification metrics

The simplest way to determine feature importance from a regression model is to extract 

the beta weight from each standardized predictor. This mathematically assigns the expected 

credit each predictor receives in predicting the outcome variable given a one unit change in 

it while holding the other independent variables constant [32]. Consequently, it is reasonable 

to assume that predictors with larger beta weights have greater contributions. A crucial 

consideration in using such a quantification method is that prediction models are frequently 

placed within a cross-validation framework, which means that the identified predictive 

features and their beta weights may vary across folds. To cope with this problem, researchers 

favor the practice of computing an overall mean contribution for each predictor [33] or 

using the full data to train the final model and extracting the beta weights. For example, 

in predicting brain maturity and executive functions, Cui et al. [34] applied a 2-fold cross-

validation with 100 repetitions, and summarized the feature contribution by averaging beta 

weights from all 200 prediction models (Figure 3a). In our example data, the mean weight 

map was highly similar to that from each cross-validation loop but with a relative low 

variability due to the effect of averaging (Figure 2a).

Although this approach is widely used, overreliance on beta weights can suffer from 

serious limitations. On one hand, equating large weights with greater importance may 

fail for nonlinear models [10]. On the other hand, this quantification strategy is only 

applicable in situations where there exists no strong correlation among predictors. However, 

neuroimaging features can be highly inter-correlated, resulting in a statistical phenomenon 

called multicollinearity [35]. In this case, beta weights are heavily influenced by covariance 

among predictors, and the squared coefficients do not naturally decompose overall 

prediction R2 (variance explained). Importantly, in the context of multivariate classifiers, 

Haufe et al. implied that interpreting model weights (filters) as activation patterns (truth) 

can lead to erroneous conclusions, unless the individual features were uncorrelated [10]. 

This study proposed a framework for interpreting linear multivariate models by considering 

covariance structure and demonstrated its effectiveness in both simulation and real fMRI and 

electroencephalography data.

Multicollinearity may yield unstable regression coefficients, and sometimes even a minor 

change in covariance structure would dramatically change the beta weights, complicating the 

feature interpretation [36]. Fortunately, four different kinds of approaches can be adopted to 

alleviate this problem. The first one is employing prediction methods having good resilience 

to multicollinearity data, such as LASSO and ridge regression. These methods still work 

well when the data have much more features than instances. Specifically, ridge regression 

deals with multicollinearity by assigning similar coefficients to correlated features but 

may come at the cost of increased model complexity [37]. LASSO arbitrarily retains a 

representative predictor from a group of correlated ones and drops the others to avoid 

multicollinearity [38]. A prominent problem is that it can lead to the exclusion of some 

important features. Practically, researchers often incorporate both model-selected features 

and their tightly correlated ones to make interpretations [39, 40].

The second approach is to project neuroimaging features into a small set of separable (i.e., 

orthogonal or independent) latent components using dimensionality reduction techniques, 
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and then feed them into a prediction model. Since the predictors are uncorrelated, variable 

importance can be determined by directly inspecting the derived beta weights. A classic 

example is the recently proposed prediction model ‘Brain Basis Set’ (BBS) [41], which 

transforms high-dimensional functional connections into a small suite of latent components 

using principal component analysis (PCA), and then fits a multiple linear regression 

model to predict neurocognitive scores using expression scores of these components. 

Accordingly, feature importance is determined by multiplying feature component map 

with their respective beta coefficients from the prediction model. This method is strongly 

recommended when there is a need to visualize the contribution of all features that are 

highly correlated. A potential problem is that the optimal number of latent components 

needs to be determined by additional experiments.

The third approach does not use the original beta weight values, but instead performs 

permutation tests to assess the statistical significance [42, 43]. For example, in a recent 

fMRI study using partial least square regression to predict reading comprehension abilities 

[42], after extracting the regression coefficients β, permutation test was employed to create 

a null weight distribution βperm for each feature. The most strongly predictive features 

were then determined as those whose β value significantly differs from the empirical 

distribution βperm obtained from 10,000 permutations (Figure 3a). A prominent strength of 

this approach is that it provides the statistical significance of individual features. However, 

it is computationally intensive, since a massive number of permutation tests need to be 

performed.

The fourth approach, named relative importance analysis, is capable of decomposing 

overall R2 into non-negative contributions [44]. This post-hoc approach has the advantage 

of not changing any of the feature selection or model building process but applying 

mathematical techniques to control for multicollinearity. This means that the quantification 

of feature importance is independent of model construction, and consequently we can 

separately achieve model interpretation and model building. Importantly, this approach 

suits for multicollinear data. In a recent study based on UK biobank data, [45], the CAR 

(correlation-adjusted marginal correlation) score was adopted to assist interpretation, which 

used Mahalanobis-decorrelation to adjust the multicollinearity among explanatory variables 

[46]. Detailed implementations of such relative importance metrics can be found in a series 

of R packages like relaimpo, hier.part and care [36, 46, 47].

Stability-based quantification metrics

Stability-based quantification metrics count the number of occurrences for a given predictor 

over multiple different prediction models built on cross-validation or resampling data, 

regardless of the magnitude of regression coefficients. A significant strength of this approach 

is the reduced sensitivity to multicollinearity and applicability even to nonlinear models. 

For example, Liu et al. predicted the fluid intelligence and cognitive flexibility scores based 

on functional connectivity for a sample of 105 healthy participants within a leave-one-out 

cross-validation framework [48]. To quantify feature contribution, this study counted the 

number of times each functional connectivity was selected across all 105 folds. Another 

study leveraged bootstrapping strategy to build a total of 100 predictive models based on 
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resampled data, and features exceeding a frequency percentage of 70% were determined as 

the most predictive ones [49]. The stability-based quantification metrics are often adopted 

by predictive frameworks that incorporates a built-in (e.g., LASSO) or separate feature 

selection step to achieve dimension reduction and are not applicable to frameworks that 

include all available features into the final models.

One limitation is that it may lead to the inclusion of a large number of candidate 

features, and thereby requiring additional thresholding to select the most predictive ones. A 

conservative solution is to only use consensus features for interpretation, which are defined 

as those with an identification rate of 100%, i.e., they are shared across every iteration of 

cross-validation [50, 51] (Figure 3b). Features in the consensus set are considered to have 

equal contributions to prediction and should be interpreted as a whole. This compact set 

of features have the highest stability and a reduced susceptibility to potential confounds 

[27]. Establishing models using these parsimonious set of features has been demonstrated to 

afford a robust generalizability across multiple independent datasets [4, 29, 52]. Therefore, 

this interpretation approach is best used when there is a need to characterize a complex 

behavioral trait with a condensed set of brain signatures, and more importantly use them 

to establish reliable and generalizable predictive models. This is especially helpful for 

neuroimaging data that only include a small number of subjects, because quantifying feature 

importance using the consensus features is attached to a high reliability and generalizability. 

However, when prediction models significantly differ across distinct cross-validation loops, 

there may be little overlap among the identified features, resulting in few and even 

no consensus features [53]. Another limitation is that reducing any complex behavioral 

trait to a handful of brain features risks oversimplification [4, 54], and thus may miss 

information crucial for understanding the underlying mechanisms, rendering the biological 

interpretability difficult. As shown in Figure 2b, a total of 6063 distinct voxels appeared in 

all predictive models with identification occurrence ranging from 1 to 1000. The consensus 

features only comprised 614 voxels, representing approximately 1.0% of the brain’s total 

voxels. These 614 features were assumed to have the greatest contribution to prediction 

because they were repeatedly identified by all 1000 distinct models. However, such complex 

and multifactorial phenotype (working memory) is unlikely to be driven by this small set of 

voxels, therefore interpreting using only consensus features may risk oversimplification.

Another genre of studies builds an overall predictive model on all subjects with the 

algorithm parameters determined through cross-validation [55, 56], and then extracts all 

features from the fitted model for further interpretation and visualization. Despite reduced 

computational cost, this method is inherently explanatory and should only be used for 

preliminary interpretation due to an increased likelihood of overfitting [56]. However, when 

the validity of these identified brain signatures is verified by multiple external datasets, 

interpreting predictive models using this approach is highly recommended.

Moreover, beta weights-based and stability-based quantification metrics can be combined 

together to obtain better interpretation, especially when the employed predictive framework 

retains all features in the final model but there is a need to only demonstrate a small 

number of the most predictive ones. Particularly, to extract the most predictive functional 

connections of brain maturity, Dosenbach et al. selected a constant number of 200 highest 
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ranked features from each cross-validation fold according to their magnitude of beta 

weights, and then identified 156 shared connections as consensus features [50].

Prediction performance-based quantification metrics

Prediction performance-based quantification metrics emphasize less on the constructed 

models and the participated predictors. Instead, they evaluate feature importance by 

examining whether certain brain regions or networks individually carry more predictive 

information than others [33, 57, 58], or to what extent excluding certain features degrades 

overall performance [4, 24, 51, 59].

For connectome-based predictive neuroimaging, virtual lesion analysis and specificity 

analysis are two representative methods that are developed on the basis of prediction 

performance. Specifically, virtual lesion analysis works by iteratively removing connections 

in a certain network from the whole-brain connectome to isolate its contribution to 

prediction [60]. Putatively, the magnitude of change in prediction accuracy upon removal 

of a specific network reflects its unique contribution. One study predicted the general 

intelligence using whole-brain connectome with an accuracy or r=0.457 [59], and then 

employed virtual lesion analysis to elucidate the predictive power of connections from 

between any two networks. Results demonstrated that removing the connections between 

cingulo-opercular and default model networks yielded the lowest prediction accuracy 

(r=0.37), indicating the great contribution of these two networks in intelligence prediction 

(Figure 3c). Specificity analysis restricts model building to only brain connectivity from 

one single functional network, and attributes greater contribution power to networks that 

achieve higher prediction accuracy [24]. For example, in predicting the symptom severity 

for patients with obsessive-compulsive disorder, Reggente et al. divided whole-brain regions 

into eight functional networks and built eight prediction models using connections from 

each network [58]. Results showed that only the default model and visual networks achieved 

significant accuracies, while no other network reached statistical significance.

Compared with other types of quantification metrics, a prominent strength of prediction 

performance-based measures is that they provide a straightforward way to directly pinpoint 

brain regions with the highest contribution and require no additional technique to summarize 

those low-level features (e.g., edges) to high-level representations (e.g., networks) for 

better interpretation and visualization. Although only accounting for 11% of all reviewed 

papers, this interpretation strategy is usually combined with other approaches, serving 

as a validation or complementary analysis to confirm the identified brain signatures [4]. 

Moreover, they can also be used in nonlinear models, since the feature importance does not 

rely on the model-learned feature weights. Nevertheless, an insidious problem comes from 

the fact that the network size may influence the prediction accuracy more than the network 

identity. As an example, Nielsen et al. grouped whole-brain nodes into thirteen functional 

systems and used within-connections from each of these networks to predict individual brain 

maturity [61]. Results demonstrated that all networks can predict age, however, prediction 

accuracies varied as a function of network size. Additional analyses suggested that none 

of these networks achieved better predictions than models built on a matched number of 

randomly selected connections. This study highlighted the necessity of testing against null 
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models before concluding the unique contribution of any single network [31, 61]. Another 

limitation is increased computational load. For a parcellation scheme of m networks, at 

least Cm
2 + m different models need to be constructed to examine the predictive power 

for any between-network and within-network connections in a virtual lesion or specificity 

analysis. Moreover, this approach requires a priori specification of how the whole brain 

nodes are divided into different functional systems, based on which virtual lesion analysis 

or specificity analysis can be performed to characterize each system’s unique contribution. 

In this respect, neurobiological insight can only be acquired from the level of predefined 

functional systems, not allowing for more fine-grained representations. For example, in 

our experimental analysis, we grouped whole-brain voxels into 7 canonical networks, and 

couldn’t make any further interpretations beyond these functional networks (Figure 2c).

Future considerations for building interpretable neuroimaging biomarkers

Recommendations for interpreting predictive neuroimaging results

The above-mentioned interpretation approaches vary in multiple aspects, and sometimes 

may provide different answers to a problem. In this sense, selection of an appropriate 

approach can be a thorny issue, since there is no optimal solution that applies to all 

conditions, and different approaches may have their own strengths and weakness. The 

selection of the interpretation strategy can depend on the research aims. Specifically, if we 

aim to determine which specific functional network contributes more to prediction than 

others, the prediction performance-based approach may be a good choice; if we would 

like to determine the contribution of whole-brain features quantitatively, the beta weights-

based metrics may be more appropriate; if we aim to derive a compact set of features for 

further validation, the consensus features may be optimal. Nevertheless, what we can do 

is to follow the best practices to present a better implementation upon the selected one. 

When interpreting neuroimaging results from a prediction model, we provide the following 

recommendations:

1. When extreme multicollinearity exists among predictors, avoid using beta-

weights to interpret results.

2. Stability-based quantification metrics, particularly consensus features, are 

preferred when there is a need for constructing robust and generalizable 

prediction models with a compact site of neuroimaging features.

3. Prediction performance-based quantification metrics are suitable for ascertaining 

the unique contribution of individual functional networks or brain regions, 

and can be used as a complement to confirm results from other interpretation 

strategies.

4. Try to perform k-fold cross-validation with as many partition repetitions as 

possible to dilute the influence of random division of data folds and use the 

averaged beta weights to increase the stability of feature importance.

5. Report the reliability of beta weights across different cross-validation folds to 

provide an overall measure of quantification stability.
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6. Utilize multiple interpretation techniques to validate and examine the 

convergence between each other, instead of being limited to a single one (Figure 

4).

7. When dealing with high-dimensional neuroimaging features, effective feature 

extraction techniques are preferred to result in a small set of more informative 

representations (e.g., PCA).

8. Establish an appropriate null model for examining whether the identified features 

perform better than chance to unambiguously claim their unique utility [31].

9. Normalize edges counts or weights sum to account for network size when 

summarizing individual connections to network representations for visualization 

in using beta weights- or stability-based quantification metrics [17].

Validating the biological plausibility of identified brain signatures

Not until a brain signature is validated externally across different contexts, can it become a 

usable biomarker [62]. However, validating the biological plausibility of brain signatures 

is exceedingly challenging, given that the underlying substrates for any phenotype is 

theoretically agnostic as the ‘ground truth’ about which specific set of neuroimaging features 

define this construct is unknown. As such, it is impossible to explicitly define a specific 

set of brain voxels or connections that can serve as the benchmark to be tested against. In 

this regard, validation techniques that can determine the validity of model-identified brain 

features are in urgent need. On one hand, external heterogeneous datasets can be leveraged 

to test whether and to what extent models based on identified interpretable neuromarkers can 

generalize across contexts (scanners, laboratories, populations, and disease characteristics) 

[7, 20]. On the other hand, real-time noninvasive techniques like neurofeedback and 

neuropharmacology can be employed on the identified brain signatures in clinical trials 

to validate their intervention effects (Figure 4) [28]. Imaging biomarkers confirmed by these 

noninvasive validation effects usually suggest more translational implications.

Following best practices to build robust prediction models

Model interpretability relies heavily on the reliability and efficacy of the prediction model 

itself, which necessitates a protocol for establishing robust and powerful prediction models. 

Indeed, predictive biomarkers derived from different quantification approaches are more 

likely to be consistent with each other when the model is reliable enough to be generalizable 

across different contexts, where more confidence can be placed. Accordingly, the predictive 

features derived from the three interpretation approaches in our experimental analysis 

demonstrate a high overlap between each other, which may be due to the relatively 

large sample size, and the adoption of repeated cross-validation strategies (Figure 2). In 

this regard, the optimal practices that have been established in predictive neuroimaging 

should always be followed and pursued whenever possible. For example, researchers should 

carefully control for covariates in model building to ensure their models are not influenced 

by confounds. Other feasible practices involve increasing sample size, reducing model 

complexity [63], integrating multimodal data [64], extending fMRI scan duration [42], and 

defining individual-specific functional space [65].
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Combining univariate inferences and multivariate predictions

Although predictive neuroimaging and brain mapping differ in multiple aspects when 

establishing brain-behavior relationships, they are not mutually exclusive but rather 

complementary [1]. We encourage the combined use of them to gain comprehensive insights 

into the neurobiological substrates of human cognition and disease pathology. On one 

hand, candidate brain biomarkers derived from predictive neuroimaging can serve as prior 

hypothesis or clinical targets, while, well-designed and randomized controlled experiments 

can be leveraged to confirm their biological plausibility to facilitate interpretability [25]. 

On the other hand, brain regions surviving rigorous statistical testing can serve as prior 

knowledge, and machine learning approaches can embark on these low-dimensional features 

to test their predictability and relate their interpretability to prediction performance. The 

combination use of these two approaches can prospectively catalyze the biomarker discovery 

on the path to translational neuroscience.

Beyond neuroimaging

While the current review primarily focuses on neuroimaging applications from connectome-

based predictive modeling, the points raised here can be extended to research problems 

like decoding task activation maps from functional connectivity [21], diagnosing psychiatric 

diseases using classification [66], and delineating disease biotype using clustering [67]. 

Going beyond the neuroimaging context, these interpretation strategies can be easily adapted 

to other research fields using machine learning, because they generally follow similar 

workflows and a majority of the available machine learning methods are not specifically 

developed for neuroimaging. Therefore, the interpretation approaches are generalizable and 

transferable across different areas. Indeed, many of the interpretation methods discussed 

in this review have be leveraged in other fields. For example, Wei et al. employed a 

relative importance analysis method (CAR score) to determine the relative contribution 

of social, economic, and physical variables affecting domestic energy use in London 

[68]. We encourage the future introduction and adoption of interpretation approaches 

from other fields to neuroimaging investigations. Further, the neuroimaging community is 

witnessing increasing interest in interpreting deep learning models. A detailed discussion of 

interpretability of deep learning is beyond the scope of the current review, and we point the 

interested readers to a series of recent work [12–15].

Conclusion

The burgeoning field of predictive neuroimaging is evolving rapidly, which aims at 

quantitatively predicting phenotypic outcomes on a continuum. This review digs into 

details on how to interrogate contribution of brain features in the context of regression-

based predictive neuroimaging. Despite a specific focus on neuroimaging applications from 

connectome-based predictive modeling, the ideas raised here can also be extended to studies 

using other imaging modalities, and more broadly to research practices like classification 

and biotype clustering. Collectively, interpreting neuroimaging results with appropriate 

approaches can help better unveil the underlying mechanisms of human cognitive ability, 

disease progress, and even facilitate the clinical intervention, thereby accelerating the pace 

of biomarker discovery.
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Figure 1. Key aspects distinguishing predictive neuroimaging from traditional brain mapping 
studies.
(a) The abundance of information is encoded in individual differences in brain 

measurements. Voxels showing large variations across individuals do not necessarily 

correspond well to those showing large mean activation (for example, voxels in the box have 

a small mean activation but large variations). Data in this plot is from the publicly available 

Human Connectome Project (HCP) dataset. Top left: the average whole-brain activation 

across 922 subjects performing language task. Top right: the corresponding variability 

in voxel activation across 922 subjects. Top center: Scatter plot showing the correlation 

between averaged activation and the variability. (b) Conventional brain mapping focuses on 

making inference about which brain regions are involved in the manipulated mental process; 

Predictive neuroimaging makes an inference about how well the behavioral outcomes, can 

be forecast from measured brain features. (c) Evaluating models based on “goodness of fit” 

to the entire dataset is in danger of being affected by overfitting. (d) When samples size 

is small, the correlational results are sensitive to outliers. Correlational analysis in large 
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samples can generate associations with extremely small p-values but tiny effect sizes. Please 

note that plots in c, and d are generated using toy data, and thus are provided for illustrative 

purposes only.
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Figure 2. Comparison of interpretation approaches by applying each representative method to 
the same data.
Leveraging whole-brain activation maps from the 2-back condition of working memory task 

in HCP, we constructed predictive models for working memory performance and extracted 

the most predictive features on the basis of each of the three interpretation strategies. (a) 

Beta-weights for whole-brain features derived from two example cross-validation loops 

and the mean beta-weights averaged across all models. (b) Across 100 rounds of 10-fold 

cross-validation, a total of 6063 distinct voxels appeared in all predictive models, while 

the consensus features comprised 614 voxels, representing approximately 1.0% of the 

brain’s total voxels. (c) In specificity analysis, the ventral attention and default mode 

networks emerged as the top two most predictive networks. In virtual lesion analysis, 
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the ventral attention and frontoparietal networks degraded the prediction performance 

the most upon removal, reflecting their great contribution in prediction. Although these 

interpretation strategies vary in multiple aspects, predictive biomarkers derived from 

different quantification approaches are more likely to be consistent with each other when 

the model is reliable enough. More details can be found in Supplementary File S3. DAN, 

dorsal attention network; DMN, default mode network; FPN, frontoparietal network; LIM, 

limbic network; SMN, somatomotor network; VAN, ventral attention network; VIS, visual 

network.
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Figure 3. Approaches to build interpretable models in predictive neuroimaging.
(a) Left: Cui et al. summarized the feature contribution by averaging beta weights from all 

repeated cross-validation models. Right: Jiang et al. adopted permutation test to assess the 

statistical significance of beta-weight for each feature. The most strongly predictive features 

were defined as those whose true β value significantly differs from the permutation-derived 

βperm. (b) In predicting attention performance, Rosenberg et al. counted the number of 

occurrences each feature was selected across N cross-validation loops, and finally identified 

757 consensus features with an occurrence rate of 100%. (c) Using virtual lesion analysis, 

Dubois et al. iteratively removed features from between any two functional networks from 

the whole-brain connectome and reran the predictive framework to isolate each network-

pair’s contribution to prediction. (d) The proportion of each interpretation strategy accounts 

for among all reviewed articles. (Adapted and modified from [4, 34, 42, 59])
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Figure 4. Approaches to validate neuroimaging signatures.
First, to obtain more interpretable biomarkers, researchers can use many techniques to 

validate and examine the convergence between them. Second, external heterogeneous 

datasets can be leveraged to test whether and to what extent models based on identified 

interpretable neuromarkers can generalize. Moreover, noninvasive techniques like real-

time neurofeedback and neuropharmacology can be leveraged to validate the biological 

plausibility of the identified brain signatures. Furthermore, predictive neuroimaging and 

brain mapping are not mutually exclusive but rather complementary in biomarker discovery.
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Table 1.

Summary of interpretability approaches in predictive neuroimaging

Interpretability 
approach Description Cautions and Recommendations Ref

Beta weight-based 
metrics

Using regression coefficients 
as representative of individual 
feature importance.

• Input features should be scaled in a standardized manner.
• Techniques should be adopted to alleviate multicollinearity among 
neuroimaging features (e.g., relative importance analysis).
• Using averaged beta weight across multiple repetitions of cross 
validation to enhance interpretability.
• Reporting the reliability of beta weights across different cross-
validation folds to provide an overall measure of stability.

[34, 39–
42, 45, 
69]

Stability-based 
metrics

Determining feature contribution 
by counting the number 
of occurrences over multiple 
different prediction models 
built on cross-validation or 
resampling data regardless of 
the magnitude of regression 
coefficients.

• Additional thresholding technique is required to retain the most 
predictive ones when there are a vast number of candidate features.
• It is recommended to demonstrate consensus features for 
interpretation, which are defined as those with an occurrence rate of 
100%.
• Combining beta weights-based and stability-based quantification 
metrics together can gain a better interpretability.

[4, 29, 
50, 52, 
63, 70]

Prediction 
performance-based 

metrics

Evaluating feature importance 
by examining whether certain 
brain regions individually carry 
more predictive information 
than others (specificity analysis), 
or to what extent excluding 
certain features degrades the 
overall performance (virtual 
lesion analysis).

• Before concluding the unique contribution of any single network, it 
is necessary to test against null models to examine the possibility of 
whether network size influences the prediction accuracy more than the 
network identity.
• Specificity analysis or virtual lesion analysis relates to increased 
computational loads.
• The unique predictive power of individual network may have a high 
reliance on the parcellation scheme of the brain space.

[4, 18, 
33, 51, 
57–59, 
61]
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