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The massive and continuous spread of COVID-19 has motivated researchers around the world to intensely explore, understand,
and develop new techniques for diagnosis and treatment. Although lung ultrasound imaging is a less established approach when
compared to other medical imaging modalities such as X-ray and CT, multiple studies have demonstrated its promise to diagnose
COVID-19 patients. At the same time, many deep learning models have been built to improve the diagnostic efficiency of medical
imaging. The integration of these initially parallel efforts has led multiple researchers to report deep learning applications in
medical imaging of COVID-19 patients, most of which demonstrate the outstanding potential of deep learning to aid in the
diagnosis of COVID-19. This invited review is focused on deep learning applications in lung ultrasound imaging of COVID-19
and provides a comprehensive overview of ultrasound systems utilized for data acquisition, associated datasets, deep learning
models, and comparative performance.

1. Introduction

COVID-19 is a highly infectious disease caused by the novel
SARS-CoV-2 virus, which was first identified in December
2019. In March 2020, COVID-19 was officially declared by
the World Health Organization (WHO) as a pandemic [1].
With several similarities to the severe acute respiratory syn-
drome (SARS) and the Middle East respiratory syndrome
(MERS) coronavirus diseases [2, 3], there have been more
than 300 million reported cases of COVID-19 and over 5
million associated deaths worldwide [4]. The main symp-
toms of the disease include fever, dry cough, and shortness
of breath [3]. Although infected patients can be asymptom-
atic or have mild symptoms and good prognoses [5], some
cases can develop severe and even fatal respiratory diseases
such as acute respiratory distress syndrome (ARDS) [5].
Considering the fast spread of COVID-19, quick and accu-
rate diagnosis is both essential and urgent. Currently, the
reverse transcriptase quantitative polymerase chain reaction
(RT-qPCR) test is considered as a gold standard for diagnos-
ing COVID-19 [6]. Although the test is overall deemed accu-
rate [6], it is time-consuming and may take more than 24

hours to obtain results. In addition, the requirement of bio-
molecular testing facilities limits its availability in large
scales and less developing regions. Alternatives to RT-
qPCR tests include imaging techniques such as chest com-
puted tomography (CT) [7], chest X-ray (CXR) [8], and lung
ultrasound (LUS) [9, 10], which have each shown potential
for the diagnosis of the COVID-19.

Chest CT has been recommended for hospitalized,
symptomatic COVID-19 patients with specific clinical indi-
cations [11]. The most observable CT features discovered
in COVID-19 pneumonia include bilateral, peripheral, and
basal predominant ground-glass opacities and/or consolida-
tions [12]. One limitation of CT is that it requires patient
relocation because most fever clinics are relatively simple
and do not include CT equipment. Moreover, to decrease
the contagion risk for physicians and other patients, disin-
fection is essential after each examination [13]. CXR, on
the other hand, is a more preferred first-line imaging modal-
ity with lower cost and a wider availability for detecting
chest pathology. Some of the CXR results of COVID-19
patients showed consolidation [8]. However, a large-scale
study showed that for 636 CXRs from COVID-19 patients,
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58.3% were reread as normal, and 41.7% were reread as
abnormal [14]. With the relatively low sensitivity of CXR,
the American College of Radiology (ACR) recommends per-
forming CXR with portable units in ambulatory care facili-
ties only if medically necessary [11].

Compared with CT and X-ray, ultrasound does not pro-
duce ionizing radiation, is more cost-effective, and has better
diagnostic accuracy to detect pleural effusions, interstitial
syndrome, alveolar-interstitial disorders, and consolidations,
when compared to CT [15–17]. In addition, due to the por-
tability of ultrasound devices, LUS does not require relocat-
ing the patient and thus can minimize the potential risk of
further infection. Over the past year, LUS has been useful
for the evaluation of acute chronic conditions including car-
diogenic pulmonary edema, acute lung injury, pneumonia,
and many other lung diseases [10, 18]. Figure 1 illustrates
four common features for detection of these diseases in
LUS. The A-line is a horizontal reverberation artifact of
pleura caused by multiple reflections, representing a normal
lung surface [19], because a healthy lung mainly consists of
air. Ultrasound waves are thus reflected by the visceral pleu-
ral plane, typically causing acoustic reverberations between
the pleural plane and skin surface, resulting in the appear-
ance of A-lines. B-lines, also known as B1-lines, are denoted
by a discrete laser-like vertical hyperechoic artifact that
spreads to the end of the screen [20], representing the inter-
lobular septum. B-lines occur because the pleural plane is no
longer a specular reflector when the ratio between air, tissue,
fluid, or other biological components is reduced. Conse-
quently, various types of localized B-lines extending from
the pleural plane appear [21–23], representing alterations
of the subpleural tissue [21, 22]. A fusion B-line, also called
a B2-line, is a sign of pulmonary interstitial syndrome,
which shows a large area filled with B-lines in the intercostal
space [20]. Finally, a pulmonary consolidation is character-
ized by a liver-like echo structure of the lung parenchyma,
with a thickness of at least 15mm [24].

For COVID-19, the most common abnormality is inter-
stitial involvement depicted as B-pattern (i.e., three or more
B-lines present in a lung region, confluent B-lines, or white
lung appearance) [27]. LUS patterns are also reported to be
correlated with disease stage, comorbidities, and severity of
pulmonary injury [28], suggesting its potential for long-
term monitoring. Although LUS has shown great potential
in the evaluation of COVID-19, it is not mentioned in the
ACR recommendations as clinical practice for COVID-19
[11]. Possible reasons include highly variable operator
dependence when using LUS equipment and interpreting
LUS images, and standardized protocols for LUS imaging
of COVID-19 are not yet established.

As a powerful tool for predictions and interpretability
assistance, artificial intelligence (AI) has gained much inter-
est in healthcare. AI applications in healthcare include dis-
ease detection, treatment selection, patient monitoring, and
drug discovery [29]. As a subset of AI techniques, deep neu-
ral networks have quickly permeated medical imaging appli-
cations. These applications include image registration,
detection of anatomical and cellular structures, tissue seg-
mentation, computer-aided disease diagnosis, and prognosis

[30]. For ultrasound imaging, in particular, deep learning
has rapidly gained recent attention in several aspects [31],
ranging from beamforming [32–34] and compressive sam-
pling [35] to speckle suppression [32, 36], segmentation
[32, 37], and automated or radiologist-assisted disease
assessment [38–42]. While promising deep learning applica-
tions for diagnostic ultrasound B-mode imaging rely on the
identification of physical structures within organs such as
the breast [38–40], liver [41], prostate [37], and kidney
[42], deep learning applications for ultrasound imaging of
the lungs primarily rely on the presence of image artifacts
(e.g., acoustic reverberations that appear as A-lines or B-
lines). In addition, while multiple research groups have pro-
posed deep learning for the diagnosis of COVID-19 based
on defined structures in CT and X-ray images, fewer studies
have reported using deep learning to diagnose COVID-19
with LUS [43].

Our objective in this review is to draw more focused
attention to LUS approaches that utilize deep learning tech-
niques to diagnose COVID-19. We review a total of nine
articles using fully supervised approaches primarily applied
to patients with COVID-19. The first reports of LUS imag-
ing of the features in Figure 1 appeared in the 1980s
[44–47] and paved the way for the nine reviewed articles
appearing approximately 40 years later, as summarized at
the top of Figure 2. This timeline is juxtaposed with and
mapped to an exploded timeline view of the deep learning
architectures utilized in these reviewed articles, wherein the
first convolutional neural network (CNN) was introduced
in the 1980s [48–51] (similar to the first reports of LUS
imaging features of interest). We limit our review to network
inputs containing three or less channels, and we omit fusion
approaches (e.g., [52, 53]) to maintain a focus on compara-
ble approaches. The nine reviewed articles appeared in print
from May 2020 to March 2021 and provided the research
community with initial expectations for success when inte-
grating deep learning with LUS imaging of COVID-19. A
summary of the number of training, testing, and validation
examples used in each study appears in Table 1, with addi-
tional details about the datasets and data sources for each
of the studies available in Table 2.

The remainder of this article is organized as follows: Sec-
tion 2 discusses four manuscripts containing explainable
deep learning applications, while the remaining studies in
this review apply deep learning in LUS imaging of
COVID-19 patients without an explainability analysis. Sec-
tion 3 discusses new deep learning architectures exclusively
developed for COVID-19 detection. Section 4 discusses
open-access resources for deep learning in LUS analysis of
COVID-19 patients. Section 5 compares LUS deep learning
outcomes with results from other medical imaging tech-
niques. Finally, Section 6 concludes the manuscript with a
summary and outlook. Overall, we anticipate that readers
will gain: (1) an overview of initial deep learning approaches
integrating deep learning and LUS; (2) a summary of ultra-
sound imaging systems, data, and networks that made these
initial applications possible; and (3) an understanding of the
promise of this research area, existing gaps, and associated
room for improvement and growth.
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Figure 1: (a) Illustration of lung ultrasound imaging. (b) Common ultrasound image features appearing in lung examinations (modified
material from Hu et al. [25]; licensed under CC BY 4.0 [26]).
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Figure 2: Timeline illustrating the integration of lung ultrasound imaging with deep learning to achieve COVID-19 detection. Gray lines
link the publication years of the articles summarized herein to the deep learning architectures utilized in each article, color coded by
publication year.
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2. Explainable Deep Learning Applications

While the validity of explaining deep learning results has
been debated [65], the existence of this approach nonethe-
less persists, and there are five articles applying explainable
deep learning architectures in LUS imaging of COVID-19
patients [54–58]. First, Born et al. [54] released the largest
publicly-available LUS dataset (202 videos + 59 images),
comprising samples of COVID-19 patients, patients with
bacterial pneumonia, (non-COVID-19) viral pneumonia,
and healthy controls. In addition to clinical data donated
from hospitals, published in multiple open repositories, the
dataset also included clinical data collected by the authors
themselves in two healthcare organizations using a
Venue TM ultrasound machine (GE Healthcare, Ltd., IL,
USA). Both convex and linear array ultrasound probes were
used to acquire these data. Several frame-based convolu-
tional neural networks as well as video-based convolutional
neural networks for classifying COVID-19, pneumonia,
and healthy patients were then compared. Networks were
trained on 1,204 images from COVID-19 patients, 704
images from patients with bacterial pneumonia, and 1,326
images from healthy individuals. These images were released
in a public database, compiled from 179 videos and 53
images total [54].

Born et al. [54] investigated both frame- and video-based
classification. For frame-based classification, Born et al. [54]
compared NaNET Mobile [66], VGG-Segment, and
Segment-Enc with two VGG-16 based architectures named
VGG and VGG-CAM. NaNET mobile [66] is a light-
weight neural network that uses less than 1/3 of the param-
eters of VGG-16 and was optimized for applications on por-
table devices. VGG-segment and Segment-Enc were two
approaches built upon the pretrained model of an ensemble

of three U-Net-based models (U-Net, U-Net++, and Dee-
pLabv3+) [59]. VGG-segment was identical to VGG but
was trained on the segmented images from the ensemble.
In Segment-Enc, the bottleneck layer of each U-Net-based
model was used as a feature encoding of the images and
was fed through a two-layer multilayer perception. VGG-
CAM enabled the usage of class activation maps (CAMs).
A CAM indicated the discriminative image regions used by
the convolutional neural network (CNN) to identify a given
category [67]. Both VGG and VGG-CAM achieved similarly
promising performance with an accuracy of 88 ± 5% on a 5-
fold cross-validation of 3,234 frames, where the accuracy is
the proportion of cases correctly identified as COVID-19,
healthy, or pneumonia (see details in Table 3). For video-
based classification, in addition to selecting the class with
the highest average probability obtained by the frame-
based classifier VGG-CAM, Born et al. [54] also investigated
Model Genesis [68]. The VGG-CAM based classifier outper-
formed Model Genesis, producing a video accuracy of 90%
compared to the 78% accuracy obtained with Model
Genesis.

To explain performance, Born et al. [54] employed CAM
techniques [67] and confidence estimates, using the work-
flow shown in Figure 3. To investigate the explanatory power
of the CAMs, two medical experts experienced in the ultra-
sound diagnostic process were asked to score activation maps
for 50 correctly classified videos on a scale of -3 (indicating
“the heatmap is only distracting”) to 3 (indicating “the heat-
map is very helpful for diagnosis”). The CAMs were overall
perceived useful and scored best for videos of bacterial pneu-
monia. When considering confidence estimates, the epistemic
confidence estimate was found to be highly correlated with the
correctness of the predictions while the aleatoric confidence
was found correlated to a lesser extent.

Table 1: Number of example images for each deep learning approach summarized in this review.

Study Total number of examples Training/validation/testing split

Born et al. [54]
3,234 images (from 179 videos and 53 still

images not associated with videos)
5-fold cross validation

Roberts and Tsiligkaridis [55] 3,119 images (from 195 ultrasound videos) 5-fold cross validation

Baum et al. [56] 42,427 images (from 49 patients)
5-fold cross validation on 28,122 images

(diagnosis assistance module)

34%/0%/66% (quality assessment module)

Arntfield et al. [57] 121,381 images (from 612 videos of 243 patients) 82%/8%/10%

Awasthi et al. [58] 1,137 images (from 64 videos) 5-fold cross validation

Roy et al. [59] 58,924 frames (from 277 videos of 35 patients)
78%/0%/22% (frame-based predictor)

5-fold cross validation on 60 videos
(video-based predictor)

Hu et al. [25] 5,704 images (from 108 patients) 67%/0%/33%

Born et al. [60] 1,103 images (from 64 videos) 5-fold cross validation

Horry et al. [61]

1,103 ultrasound images

80%/0%/20%746 CT image slices

60,798 X-ray scans
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Table 2: Studies, associated datasets, and data sources summarized in this review.

Study Dataset Data source

Born et al. [54]

Updated POCOVID dataset (December 2020) [54]: 179 videos
and 53 still images not associated with videos, 4 classes of data
(i.e., COVID-19, bacterial pneumonia, non-COVID-19 viral
pneumonia, and healthy controls)

The Northumbria Healthcase
NHS foundation trust

Medizinische Hochschule Brandenburg
Theodor Fontane

https://www.grepmed.com/
https://www.butterflynetwork.com/
https://www.thepocusatlas.com/

https://litfl.com/lung-ultrasound-covid-19-
cases

https://www.stemlynsblog.org/
https://clarius.com/

https://everydayultrasound.com/
https://radiopaedia.org/

http://www.acutemedicine.org/defaultsite
https://www.bcpocus.ca/
https://www.youtube.com/

https://sonographiebilder.de/sonographie-
atlas

LUS videos and images retrieved
From publications [54]

Roberts and Tsiligkaridis [55]
Updated POCOVID dataset (Nov 2020) [60]: 3,119 frames from
195 ultrasound videos

https://www.grepmed.com/
https://www.thepocusatlas.com/

https://www.butterflynetwork.com/
https://radiopaedia.org/

Baum et al. [56]

25,800 LUS images from 37 COVID-19 positive patients and
16,627 LUS images from 12 COVID-19 negative patients. Image
quality was manually labeled as sufficient (n = 41490) or
insufficient (n = 937).

All images were obtained in 2 hospitals in
the UK.

Arntfield et al. [57]
121,381 LUS images sampled from 612 LUS examination videos
of 243 patients (81 hydrostatic pulmonary edema (HPE), 78 non-
COVID-19, and 84 COVID-19)

Datasets were collected within 2 tertiary
hospitals of London Health Sciences Centre

(Canada).

Awasthi et al. [58]
POCOVID dataset [60]: 1,137 images (678 COVID-19, 277
backterial pneumonia and 182 healthy controls) sampled from 64
videos

POCOVID dataset [60]

Roy et al. [59]

Italian COVID-19 lung ultrasound database (ICLUS-DB) [59]:
58,924 frames (277 LUS videos) from 35 patients (17 COVID-19,
4 COVID-19 suspected, 14 healthy and symptomless individuals).
All frames were labeled with four COVID-19 severity levels (0 to
3). 60 videos across all 35 patients were annotated at video-level.
1,431 frames were semantically annotated at a pixel-level.

The data were acquired within 5 different
clinical centers in Italy.

Hu et al. [25]
5,704 LUS images from 108 COVID-19 patients. All images were
manually labeled with different degrees of lung involvement: A-
line, A&B-line, B1-line, B2-line, B1&B2-line, and consolidation.

Datasets were obtained from four medical
centers in China.

Born et al. [60]
Initial POCOVID dataset (May 2020) [60]: 1103 images (654
COVID-19, 277 bacterial pneumonia and 172 healthy controls)
sampled from 64 videos

https://www.grepmed.com/
https://www.butterflynetwork.com/index

.html
https://www.thepocusatlas.com/

Horry et al. [61]

(1) Ultrasound: 1,103 LUS images (654 COVID-19, 277 non-
COVID-19 pneumonia, 172 no finding) from POCOVID-net
dataset [60]

(2) CT: 746 CT image slices (349 COVID-19 and 397 non-
COVID-19 pneumonia) from COVID-CT dataset [62]

(3) X-ray: 115 X-ray scans of COVID-19 patients from COVID-
19 image data collection [63], 322 XRay scans of non-COVID-
19 pneumonia patients, and 60,361 X-ray scans with no
finding from NIH chest X-ray dataset [64] (all the above
datasets were based on downloads made onMay 11, 2020 [61])

POCOVID-net dataset [60]
COVID-CT dataset [62]

COVID-19 image data collection [63]
NIH chest X-ray dataset [64]
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Table 3: Definition of performance metrics reported for each reviewed article, where TP: true positive; TN: true negative; FP: false positive;
FN: false negative.

Study Definition of performance metrics

[25, 54–56, 58, 60, 61] Accuracy = TP + TNð Þ/all evaluated cases

[25, 58–61] Sensitivity or recallð Þ = TP/ TP + FNð Þ
[25, 58, 60] Specificity = TN/ TN + FPð Þ

[58–61]
Precision = TP/ TP + FPð Þ

F1 score = 2 sensitivity × precisionð Þ/ sensitivity + precisionð Þ

Born et al. [54]
TP: number of cases correctly identified as COVID-19

TN: Number of cases correctly identified as healthy or pneumonia

Roberts et al. [55]
TP: number of cases correctly identified as COVID-19

TN: number of cases correctly identified as non-COVID-19
(including both healthy and pneumonia cases)

Baum et al. [56]

For quality assessment models:
TP: number of cases correctly identified as sufficient
TN: number of cases correctly identified as insufficient

For diagnostic assistance model:
TP: number of cases correctly identified as COVID-19

TN: the number of cases correctly identified as non-COVID-19

Arntfield et al. [57]

AUC (COVID-19): the AUC for differentiating COVID-19 cases from non-COVID-19
pneumonia or HPE cases

AUC (NCOVID): the AUC for differentiating non-COVID-19 pneumonia cases
from COVID-19 or HPE cases.

AUC (HPE): the AUC for differentiating HPE cases from COVID-19 or non-COVID-19 pneumonia cases.

Awasthi et al. [58]
Born et al. [60]

TP: number of cases correctly identified as COVID-19
TN: number of cases correctly identified as healthy or pneumonia in the definition
of accuracy and number of cases correctly identified as non-COVID-19 in the
definition of COVID-19 sensitivity, COVID-19 specificity, COVID-19 precision

FP: number of cases wrongly identified as COVID-19
FN: number of cases wrongly identified as non-COVID-19

Roy et al. [59]
TP: number of cases predicted successfully to have certain severity score

FP: number of cases predicted wrongly to have that score
FN: number of cases predicted wrongly to not have certain score

Hu et al. [25]

TP: number of cases predicted successfully to have certain pathologic feature (i.e., A-line,
A&B-line, B1-line, B1&B2-line, B2-line, and consolidation)

FP: number of cases predicted wrongly to have certain pathologic feature
TN: number of cases predicted successfully to not have certain pathologic feature
FN: number of cases predicted wrongly to not have certain pathologic feature

Born et al. [60] AUC (COVID-19): the AUC for differentiating COVID-19 cases from pneumonia or healthy cases

Horry et al. [61]

For “Normal vs. COVID-19 and pneumonia” studies:
TP: number of cases correctly identified as COVID-19 or pneumonia
FP: number of cases wrongly identified as COVID-19 or pneumonia

FN: number of cases wrongly identified as normal
For “COVID-19 vs. pneumonia” studies:

TP: number of cases correctly identified as COVID-19
FP: number of cases wrongly identified as COVID-19
FN: number of cases wrongly identified as pneumonia

For “COVID-19 vs. non COVID-19” studies:
TP: number of cases correctly identified as COVID-19
FP: number of cases wrongly identified as COVID-19

FN: number of cases wrongly identified as non COVID-19
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Roberts and Tsiligkaridis [55] presented work exploring
the robustness of using deep CNNs to make COVID-19
diagnostic decisions with LUS by applying adversarial train-
ing. Adversarial training is an effective defense against
adversarial attacks to which traditional neural networks are
vulnerable [69]. In addition, according to [70], adversarial
attacks can also be used to discern features that a model
has learned. For models with adversarial training, these fea-
tures have shown to be better aligned with human percep-
tion than the models without adversarial training. To find
the features the model has learned, Roberts and Tsiligkaridis
[55] considered a framework based on the work of Tsiligkar-
idis and Roberts [71]. This approach finds pertinent nega-
tives (i.e., misclassified features) and pertinent positives
(i.e., critical features that are present in the input examples)
by optimizing over the perturbation variable δ.

For the training process, two networks—VGG 16 [72] and
ResNet18 [73]—were trained on the updated POCOVID data-
set [60], which included 3,119 frames from 195 ultrasound
videos. For each network, both standard training and adver-
sarial training were performed. Results demonstrated that
the models with adversarial training (named robust models)
have less sensitivity than the models with standard training
(named standard models). Specifically, the VGG16-robust
model achieved an accuracy of 81.498% for COVID-19, which
was lower than that achieved from the VGG16-standard
model, which was 85.992%. Here, the accuracy is defined as
the proportion of cases correctly identified as COVID-19 or
non-COVID-19 (including healthy and pneumonia cases),
with more definition details available in Table 3. When apply-
ing increasingly strong adversarial attacks, the performance of
the standardmodels degraded compared to the robust models,
suggesting that the standard models learned features that were
sensitive to idiosyncrasies or noise in the training dataset. In

general, the perturbations of robust models were more focused
and medically relevant than the perturbations of the standard
models, which were diffuse and less interpretable. The inter-
pretation of these perturbations is that the standard model
seems to only focus on the brighter parts of the image, while
the robust models seem to focus on more distinct features of
the original image.

Baum et al. [56] proposed to add a quality assessment
module before the diagnostic classification module, with
guided gradient-weighted CAMs [59, 74] calculated to illus-
trate regions of interest in classification, also known as Grad-
CAMs. For quality assessment, Baum et al. [56] compared
three modules. The first model was a binary classification
network (QAbin) based on VGG [72]. Training QAbin

required manual labeling of the data as having either suffi-
cient or insufficient quality. The second model was an adver-
sarial deep learning model capable of novelty detection
(QAnd) [75, 76], which required only COVID-19-positive
examples. The third quality assessment method QAbin+nd

combined QAbin and QAnd, using a Bayesian model. The
quality assessment module was followed by a diagnostic clas-
sification module Dbin.

The datasets used for training and testing were obtained
in two hospitals in the UK. In total, 25,800 LUS images were
acquired from 37 COVID-19 positive patients, and 16,627
images were acquired from 12 COVID-19 negative cases. A
Butterfly iQ ultrasound probe (Butterfly Inc., Guilford, CT,
USA) was used to obtain the patient images. A total of 937
images were annotated as insufficient quality by an experi-
enced ultrasound imaging researcher. The proposed quality
assessment networks, QAbin, QAnd, and QAbin+nd were
trained on data from one hospital. The diagnostic classifica-
tion network Dbin was trained with five-fold cross-validation

(a)

(b)

(c)

(d)

(e)

Lung US Dataset Frame-based classification Explainability analysis
Class activation maps
Pathological pattern highlighting

Human-in-the-loop validation

Confidence estimates

Epistemic uncertainty
MC Dropout

0

20

40

60

80

100

Test time augmentation

Alteatoric uncertainty

Video-based classification

H
ea

lth
y

66
 v

id
eo

s
49

 v
id

eo
s

64
 v

id
eo

s

Pn
eu

m
on

ia
CO

V
ID

-1
9

32 64 64

64 125

125 254

254 512
1

1
1 3

19
24

18

32

64 64 124
•

• • • •

• • • •

• • • •

• • • •
•

• •

•
•

•

• • •

• •

125128
256 256256 5ft

512 512 512

512 512 512
28º

1ft 1 1

1 1

112

Figure 3: Flow chart of the method proposed by Born et al. [54], including (a) 3 examples from the LUS dataset, (b) frame-based and (c)
video-based CNN fine-tuned on the LUS dataset, (d) class activation maps that highlight patterns driving the decision of the model, which
were then reviewed and evaluated for diagnostic value by medical experts, and (e) uncertainty techniques are employed and shown to equip
the model with the ability to recognize samples with high error probability. Modified material from [54]; licensed under CC BY 4.0 [26].
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on data from the second hospital. Before diagnostic classifi-
cation, each fold of data was evaluated independently by Q
Abin, QAnd, and QAbin+nd.

The resulting quality assessment demonstrated that the
classification was 0.85 when using QAbin or QAnd alone
and was 0.86 when using QAbin+nd. The classification accu-
racy of Dbin without any quality assessment was 0.95. After
rejecting images of insufficient quality with quality assess-
ment module QAbin, QAnd, and QAbin+nd, the classification
accuracies of Dbin were 0.95, 0.97, and 0.95, respectively.
The authors suggested that when training with more data
of insufficient quality, the improvements are likely to be
larger and will be more impactful for less experienced users.
The guided gradient-weighted class activation maps (Grad-
CAMs) shown in Figure 4 indicate that the networks have
learned meaningful, human interpretable LUS features.

Arntfield et al. [57] explored whether deep learning
models can match or exceed humans in the diagnosis of
COVID-19 with LUS images of similar pathological appear-
ance. The exams were performed at two Canadian tertiary
hospitals of London Healthy Sciences Centre. A variety of
ultrasound systems were used for data collection, including
Edge, X-porte, Edge-2, S-Cath ultrasound systems by Sono-
site (FUJIFILM Sonosite, Inc., WA, USA), a Lumify ultra-
sound system by Philips (Philips Medical Systems, Inc., the
Netherlands), and an M9 ultrasound system by Mindray
(Mindray Bio-Medical Electronics Co., Ltd., China). Phased
array ultrasound probes were predominantly used for these
data acquisitions. In total, 612 LUS videos of B-lines from
243 patients with either COVID-19 (n = 84), non-COVID
acute respiratory distress syndrome (NCOVID, n = 78), or
hydrostatic pulmonary edema (HPE, n = 81) were included
in this study.

In choosing an optimal training architecture for classifi-
cation, Arntfield et al. [57] investigated training on CNNs
and residual CNNs, as well as transfer learning methods.
The performance of each model was assessed by calculating
the area under the receiver operating characteristic curve
(AUC) and analyzing the confusion matrix. The results were
analyzed at both the frame level and the patient level. To
visually explain the model’s predictions, the Grad-CAM
method was applied. For comparison of human performance
and model performance, a survey including 25 lung ultra-
sound videos was distributed to 100 LUS-trained acute care
physicians from across Canada. Respondents were asked to
identify the cause of the LUS findings (HPE, non-COVID,
or COVID).

Among the seven common architectures evaluated,
Xception performed best in distinguishing between the three
relevant causes of B-lines with AUCs of 1.0 (COVID), 0.934
(non-COVID), and 1.0 (HPE) at the patient level, resulting
in an overall AUC of 0.978. The AUCs obtained from the
physicians, on the other hand, were 0.697 (COVID), 0.704
(non-COVID), and 0.967 (HPE), producing an overall
AUC of 0.789, far less than the overall AUC achieved from
the classification model. Furthermore, the confusion matrix
obtained from the physicians showed a near-random classi-
fication between COVID and non-COVID, suggesting that

distinguishing between these two classes is hardly possible
for humans. Visualizations with Grad-CAM indicated that
the key activation areas for all classes investigated were cen-
tered around the pleura and the pleural line. Heat map visu-
alizations also highlighted image variations that were not
obvious, yet were thought to contribute to the overall perfor-
mance of the model.

Awasthi et al. [58] developed a lightweight, mobile-
friendly, efficient deep learning model for detection of
COVID-19 using LUS images. The proposed model, Mini-
COVIDNet, was a modified MobileNet model, which uti-
lized depthwise separable convolutions and pointwise con-
volutions for a reduction in size [77]. To improve model
performance on an imblanced ultrasound dataset, Mini-
COVIDNet employs focal loss [78, 79], rather than the
entropy loss that is otherwise utilized in the MobileNet
model.

Mini-COVIDNet was compared with five alternative
deep learning models: (1) COVID-CAPS, which was previ-
ously utilized to identify COVID-19 infected cases in CXR
images [80]; (2) POCOVID-Net, which is described in Section
4 [60]; (3) ResNet, a convolution part of ResNet50 [73], which
is known to provide good performance on very large computer
vision datasets set such as ImageNet; (4) MOBILE-Net-V2, a
modified version of MobileNet previously shown to improve
performance among other lightweight deep learning models
[81]; and (5) NASNetMOBILE, which utilizes a new search
space to provide more generalizability of the model for better
performance in classification tasks [66]. These models were
implemented with and without focal loss for comparison. A
scaled version of COVID-CAPS was additionally implemented
to match the number of parameters in Mini-COVIDNet.

Each model performance was evaluated by reporting
sensitivity, specificity, precision, and F1-score (see Table 3
for definitions) for three classes (i.e., COVID-19, healthy,
and pneumonia). In addition, the accuracy for three classes
combined was also reported. Among the compared models,
the memory size requirement of COVID-CAPS was the low-
est, yet precision and F1-score were poor compared to other
models. POCOVID-Net performance was similar to Mini-
COVIDNet while the number of parameters in Mini-
COVIDNet was smaller by a factor of 4.39. In addition,
Mini-COVIDNet also required less memory and less train-
ing time than POCOVID-Net.

Mini-COVIDNet employing focal loss [78, 79] provided
a sensitivity of 0.92, a specificity of 0.71, a precision of 0.83,
and an F1-score of 0.87 when differentiating the COVID-19
class from the non-COVID-19 classes (including pneumonia
and healthy cases), as well as an accuracy of 0.832 for the
three classes combined. In terms of memory size and train-
ing speed, Mini-COVIDNet required minimal memory
(i.e., 51.29MB) and less than 30 minutes training time. As
shown in Figure 5, Grad-CAM visualization of learned fea-
tures with Mini-COVIDNet highlighted the pleural line
and A-line features in healthy lungs, pleural consolidations
in pneumonia cases, and irregular pleural lines with B-line
artifacts in COVID-19 cases. It is also important to note that
these general explainability characterizations were not con-
sistently present across all cases.
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3. New Architectures for COVID-19 Detection

Rather than relying on “out-of-the-box” deep learning archi-
tectures, three studies [25, 56, 59] proposed new architec-

tures in deep learning applications of LUS imaging of
COVID-19 patients, including the architecture by Baum
et al. [56] discussed in the preceding section. The remaining
two new architectures are discussed in this section.

(a)

(b)

(c)

Figure 5: Example Grad-CAM visualizations of Mini-COVIDNet applied to LUS images of (a) healthy lungs, (b) pneumonia infected lungs,
and (c) COVID-19 infected lungs. ©2021 IEEE. Reprinted, with permission, from Awasthi et al. [58].

Figure 4: Example results from Baum et al. [56]. The + and – signs indicate true-positive and true-negative COVID-19 diagnoses,
respectively. LUS images in the top row are overlaid with guided gradient-weighted class activation maps (Grad-CAMs) in the bottom
row. ©2021 SPIE. Reprinted, with permission, from [56].
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Roy et al. [59] presented the Italian COVID-19 Lung
Ultrasound DataBase (ICLUS-DB), which included 277 lung
ultrasound videos (58,924 frames) from 35 patients (17
COVID-19, 4 COVID-19 suspected, and 14 healthy). The
data were acquired within 5 clinical centers in Italy with
both linear and convex ultrasound probes. A variety of ultra-
sound scanners were used to acquire these data, including
DC-70 Exp (Mindray Bio-Medical Electronics Co., Ltd.,
China), MyLabAlpha (Esaote, Italy), Aplio XV (Toshiba,
Ltd, Japan), and WiFi Ultrasound Probes (ATL, Italy). Each
image in the dataset was annotated with the degree of the
progression of the pathology (score 0 to 3) based on the
scoring system devised previously by the same group [82].
Video-level annotations of a subset of 60 videos sampled
across all 35 patients were also obtained. In addition, 1,431
frames from 33 patients were semantically annotated at a
pixel level by contouring the corresponding regions.
Figure 6 shows the overview of different tasks considered
in this work.

For frame-wise score prediction, Roy et al. [59] intro-
duced a novel deep architecture, displayed in Figure 6 which
leveraged Spatial Transformers Network (STN) [83] and
consistency losses [84] to localize disease patterns. To make
the prediction more robust, Roy et al. [59] proposed Regu-
larised Spatial Transformer Networks (Reg-STN). The
regions localized by Reg-STN were then provided to a
CNN [85] for classification. Soft ordinal regression (SORD)
[86] was used in the loss function because labels were anno-
tated from an ordinal scale.

To estimate video scores, Roy et al. [59] introduced a
lightweight approach based on uninorms [87, 88]. The pro-
posed uninorm-based aggregation was compared with two
standard aggregation methods: max_argmax and argmax_
mean. For semantic segmentation, three models including
U-Net [89], U-Net++ [90], and DeepLabv3+ [91] were com-
pared. To further improve robustness and performance, Roy
et al. [59] applied ensemble learning by calculating the
unweighted average over prediction scores provided by the
U-net, U-net++, and DeepLabv3+.

The results in [59] show that for frame-based score pre-
dictions, the proposed network achieved an F1 score of 65.1
on the test set, the highest among all compared networks
(see details in Table 3). For video-based score prediction,
the proposed uninorms aggregation method achieved the
highest weighted F1 score, precision, and recall of 61 ± 12
%, 70 ± 19%, and 60 ± 7%, respectively. For semantic seg-
mentation, the results demonstrate that the ensemble model
yielded the most substantial performance gain over a base-
line U-Net, increasing the Dice coefficient from 0.64 to
0.75 for the union of COVID-19 markers.

Hu et al. [25] proposed a new classification network for
the fully automatic assessment of lung involvement in
COVID-19 patients using three datasets collected in four
Chinese medical centers. The three ultrasound systems used
for collection included a Stork ultrasound system with an
H35C convex array (Stork Healthcare Co., Ltd., China), a
Mindray ultrasound system with an SC5-1 convex array
(Mindray Bio-Medical Electronics Co., Ltd., China), and a
Philips ultrasound system with an Epiq 7 C5-1 convex array

(Philips Medical Systems, Inc., the Netherlands). In total, the
three datasets included 5,704 LUS images from 108 COVID-
19 patients. The 5,704 LUS images were manually labeled
with different types of ultrasound images, reflecting the
degree of lung involvement: A-line, A&B-line, B1-line, B2-
line, B1&B2-line, and consolidation (see Figure 1). In the
proposed network, Hu et al. [25] first extracted two feature
maps from the LUS image: gradient field map and K
-means clustering map. The gradient field map was highly
sensitive to A-lines, and the K-means clustering map was
highly sensitive to B-lines. The two extracted feature maps
and the LUS image constituted the three channel inputs to
the deep learning model ResNext [92]. A Squeeze-and-
Excitation network (SE) [93] was used to generate an activa-
tion value for each channel input. For patient-based evalua-
tion, each frame from the same patient was scored based on
the scoring system proposed in another study [94], where A-
line, A&B-line, B1-line, B1&B2-line, B2-line, and consolida-
tion were scored as 0, 1, 2, 2.5, 3, and 4, respectively. The
final lung involvement score for each patient was the average
score of all frames obtained from that patient. Finally, for an
additional set of videos acquired from 8 patients, the corre-
lation between the score and the partial pressure of CO2
(pCO2), an indicator of the patient’s respiratory function,
was analyzed.

Overall, the classification accuracy of the proposed
model was higher than other tested models. Specifically,
the diagnostic model achieved 94.39% accuracy, 82.28% pre-
cision, 76.27% sensitivity, and 96.44% specificity. Using fea-
ture maps of gradient field and K-means clustering
increased the classification accuracy by 2.8% on average.
The Pearson correlation coefficient between pCO2 and the
predicted score was 0.73 (p < 0:001), suggesting that the pro-
posed scoring system can help doctors evaluate the lung
involvement of COVID-19 patients.

4. Open-Access Web Platform for Crowd-
Sourcing Datasets and Benchmark Testing

Born et al. [60] introduced the POCOVID dataset, which
initially included 64 lung POCUS video recordings (39
videos of COVID-19, 14 videos of typical bacterial pneu-
monia, and 11 videos of healthy patients) collected from
several online data sources (see details in Table 2). These
collected videos were each confirmed by a medical doctor
to have visible COVID-19 or pneumonia disease-specific
patterns. A total of 1,103 images (654 COVID-19, 277 bac-
terial pneumonia, and 172 healthy) were extracted from the
64 videos.

To classify COVID-19 patients from typical bacterial
pneumonia or healthy patients, Born et al. [60] proposed
the convolutional neural network POCOVID-Net, which
was based on the VGG16 architecture [54]. POCOVID-Net
was pretrained on Imagenet to extract image features such
as shapes and textures. Data augmentation techniques were
used to diversify the dataset and prevent overfitting. In addi-
tion to frame-based classification, Born et al. [60] also pro-
posed classifying videos based on frame-wise scores with
two methods: (1) taking a majority vote of the predicted
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classes and (2) selecting the class with the highest average
probability.

The results reported in [60] were obtained with 5-fold
cross-validation. AUC scores for classifying COVID-19,
pneumonia, or healthy were ≥0.94. In particular, the
AUC score of COVID-19 detection was 0.94. The image-
wise sensitivity, specificity, precision, and F1-score for
COVID-19 was 96% and 79%, 88% and 0.92, respectively.
The authors suggested that the main reason for the low
specificity was the small sample size of healthy images
compared to COVID-19 images. For video classification,
both methods achieved an accuracy of 92%. In addition
to the initial collection of the dataset, Born et al. [60] also
built an open-access web platform where users can con-
tribute to the POCOVID open-access dataset by uploading
their ultrasound recordings. Additional benefits of this
contribution include ease of user access to the trained
model to perform either a rapid screening of new data
or a baseline comparison to a new network architecture,
as implemented by Awasthi et al. [58].

5. Comparison with Other Medical
Imaging Techniques

Horry et al. [61] compared the performance of deep learning
models among three imaging modalities: X-ray, CT, and
LUS. LUS images for COVID-19, pneumonia, and normal
conditions were obtained from the publicly accessible
POCOVID-Net data set [60]. COVID-19 CXRs were
obtained from the publicly accessible COVID-19 image data
collection [63]. For pneumonia (non-COVID-19) and nor-
mal condition X-rays, the authors used the National Insti-
tutes of Health (NIH) Chest X-Ray datasets. CT scans for
COVID-19 and non-COVID-19 were obtained from the
publicly accessible COVID-CT Dataset [62]. More dataset
details are available in Table 2.

In total, Horry et al. [61] trained seven architectures: (1)
VGG16 and VGG19 [72], (2) RESNET50 V2 [73], (3)
INCEPTION V3 [95], (4) XCEPTION [96], (5) INCEP-
TIONRESNET V2 [97], (6) NASNETLARGE [66], and (7)
DENSENET121 [98]. Each classifier was trained on the Ima-

geNet [99] weights for transfer learning. The testing results
showed that the simpler VGG classifiers were more trainable
on the three imaging modalities and provided more consis-
tent results across these three imaging modalities. By com-
parison, the more complex models tended to either overfit
in early epochs or failed to converge, potentially due to the
small data set. Based on the initial testing results, VGG19
was chosen for the multimodal image classification testing.
With the selected VGG19 model, for each experiment listed
in Table 4, extensive performance tuning was conducted by
adjusting multiple parameters, including learning rate, batch
size, node size, and drop rate. The best parameter setting for
each experiment was identified after training.

Table 4 lists classification results for each experiment
[61]. For experiments of classifying COVID-19 and non-
COVID pneumonia versus healthy lungs, LUS provided bet-
ter results than X-Ray with a sensitivity (recall) of 97% and a
positive predictive value of 99%. In classifying COVID-19
versus non-COVID pneumonia, LUS similarly provided
better results than X-ray with a sensitivity of 100% and a
positive predictive value of 100%. CT performed the worst
among three imaging modalities, with a sensitivity of 83%
and a positive predictive value of 79% when classifying
COVID-19 versus non-COVID-19 scans. Horry et al.
[61] suggested that the poor performance of CT experi-
ments may be due to the limited sample size and the var-
iable quality of the COVID-19 data sets. Overall, F1 scores
achieved in these experiments exceeded 80%. These results
demonstrate that the VGG19 classifier with transfer learn-
ing has the potential to provide a fast and simple option
to implement a machine learning model for multiple
imaging modalities, and as a result, is a useful tool in
the COVID-19 pandemic.

6. Summary and Outlook

In this review, we discussed nine research articles exploring
the application of deep learning in ultrasound imaging of
COVID-19. Overall, these research articles demonstrate that
deep learning has strong potential to aid LUS diagnosis of
COVID-19. The applications of deep learning in LUS
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diagnosis of COVID-19 include distinguishing COVID-19
patients from non-COVID-19 pneumonia patients or
healthy patients [54–61], evaluating the severity of lung
involvement of COVID-19 patients [25, 59], and assessing
the quality of LUS images of COVID-19 patients [56].
Regarding the specific deep learning architecture imple-
mented, six studies used “out-of-the-box” architectures as
backbones [54, 55, 57, 58, 60], while the remaining three
proposed new architectures [25, 56, 59] with the aims of
improving the robustness of predictions and learning more
distinctive features of input images. When exploring model
explainability for both new and pretrained networks, CAMs
are commonly applied to visualize discriminative image
regions for a specific category [54, 56, 57]. Based on the
frame-based classifier, four of the studies further built video-
based or patient-based classifiers, which are more desirable
in clinical settings [54, 57, 59, 60].

Because ultrasound examination of COVID-19 patients is
less established, fewer COVID-19 LUS datasets were available
in comparison to other imaging modalities such as CT and X-
ray. Availability may also be reduced by the greater flexibility
in LUS image acquisitions in comparison to CT and X-ray.
Nonetheless, deep learning classifiers for LUS images achieved
better performance than those of other imaging modalities,
including CT and X-ray [61]. When comparing deep learning
performance to human predictions, the deep learning models
achieved better results when distinguishing COVID-19
patients from non-COVID-19 pneumonia patients or HPE
patients [57]. Due to the scarcity of LUS images of COVID-
19 patients, most studies used data augmentation techniques
to diversify datasets [25, 54, 57, 59–61].

The locations of data sources for the summarized studies
include five countries (i.e., China, Germany, United King-
dom, Italy, and Canada) and multiple online platforms that

Table 4: Summary of multimodality experiments and results obtained with VGG19 [61], where P is positive predictive value, R is recall rate
(also known as sensitivity), and F1 is F1 score.

Imaging modality Experiment Classification Results

X-ray COVID-19 and pneumonia vs. normal

COVID-19 + pneumonia

P: 0.85

R: 0.83

F1: 0.84

Normal

P: 0.86

R: 0.88

F1: 0.87

Ultrasound COVID-19 and pneumonia vs. normal

COVID-19 + pneumonia

P: 0.99

R: 0.97

F1: 0.98

Normal

P: 0.94

R: 0.98

F1: 0.96

X-ray COVID-19 vs. pneumonia

COVID-19

P: 0.86

R: 0.86

F1: 0.86

Pneumonia

P: 0.89

R: 0.89

F1: 0.89

Ultrasound COVID-19 vs. pneumonia

COVID-19

P: 1.00

R: 1.00

F1: 1.00

Pneumonia

P: 1.00

R: 1.00

F1: 1.00

CT COVID-19 vs. non-COVID-19

COVID-19

P: 0.79

R: 0.83

F1: 0.81

Non-COVID-19

P: 0.84

R: 0.81

F1: 0.83
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accept LUS image uploads worldwide. These locations are
displayed in Figure 7, representing a total of no more than
400 patients with COVID-19 positive ultrasound images or
videos. In addition, a LUS deep learning dataset from Shenz-
hen, China, was also compiled, containing 678 videos from
71 COVID-19 patients [100]. Given that COVID-19 has
caused more than 200 million infected cases, it is clear from
Figure 7 that there are gaps in locations and patient num-
bers. Filling these gaps will help to ensure that the LUS deep
learning community produces truly global solutions to our
global pandemic.

Despite its promise, there are three immediate limita-
tions of deep learning applications to aid LUS diagnosis
of COVID-19. First, the usage of ultrasound imaging
equipment can be highly operator dependent, which may
cause inconsistency of training and testing results for deep
learning models. In the future, this limitation may be
addressed with robotic approaches. Second, to train a
robust and generalizable deep learning model, larger data-
sets with appropriately balanced distributions of patient
locations, ultrasound system manufacturers, image acquisi-
tion settings, and consistent labels are necessary. Incorpo-
rating raw channel data, which is less sensitive than B-
mode images to some system settings, may also assist with
improving model generalization. Third, although some
studies used Grad-CAM to visualize the learned features
of deep learning models, these explainability characteriza-
tions were not consistent across datasets. Ultimately, more
studies are needed to address the interpretability and trust-
worthiness of deep learning models.

As explorations of the role of deep learning in LUS for
COVID-19 patients are still underway (e.g., [101–104]), we
believe that in the near future, more research implementing
deep learning applications for ultrasound imaging of
COVID-19 will be available. These future studies, in combi-

nation with the pioneering studies described herein, are
expected to provide impactful point-of-care solutions to
combat the COVID-19 pandemic. The totality of these stud-
ies is also expected to provide useful benchmarks and impli-
cations for possible future outbreaks that involve respiratory
disease and mutations of SARS viruses.
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