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Relapse prediction in schizophrenia with smartphone digital
phenotyping during COVID-19: a prospective, three-site,
two-country, longitudinal study
Asher Cohen1, John A. Naslund2, Sarah Chang1, Srilakshmi Nagendra 3, Anant Bhan4, Abhijit Rozatkar 5, Jagadisha Thirthalli3,
Ameya Bondre 4, Deepak Tugnawat4, Preethi V. Reddy 3, Siddharth Dutt3, Soumya Choudhary3, Prabhat Kumar Chand3,
Vikram Patel2, Matcheri Keshavan1, Devayani Joshi1, Urvakhsh Meherwan Mehta3 and John Torous 1✉

Smartphone technology provides us with a more convenient and less intrusive method of detecting changes in behavior and
symptoms that typically precede schizophrenia relapse. To take advantage of the aforementioned, this study examines the
feasibility of predicting schizophrenia relapse by identifying statistically significant anomalies in patient data gathered through
mindLAMP, an open-source smartphone app. Participants, recruited in Boston, MA in the United States, and Bangalore and Bhopal
in India, were invited to use mindLAMP for up to a year. The passive data (geolocation, accelerometer, and screen state), active data
(surveys), and data quality metrics collected by the app were then retroactively fed into a relapse prediction model that utilizes
anomaly detection. Overall, anomalies were 2.12 times more frequent in the month preceding a relapse and 2.78 times more
frequent in the month preceding and following a relapse compared to intervals without relapses. The anomaly detection model
incorporating passive data proved a better predictor of relapse than a naive model utilizing only survey data. These results
demonstrate that relapse prediction models utilizing patient data gathered by a smartphone app can warn the clinician and patient
of a potential schizophrenia relapse.
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INTRODUCTION
Predicting and preventing relapse in psychosis remains a clinical
priority, especially for patients with early course illness1. Relapse
hampers recovery from schizophrenia, increases admissions to
hospitals, contributes to the development of treatment-resistant
schizophrenia, increases the risk of self-harm and homelessness,
and impacts educational, vocational, and social functioning. The
emotional and financial burden of relapse on caregivers and
families of the patient has also been well documented2,3. Yet while
relapse is common, impacting up to 20% of patients living with
schizophrenia per year, it remains challenging to predict given the
unique and dynamic social, personal, and environmental triggers
that impact each patient differently4.
Digital technology, including social media5 and smartphones,

offers a solution for predicting relapse given the ability to capture
longitudinal, multimodal, and temporal dense relevant data to
personal triggers for relapse4. Often referred to as digital phenotyp-
ing, this method involves using sensors in the smartphone that
patients already typically own and use on a daily basis to capture
information on their environment (e.g., green space exposure
derived from GPS), social surroundings (e.g., degrees of contact
based on call/text logs), personal behaviors (e.g., sleep duration
based on accelerometer and screen time) and more6. Smartphones
are also capable of capturing longitudinal assessments of symp-
toms7 and medication adherence through surveys, both of which
can help us quantify the risk of relapse8,9. However, the automatic
nature of capturing sensors has the distinct advantage of being
independent from the user’s active engagement (such as taking

surveys) and thus presents a more feasible means to passively
capture the longitudinal data necessary to detect relapse4.
Using both sensor and survey data for relapse prediction in

psychosis is highly feasible. Our team has conducted two pilot
studies and previously reported that using this digital phenotyping
data with an anomaly detection algorithm can offer results with
high sensitivity and specificity10,11. These algorithms allow
researchers and clinicians to identify abnormal deviations from an
individual’s typical sensor and survey data, which has been shown
to be indicative of relapse. More than ten studies proposing relapse
prediction metrics and algorithms based on the older CrossCheck
dataset12 have suggested alternative innovative means to use
digital phenotyping data for relapse prediction in schizophrenia.
Recent studies have also successfully incorporated smartphone
surveys into relapse prediction response systems13, suggesting
clinical potential for combining surveys with data passively and
automatically captured by digital phenotyping Figs. 1, 2.
However, for digital phenotyping methods to reach their potential

in relapse prediction, they need to be scalable and work across
diverse populations, contexts, and cultures14. By their very nature,
smartphone-based healthcare tools should be readily sharable and
broadly deployable. To date, no study has examined any digital
phenotyping apps for relapse prediction in schizophrenia across
different cultures and populations to assess if these systems can scale
beyond use by the teams that developed them and provide results
similar to those from promising pilot studies. Thus, we undertook this
study to assess how a digital phenotyping relapse prediction system
performed when used across three diverse sites: a rural site in India,
an urban site in India, and an urban site in the United States.

1Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. 2Department of Global Health and Social Medicine, Harvard
Medical School, Boston, MA, USA. 3Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India. 4Sangath, Bhopal,
India. 5Department of Psychiatry, AIIMS Bhopal, All India Institute of Medical Sciences Bhopal, Bhopal, India. ✉email: jtorous@bidmc.harvard.edu

Published in partnership with the Schizophrenia International Research Society

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-023-00332-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-023-00332-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-023-00332-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41537-023-00332-5&domain=pdf
http://orcid.org/0000-0003-2855-5270
http://orcid.org/0000-0003-2855-5270
http://orcid.org/0000-0003-2855-5270
http://orcid.org/0000-0003-2855-5270
http://orcid.org/0000-0003-2855-5270
http://orcid.org/0000-0002-8392-1395
http://orcid.org/0000-0002-8392-1395
http://orcid.org/0000-0002-8392-1395
http://orcid.org/0000-0002-8392-1395
http://orcid.org/0000-0002-8392-1395
http://orcid.org/0000-0003-1359-4613
http://orcid.org/0000-0003-1359-4613
http://orcid.org/0000-0003-1359-4613
http://orcid.org/0000-0003-1359-4613
http://orcid.org/0000-0003-1359-4613
http://orcid.org/0000-0002-7229-1869
http://orcid.org/0000-0002-7229-1869
http://orcid.org/0000-0002-7229-1869
http://orcid.org/0000-0002-7229-1869
http://orcid.org/0000-0002-7229-1869
http://orcid.org/0000-0002-5362-7937
http://orcid.org/0000-0002-5362-7937
http://orcid.org/0000-0002-5362-7937
http://orcid.org/0000-0002-5362-7937
http://orcid.org/0000-0002-5362-7937
https://doi.org/10.1038/s41537-023-00332-5
mailto:jtorous@bidmc.harvard.edu


Given the limited access to care for people living with
schizophrenia in India, digital phenotyping relapse prediction
offers important benefits. Prevention efforts are fundamental to
the World Health Organization’s Mental Health Gap Action
Program (mhGAP)15 and for such efforts to be effective they
would need reliable and scalable metrics to guide the deployment
of limited healthcare resources. While not the focus of this paper,
accurate digital phenotyping of relapse via smartphone is
appealing as it can support closed-loop interventions where the
same smartphone can then respond to the risk by offering
the user real-time and relevant app-based support16. But the
foundation of such a system requires innovation in mental health
monitoring and evaluation, which is the focus of this project.
The Smartphone Health Assessment for Relapse Prevention

(SHARP) study aimed to explore the feasibility of digital
phenotyping for relapse prediction across different regions,
cultures, and languages. The protocol for the project has been
published previously17, and the app was co-designed with
patients, family members, and clinicians across all three sites14.
The study was scheduled to begin on April 1st 2020, but with
changes in research regulation around the start of the COVID-19
pandemic and challenges with coordinating international efforts,
the study was delayed. Given the pilot nature of this study to
assess the performance of digital phenotyping for relapse
prediction across diverse sites and concerns that the triggers
and factors related to relapse are rapidly changing as COVID-19
restrictions are lifted in mid-2022, we chose to report on this first
half of the ongoing data collection. The goal of this study was to
explore the feasibility of anomaly detection in predicting relapse
in patients with psychosis across three different sites. Building on
recent promising evidence using these methods, we hypothesized
that this approach would not only be feasible but also yield
consistent findings at each site. Additionally, in this study, we
explored whether passive digital data could predict symptom
change among participants with psychosis.

RESULTS
Demographics
Of the total participants (N= 132), 76 participants had a
schizophrenia diagnosis (SZ) while 56 were healthy controls

(HC). All 132 active and control participants across the three sites
were enrolled in the study for a mean of 156 days with a standard
deviation of 65 days. The participants in Boston were enrolled in
the study for a mean of 145 days with a standard deviation of
80 days. The participants at Bangalore were enrolled in the study
for a mean of 195 days with a standard deviation of 66 days while
the Bhopal group of participants were enrolled in the study for a
mean of 126 days with a standard deviation of 18 days. Participant
demographic characteristics are detailed in Table 1.

Relapse Overview and Data Quality
In total, 20 participants experienced clinical relapses prior to
August 1st 2022. 17 participants had one relapse, while three
participants had two. Five relapses were related to reports of
hospitalization, 2 were in connection with suicidal attempts or
significant suicidal ideations, 4 were detected via 25% increases
in monthly Positive and Negative Syndrome Scale (PANSS)
scores, and the remainder, 9, were related to sudden and
significant increases in psychosis symptoms requiring clinical
intervention (e.g., medication dose increase). All relapses were
either identified through self-report during monthly in-person or
virtual consultations or by accessing medical records each
month. The distribution of relapses across all three sites is
depicted below (see Table 2). Using the Python package scipy, a
chi-squared test was performed on the number of patients who
experienced a relapse and the number of patients who did not
relapse during the study across the three sites. The results
suggest there was no statistically significant variation in the
frequency of relapses across the three different sites (χ2= 3.98,
df= 2, p= 0.14).
In this study, data quality was defined as the ratio between the

number of actual data points collected and the number of data
points that would have been collected if all participants had
completed all required surveys and all participant smartphones
had transmitted all relevant passive data. The data quality across
all three SHARP sites was relatively uniform, with an average active
data quality of 28.5% and average passive data quality of 57.4%,
see Table 3.

Fig. 1 Sample individual participant anomaly detection plot. The x axis depicts the time in days since the first data point, while the y axis
depicts the anomaly detection p value plotted inversely logarithmically. Solid black lines represent relapse events. The dotted gray line
represents the p= 0.005 cutoff we chose for anomalies. Blue points represent active data, red points represent passive data, and green points
represent data quality.
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Anomaly Detection
Multivariate anomaly detection software was run on each user’s
data individually to quantitatively determine the likelihood that
each measurement was atypical compared to temporally nearby
data points. The data streams were those collected actively, or
passively, and those which represented data quality. From these
calculations, 132 anomaly detection plots were generated, one for
each participant.
Anomaly detection analyses revealed 188 significant anomalies

at p= 0.005. A lower p value was chosen to accommodate the
rarity of relapse events. 13 anomalies (6.9%) were true positives
Table 4.
This anomaly detection model was compared to a more naive

logistic regression trained on demographic data, participant-
reported medication adherence data, and participant-reported
psychosis symptoms data. Both models were run on the data from
each site individually as well as all sites simultaneously to compare
their efficacy at predicting relapse events.
Overall, anomalies were 2.12 times more frequent in the month

preceding and 2.78 times more frequent in the month preceding
and following a relapse, as compared to other timeframes. By
contrast, the logistic regression model predicted a relapse event
1.5 times as frequently in months containing a relapse event
compared to other months. In other words, when predicting
schizophrenia relapse within a 30-day timeframe, the anomaly
detection model was 1.41 times more effective than the logistic
regression model.
Additionally, permutation testing was utilized to evaluate the

plausibility of the null hypothesis, the suggestion that anomaly
detection was equally effective at all three sites. We evaluated
whether the receiver operator characteristic (ROC) curves
observed amongst the control participants in our study were
significantly different from those obtained if the site labels of each
control participant were randomly permutated. This resulted in a
p-value of 0.165.

Changepoint detection
Statistical analyses were conducted to determine if changepoints
in passive data streams were correlated with symptom change as
measured by monthly clinical scales quizzes. Significant correla-
tions were found between passive data changepoints and a
variety of scores related to psychosis symptoms as measured with
the Positive and Negative Syndrome Scale (PANSS) for

Schizophrenia18, depression with the Patient Health
Questionnaire-9 (PHQ-9)19, anxiety with the Generalized Anxiety
Disorder-7 (GAD-7)20, quality of life with the short-form health
scale (SF36)21 social functioning with (SFS)22, sleep quality of the
Pittsburgh Sleep Quality Index (PSQ)23, warning signs of relapse
with the Warning Signals Scale (WSS)24, questions about
symptoms including substance abuse from the Behaviour and
Symptom Identification Scale–Revised (BASIS-24)25.

DISCUSSION
This study explored anomaly detection as a statistical method to
predict relapses in patients with psychosis symptoms in three
different sites: an urban city in the United States, an urban city in
India, and a more rural setting India. Overall, across all three
SHARP sites, there was a significant association between the
number of statistically significant data anomalies and psychosis
relapses.
These results support anomaly detection as a viable method for

predicting schizophrenia relapse. Given the heightened correla-
tion between anomalies and relapses both prior to and following
relapses, we conclude that anomaly detection not only picks up
on the relapse itself, but also allows us to track entire psychotic
episodes in a data-driven way. This not only corroborates but also
complements prior literature10,11 both by reflecting the reality that
individuals may stay ill for extended periods of time after their
initial relapse, but also accounting for several new variables, most
notably cultural and language differences. Furthermore, our
permutation testing analysis failed to reject the null hypothesis
that anomaly detection was equally effective at predicting relapse
at all three sites. In other words, the percentage increases in
anomalies detected around a relapse at all three sites were
statistically identical at a significance level of α= 0.05. The above
results suggest that anomaly detection and the digital phenotyp-
ing data fueling it may be able to capture universal features of
psychotic illnesses that are invariant across global sites and
cultures. However, it does not mean all people with the illness and
sites are the same, and the p value of 0.165 indicates there were
likely minor differences in the algorithm’s effectiveness between
the three sites. A plausible explanation is that COVID-19 affected
the three sites very differently, in terms of extended lockdowns
and restrictions on in-person activities, leading to slightly different
digital phenotyping patterns. Cultural differences and

Fig. 2 Correlation p values between passive data changepoints and symptom changes. Low p values indicate a strong correlation. A large
amount of statistically significant p values illustrates the high association between passive data changepoints and changes in
symptomatology.
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environmental factors not captured by the smartphone also offer
another contributor.
Although active data—most notably psychosis surveys and

medication adherence surveys—historically provides good pre-
dictive tools for anticipating schizophrenia relapses4 this study
shows that complementing these active data streams with passive
data and data quality metrics improved predictive power by a
quantitatively measurable degree of 1.41 times.
Various factors affected our data quality. For active data quality,

while participants received reminders from mindLAMP to
complete surveys, this was no guarantee that the surveys would
be completed. Several participants may have simply ignored the
reminders while others may have seen the reminders but forgot to
fill out the surveys. Lastly, participants may have turned off app
notifications. Some plausible explanations for the passive data
quality include participants forgetting to charge their phone and

turning on low power mode, both of which disrupts the
mindLAMP’s data collection. Additionally, participants, although
instructed not to, may have turned off their GPS. For these reasons
it is often difficult to achieve perfect passive data quality. Despite
all these factors, our passive data quality was comparable to or
even exceeded that of several other studies26–28.
Another advantage of anomaly detection is that it identifies

which passive data streams were most responsible for producing
the anomalous reading. This gives anomaly detection extra clinical
significance: as soon as the algorithm identifies an anomalous
event, the clinical team could aim to prevent relapse by offering
immediate care or digitally providing early therapeutic interven-
tion tailored specifically to each of the passive data streams that
was found to be anomalous. The fact that we did not observe a
specific data stream (e.g., sleep) that was most predictive of
relapse across all individuals is likely indicative of the widely
varying symptomatologies exhibited by individuals with schizo-
phrenia and the personalized nature of relapse (as well as
recovery).
Finally, through participants’ clinical scales data, we demon-

strate that changepoints in passive data are correlated with self-
reported symptom change. In other words, changepoint detection
provides encouraging results in predicting variations in clinical
data within a 30-day period. Changepoint detection may prove
practical in care because smaller changes in symptoms and
behaviors are more common than relapse events which are
typically rare. However, additional research specifically designed
to investigate the efficacy of changepoint detection is necessary
to confirm these preliminary findings.

Table 1. Characteristics of the participants.

Sample characteristics (n) All sites (132) Boston
(33)

Bangalore (49) Bhopal
(50)

p value

Age (years), mean (SD) 32.33 (8.12) 37.84 (10.41) 30.82 (5.81) 35.32 (14.72) 0.001a

Missing 1 1 0 0

Sex 0.004b

Female 58 (43.9%) 21 (63.6%) 17 (34.7%) 20 (40%)

Male 72 (54.5%) 10 (30.3%) 32 (65.3%) 30 (60%)

Other 2 (1.5%) 2 (6.1%) 0 (0%) 0 (0%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Race <0.001b

African American 6 (4.5%) 6 (18.2%) 0 (0%) 0 (0%)

Asian 98 (74.2%) 0 (0%) 49 (100%) 49 (98%)

Multiracial or other 5 (3.8%) 5 (15.2%) 0 (0%) 0 (0%)

White 22 (1.7%) 21 (63.6%) 0 (0%) 1 (2%)

Missing 1 (0.8%) 1 (3%) 0 (0%) 0 (0%)

Ethnicity <0.001b

Not Hispanic or Latino/a 123 (92.5%) 24 (70.6%) 49 (100%) 50 (100%)

Hispanic or Latino/a 8 (6.1%) 8 (23.5%) 0 (0%) 0 (0%)

Missing 1 (0.8%) 1 (2.9%) 0 (0%) 0 (0%)

Education <0.001b

Eighth Grade or Less 6 (4.5%) 0 (0%) 0 (0%) 6 (12%)

Some High School 8 (6.1%) 0 (0%) 4 (8.2%) 4 (8%)

High School Graduate/GED 20 (15.2%) 3 (9.1%) 12 (24.5%) 5 (10%)

Some college 48 (36.4%) 18 (54.5%) 4 (8.2%) 26 (52%)

4-year college graduate or higher 49 (37.1%) 11 (33.3%) 29 (59.2%) 9 (18%)

Missing 1 (0.8%) 1 (3%) 0 (0%) 0 (0%)

aKruskal–Wallis rank sum test; bFreeman–Halton test.

Table 2. Number of participants in each site and in each
participant group.

Boston Bangalore Bhopal Total

R 9 8 3 20

NR 17 17 22 56

C 7 24 25 56

Total 33 49 50 132

R represents the group of participants with schizophrenia who relapsed.
NR is the group of participants with schizophrenia who did not relapse. C is
the group of healthy controls.
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It is challenging to compare our results to prior studies. Data
from CrossCheck has been used in many research papers but
represents information that is older and no longer feasible to
obtain due to changes around data availability rules from
smartphone manufacturers. But as a historical comparison, we
note our results are in line with more recent results11, which found
a 71% increase in the rate of anomalies two weeks around relapse,
as compared to the 112% increase a month prior to relapse
reported in the current study. No other study to this date has
made a comparison between an anomaly detection model and an
algorithm incorporating only active data.
This study has several key limitations. All relapse data was

obtained from clinical interviews and medical records, but it is
possible some participants may have had relapses between
interviews and not reported them when asked. Another limitation
of this study is COVID-19 and our data reflecting how those
participants in the study felt and behaved in the setting of
restrictions on mobility and usual life. As such, smartphone
behavior and overall data quality may not reflect regular usage
outside of this time frame, affecting generalizability of our passive
data results. Additionally, the impact of and response to COVID-19
varied between the United States and India as do cultural and
environmental factors between all sites. This may have impacted
the sites and the participants at each site differently. For example,
lockdown periods may have varied by duration and the exact time
it took place. Even within the United States, the degree of lock
down and social distancing varied depending on the county and
state. As a result, participants’ passive data, a reflection of
behavioral patterns, were most likely impacted differently across
the three sites. However, once this study concludes, the data
collected early during COVID-19 pandemic will be compared to
the data collected later in the pandemic (notably after restrictions
on in-person activities were lifted) to note any differences in the
efficacy of the anomaly detection algorithm.

METHODS
Recruitment
Participants were recruited at three different sites: Beth Israel
Deaconess Medical Center (BIDMC) in Boston, USA, the National
Institute of Mental Health and Neuroscience (NIMHANS) in
Bangalore, India, and the Sangath Bhopal Hub jointly with the
All India Institute for Medical Sciences (AIIMS) in Bhopal, India.
Participants in Bangalore were recruited through outpatient
services within the NIMHANS hospital while participants in Bhopal
were recruited by the AIIMS outpatient psychiatry.
To participate in the study, participants were required to be

diagnosed with a psychotic spectrum disorder or to have
experienced psychosis within 5 years before September 2021,
when the study began. This was confirmed by a clinician using
DSM-5 criteria. All participants were required to be in active
treatment and have access to a smartphone (Android or iPhone)
with cellular service or wifi. The smartphone needed to be

compatible with mindLAMP and continuously collect adequate
data throughout the whole study as determined by the research
team. If a patient at either of the India sites did not have a
compatible smartphone, they were provided with a Samsung
Galaxy M31 that had cellular service. To ensure that the
participant’s phone was collecting data, participants had to go
through a one-week trial period in which data collection was
measured. If participants had multiple days of no passive data
collection, they did not pass the trial period. Controls were age,
sex, and education matched to the experimental participants. All
sites received ethics approval from respective their Institutional
Review Boards (IRBs): Beth Israel Deaconess Medical Center,
Sangath IRB and All India Institute of Medical Sciences Bhopal
Institutional Human Ethics Committee (IHEC), and the National
Institute for Mental Health and Neurosciences IHEC. All partici-
pants provided written informed consent.

Protocol
The protocol for this study has been published17. Each month,
participants had an hour-long in-person visit at NIMHANS and
Sangath-AIIMS or virtual visit at BIDMC with a research assistant.
The virtual visits were conducted over StarLeaf, a HIPAA compliant
video conferencing platform.
During each visit, a research assistant administered the PANSS,

a measure of psychosis symptoms18. Participants were then
instructed to complete the following surveys within 24 hours of
each visit: Patient Health Questionnaire-9 (PHQ-9)19, the General-
ized Anxiety Disorder-7 (GAD-7) survey20, Short Form (SF-36)
survey21, the Social Functioning Scale (SFS)22, the Pittsburgh Sleep
Quality Index (PSQI)23, Warning Signal Scale (WSS)24, Behavior and
Symptom Identification Scale (BASIS-24)25. The Brief Assessment
of Cognition in Schizophrenia (BACS)29 survey was only adminis-
tered at the intake visit, 6-month visit, and 12-month visit. All of
the above surveys were administered through REDCap surveys at
BIDMC or by paper and pen at Sangath-AIIMS and NIMHANS. Inter-
rater reliability for the PANSS was examined for research assistants
administering the PANSS from each of the three sites by having
them rate five video-recorded clinical interviews—once at the
start of the study and once again at 6 months. Intraclass
correlations were excellent (>0.75) for PANSS Total and Positive
scores and fair to good (>0.4) for PANSS Negative scores30.
Participants were provided with monetary compensation. For

the 1-year study at the Boston site, they were paid $50 at visits 1,
7, and 13 and $20 at all other visits. This totaled up to $350. For
the 3-month study, participants received $30 for each visit,
totaling $120 for all four visits. At the Indian sites, participants
were paid between 500 to 2000 rupees for each visit with
compensation depending on the distance traveled. However,
across all sites, no compensation was provided for app engage-
ment itself or for the collection of active and passive data.

Table 3. Data quality analysis across three sites and three participant groups.

Active Data Quality Passive Data Quality

Boston Bangalore Bhopal Total Boston Bangalore Bhopal Total

R 0.321 0.360 0.118 0.326 R 0.555 0.611 0.660 0.591

NR 0.277 0.238 0.311 0.271 NR 0.533 0.519 0.623 0.555

C 0.303 0.225 0.339 0.280 C 0.840 0.482 0.642 0.585

Total 0.298 0.258 0.316 0.285 Total 0.596 0.523 0.635 0.574

R represents the group of participants with schizophrenia who relapsed. NR is the group of participants with schizophrenia who did not relapse. C is the group
of healthy controls.
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MindLAMP
Participants were instructed to use mindLAMP, an open-source
smartphone app developed by the Division of Digital Psychiatry at
Beth Israel Deaconess Medical Center31 in collaboration with
patients with schizophrenia, their family members, and clinicians
at each of the three sites. MindLAMP collected both the active
data and passive data for participants.
The active data consisted of six surveys: PHQ-9, GAD-7, sleep,

sociability, psychosis, and medication adherence. The sleep,
sociability, and psychosis surveys were modified from the PSQI,
Social Functioning Scale, and PANSS respectively. MindLAMP sent
participants notifications for two of the above six surveys, selected
randomly, twice a day. This was done in hopes that the participant
would complete the four random surveys each day at the time the
notification was sent, thus reducing recall bias. Active data quality
was calculated by dividing the number of surveys completed per
participant by the expected number of surveys completed
each day.
The three passive data streams were accelerometer, GPS, and

screen state. The app also provided psychoeducational content,
audio-guided meditations, journaling, and other activities.
Research assistants provided any app-related technical support
and encouraged participants to complete activities through
mindLAMP.
Cortex32, the open-source and built-in data analysis toolkit for

mindLAMP, was used to extract data from the smartphone app
and manipulate it to a format, which was compatible with the
anomaly detection code. It was also used to calculate derived
metrics such as data quality, sleep duration, time at home, and
screen duration from raw passive data streams. All of the above
was done in Python except for the anomaly detection calculations,
which were performed in R and C++.

Clinical targets
In accordance with prior research, relapses were pre-defined as
one of the following: (1) a 25% increase in a participant’s PANSS
score, (2) a psychiatric hospitalization, (3) a suicidal attempt or a
significant and sudden increase in suicidal ideation, (4) a
significant or sudden increase in psychosis symptoms requiring
clinical intervention. All the above criteria were assessed via
monthly in-person or virtual consultations or by accessing medical
records.

Anomaly detection
Multivariate anomaly detection was used to longitudinally analyze
all data streams simultaneously to detect signs of relapse. All data
streams were aggregated to a daily time scale. Then, given the
overall data, each day was associated with a p value quantifying

how anomalous that day’s data points were. For a detailed
mathematical description of how these p values were calculated,
please refer to prior literature11 and the publicly available code
written in R and C++ (https://www.notion.so/digitalpsychiatry/
Anomaly-Detection-in-R-177a40b5120343fdad1bff6db7632118).
This study classified events with a p-value less than or equal to

0.005 as formal anomalies. This struck a balance between the
canonical 0.05 cutoff and a traditional Bonferroni correction, which
would classify all events as non-anomalies given the large number
of tests performed.
An anomaly was considered a true positive if it occurred within

30 days of a relapse event. The data streams were first grouped by
the method of collection—namely active, passive, or data quality.
They were subsequently grouped by the clinical significance of
each data stream. These different feature groups were (1)
symptoms, (2) sociability, (3) medication, (4) sleep, (5) hometime
& screen duration, and (6) engagement.
This anomaly detection model was compared to a naive logistic

regression model trained on purely active data. For each month
and each participant, the logistic regression model was trained to
use a participant’s demographic data, medication adherence
survey scores, and psychosis symptom scores, to detect whether a
relapse had occurred in that month. Several summary statistics
such as root mean squared error, sensitivity, and specificity were
calculated for both models. Finally, both models were judged by
how much more frequently they predicted a positive result in the
30 days surrounding a relapse as opposed to other timeframes
during the study.
After applying the anomaly detection model to each site

individually, permutation testing was utilized to discern if the
increase in the number of anomalies detected were statistically
similar at the three sites. For each site, we calculated the area
underneath an ROC curve obtained by plotting the false positive
rate versus different anomaly detection cutoff p values for the
control participants. False positive rates above 25% were ignored
because we judged that false positive rate above 25% are not
clinically tolerable. Then under the null hypothesis, we expected
there to be very little difference in the spread of these ROC
statistics if the site label (i.e., BIDMC, Bangalore, Bhopal) for each
control participant was randomly permuted. Permuting the
control participants allowed us to test both the exchangeability
of the site label as well as how equal the effect magnitude is
across the three sites. After randomly sampling 1000 permuta-
tions, the proportion of permutations with a more extreme spread
than the observed spread was the chosen p-value.

Changepoint detection
Changepoint detection was used as supplementary experimental
analysis to explore if passive data could be used as a predictor of

Table 4. Summary statistics for both naive logistic regression model (left) and anomaly detection model (right).

Naive logistic regression statistics Anomaly detection statistics

BIDMC Bangalore Bhopal Total BIDMC Bangalore Bhopal Total

RMSE 0.304 0.224 0.284 0.271 RMSE 0.268 0.180 0.125 0.191

Sensitivity 0.000 0.200 0.000 0.048 Sensitivity 0.009 0.004 0.004 0.006

Specificity 0.990 0.967 0.933 0.968 Specificity 0.996 0.997 0.999 0.997

TP 0 1 0 1 TP 9 3 1 13

FP 1 7 9 14 FP 54 97 24 175

TN 98 208 125 427 TN 13314 27698 18540 59552

FN 9 4 2 20 FN 978 834 269 2081

RMSE, TP, FP, TN, and FN stand for root mean squared error, true positive, false positive, true negative, and false negative respectively.
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symptom change. Independently, the package sdt-python was used
to analyze each participant’s passive data by implementing the PELT
changepoint detection algorithm with an L2 cost function33. For
each passive data stream and each participant, this algorithm gave a
list of days on which the relevant participant exhibited statistical
changepoints in the relevant passive data stream.
Finally, using the Python pandas function pandas.DataFrame.corr,

Pearson correlation coefficients were calculated to determine if survey
scores were correlated to the presence of a passive data changepoint
within 10 days of the relevant questionnaire. The scipy.stats.pearsonr
method was used to calculate the associated p values.

CONCLUSION
This study supports the feasibility of utilizing smartphone-based
anomaly detection to predict schizophrenia relapse in patients
across multiple study sites in the United States and India.
Furthermore, our results illustrate that using both passive and
active data streams provides for more robust prediction models.
However, future research must be conducted to elucidate how
anomaly detection models can be integrated effectively into
clinical care.

DATA AVAILABILITY
The data are not publicly available due to the nature of the IRB approval and
participant privacy concerns around geolocation data. Please contact the corre-
sponding author for access.

CODE AVAILABILITY
The code for anomaly detection is publicly available at https://www.notion.so/
digitalpsychiatry/Anomaly-Detection-in-R-177a40b5120343fdad1bff6db7632118.

Received: 23 November 2022; Accepted: 13 January 2023;

REFERENCES
1. Jauhar, S., Laws, K., Fusar-Poli, P. & McKenna, P. Relapse prevention in schizo-

phrenia. Lancet Psychiatry 9, E13 (2022).
2. Kane, J. M. Treatment strategies to prevent relapse and encourage remission. J.

Clin. Psychiatry 68, 27–30 (2007).
3. Almond, S., Knapp, M., Francois, C., Toumi, M. & Brugha, T. Relapse in schizo-

phrenia: costs, clinical outcomes and quality of life. Br. J. Psychiatry 184, 346–351
(2004).

4. Henson P., Wisniewski, H., Stromeyer IV, C., & Torous J. Digital health around
clinical high risk and first-episode psychosis. Curr. Psychiatry Rep. 22, 58 (2020).

5. Birnbaum, M. L. et al. Detecting relapse in youth with psychotic disorders utilizing
patient-generated and patient-contributed digital data from Facebook. Npj
Schizophr. 5, 17 (2019).

6. Torous, J., Kiang, M. V., Lorme, J. & Onnela, J.-P. New tools for new research in
psychiatry: a scalable and customizable platform to empower data driven
smartphone research. JMIR Ment. Health 3, e16 (2016).

7. Liu, G., Henson, P., Keshavan, M., Pekka-Onnela, J. & Torous, J. Assessing the
potential of longitudinal smartphone based cognitive assessment in schizo-
phrenia: a naturalistic pilot study. Schizophr. Res. Cogn. 17, 100144 (2019).

8. Jørgensen, P. Early signs of psychotic relapse in Schizophrenia. Br. J. Psychiatry
172, 327–330 (1998).

9. Robinson, D. et al. Predictors of relapse following response from a first episode
of schizophrenia or schizoaffective disorder. Arch. Gen. Psychiatry 56, 241
(1999).

10. Henson, P., D’Mello, R., Vaidyam, A., Keshavan, M. & Torous, J. Anomaly detection
to predict relapse risk in schizophrenia. Transl. Psychiatry 11, 28 (2021).

11. Barnett, I. et al. Relapse prediction in schizophrenia through digital phenotyping:
a pilot study. Neuropsychopharmacology 43, 1660–1666 (2018).

12. Wang, R. et al. CrossCheck: toward passive sensing and detection of mental
health changes in people with schizophrenia. UbiComp '16: Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
https://doi.org/10.1145/2971648.2971740 (2016).

13. Gumley, A. I. et al. The EMPOWER blended digital intervention for relapse pre-
vention in schizophrenia: a feasibility cluster randomised controlled trial in
Scotland and Australia. Lancet Psychiatry 9, 477–486 (2022).

14. Rodriguez-Villa E. et al. Cross cultural and global uses of a digital mental health
app: results of focus groups with clinicians, patients and family members in India
and the United States. Glob. Ment. Health 8, e30 (2021).

15. World Health Organization. mhGAP intervention guide for mental, neurological
and substance use disorders in non-specialized health settings: Mental Health
Gap Action Programme (mhGAP) (2016).

16. Wang, L. & Miller, L. C. Just-in-the-Moment Adaptive Interventions (JITAI): a meta-
analytical review. Health Commun. 35, 1531–1544 (2019).

17. Rodriguez-Villa, E. et al. Smartphone health assessment for relapse prevention
(SHARP): a digital solution toward global mental health. BJPsych Open 7, E29 (2021).

18. Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale
(PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

19. Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: validity of a brief
depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).

20. Spitzer, R. L., Kroenke, K., Williams, J. B. W. & Löwe, B. Generalized anxiety disorder
7. https://doi.org/10.1037/t02591-000 (2011).

21. Ware, J. E. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36).
I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).

22. Birchwood, M., Smith, J., Cochrane, R., Wetton, S. & Copestake, S. The Social
Functioning Scale. The development and validation of a new scale of social
adjustment for use in family intervention programmes with schizophrenic
patients. Br. J. Psychiatry 157, 853–859 (1990).

23. Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The
Pittsburgh Sleep Quality index: a new instrument for psychiatric practice and
research. Psychiatry Res. 28, 193–213 (1989).

24. Jørgensen, P. Schizophrenic delusions: the detection of warning signals. Schi-
zophr. Res. 32, 17–22 (1998).

25. Cameron, I. M. et al. Psychometric properties of the BASIS-24© (behaviour and
symptom identification scale–revised) mental health outcome measure. Int. J.
Psychiatry Clin. Pract. 11, 36–43 (2007).

26. Straczkiewicz, M. et al. Combining digital pill and smartphone data to quantify
medication adherence in an observational psychiatric pilot study. Psychiatry Res.
315, 114707 (2022).

27. Matcham, F. et al. Remote assessment of disease and relapse in major depressive
disorder (radar-MDD): recruitment, retention, and data availability in a long-
itudinal remote measurement study. BMC Psychiatry 22, 136 (2022).

28. Nickels, S. et al. Toward a mobile platform for real-world digital measurement of
depression: user-centered design, data quality, and behavioral and Clinical
Modeling. JMIR Ment. Health 8, e27589 (2021).

29. Keefe, R. et al. The Brief Assessment of Cognition in Schizophrenia: reliability,
sensitivity, and comparison with a standard neurocognitive battery. Schizophr.
Res. 68, 283–297 (2004).

30. Kølbæk, P. et al. Inter-rater reliability of ratings on the six-item Positive and
Negative Syndrome Scale (PANSS-6) obtained using the Simplified Negative and
Positive Symptoms Interview (SNAPSI). Nord. J. Psychiatry 72, 431–436 (2018).

31. Torous, J. et al. Creating a digital health smartphone app and digital phenotyping
platform for mental health and diverse healthcare needs: an interdisciplinary and
collaborative approach. J. Technol. Behav. Sci. 4, 73–85 (2019).

32. What is cortex?: Lamp platform. Lamp Platform RSS Available at: https://
docs.lamp.digital/data_science/cortex/what_is_cortex/. (Accessed: 23rd Septem-
ber 2022).

33. Killick, R., Fearnhead, P. & Eckley, I. A. Optimal detection of changepoints with a
linear computational cost. J. Am. Stat. Assoc. 107, 1590–1598 (2012).

ACKNOWLEDGEMENTS
We express our warmest gratitude towards William Torous and the statistics
department at the University of California, Berkeley for providing suggestions on the
statistical techniques utilized in this study. This work was supported by the Wellcome
Trust (grant number 215843/Z/19/Z).

AUTHOR CONTRIBUTIONS
All authors participated in the conception and design of the study. All authors
contributed to data acquisition. A.C. and J.T. led the analysis and interpretation of the
data. A.C., S.C., and J.T. drafted the first version of the paper, which all authors then
edited and approved. J.T. supervised the project. All authors reviewed the results and
approved the final version of the manuscript.

A. Cohen et al.

7

Published in partnership with the Schizophrenia International Research Society Schizophrenia (2023)     6 

https://www.notion.so/digitalpsychiatry/Anomaly-Detection-in-R-177a40b5120343fdad1bff6db7632118
https://www.notion.so/digitalpsychiatry/Anomaly-Detection-in-R-177a40b5120343fdad1bff6db7632118
https://doi.org/10.1145/2971648.2971740
https://doi.org/10.1037/t02591-000
https://docs.lamp.digital/data_science/cortex/what_is_cortex/
https://docs.lamp.digital/data_science/cortex/what_is_cortex/


COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to John Torous.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

A. Cohen et al.

8

Schizophrenia (2023)     6 Published in partnership with the Schizophrenia International Research Society

http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Relapse prediction in schizophrenia with smartphone digital phenotyping during COVID-19: a prospective, three-site, two-�country, longitudinal study
	Introduction
	Results
	Demographics
	Relapse Overview and Data Quality
	Anomaly Detection
	Changepoint detection

	Discussion
	Methods
	Recruitment
	Protocol
	MindLAMP
	Clinical targets
	Anomaly detection
	Changepoint detection

	Conclusion
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




