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ABSTRACT

A major challenge in single-cell biology is identify-
ing cell-type-specific gene functions, which may sub-
stantially improve precision medicine. Differential ex-
pression analysis of genes is a popular, yet insuffi-
cient approach, and complementary methods that as-
sociate function with cell type are required. Here, we
describe scHumanNet (https://github.com/netbiolab/
scHumanNet), a single-cell network analysis plat-
form for resolving cellular heterogeneity across gene
functions in humans. Based on cell-type-specific
gene networks (CGNs) constructed under the guid-
ance of the HumanNet reference interactome, scHu-
manNet displayed higher functional relevance to the
cellular context than CGNs built by other methods
on single-cell transcriptome data. Cellular deconvo-
lution of gene signatures based on network compact-
ness across cell types revealed breast cancer prog-
nostic markers associated with T cells. scHumanNet
could also prioritize genes associated with particu-
lar cell types using CGN centrality and identified the
differential hubness of CGNs between disease and
healthy conditions. We demonstrated the usefulness
of scHumanNet by uncovering T-cell-specific func-
tional effects of GITR, a prognostic gene for breast
cancer, and functional defects in autism spectrum
disorder genes specific for inhibitory neurons. These
results suggest that scHumanNet will advance our
understanding of cell-type specificity across human
disease genes.

INTRODUCTION

Genes do not act in isolation, because the proteins they
encode interact with each other and with other molecules.
From the perspective of network biology, molecular inter-

actions determine the function of each cell type (1). How-
ever, cell-type-specific molecular interactions are difficult to
identify and interpret due to context dependency. The ad-
vent of single-cell RNA sequencing (scRNA-seq) has en-
abled the characterization of distinct cell types from com-
plex tissues, as well as the determination of their interac-
tions within mixed-cell populations (2).

A major difficulty in cell-type-specific gene network
(CGN) inference from single-cell transcriptome data is the
lack of a gold standard for cell-type-specific gene inter-
actions. Accordingly, researchers often use simulated syn-
thetic networks (3). An evaluation using reference protein-
protein interactions showed that most methods for network
inference, including those developed for bulk RNA-seq data
and scRNA-seq, were not capable of reconstructing accu-
rate networks of gene interactions from scRNA-seq data
(4). This poor performance is likely due to elevated spar-
sity (5) and spurious technical variation (6) among scRNA-
seq data. To overcome this problem, an accurate network
modeling method that uses scRNA-seq data to study cell-
type-specific gene functions should be developed.

Two approaches to network construction using single-
cell transcriptome data exist: reference-free and reference-
guided inference. The former, which is more popular, en-
ables the discovery of gene interactions directly from single-
cell transcriptome data, but it suffers from a generally high
false-positive rate (4,7). In contrast, the reference-guided
approach builds a network by filtering the reference inter-
actome for a given transcriptome of context-associated sin-
gle cells. Filtered interactions are highly likely to exist in a
given cell type.

Here, we describe scHumanNet, a computational plat-
form for the reference-guided construction of CGNs us-
ing single-cell transcriptome data. As the reference interac-
tome, we used HumanNet (8), one of the best-performing
human gene networks for disease gene predictions. We uti-
lized a modified version of the SCINET algorithm (9).
Along with CGN construction, scHumanNet provides sev-
eral analytical tools to aid the study of cell-type-specific
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effects of disease genes. Through network centrality analy-
sis, we found that scHumanNet outperformed other single-
cell network inference methods in retrieving cell-type-
specific genes, suggesting it was suitable for the study of gene
cell-type specificity. We demonstrated that genes relevant to
the same cell type showed higher within-group connectiv-
ity (i.e. compactness) within the network. Utilizing network
compactness across CGNs, we deconvolved breast cancer
prognostic signatures into cell types and identified those
associated with immune cells rather than cancer cells. We
also found that the prognostic value of a known signature
gene, GITR, was linked to T cells owing to its T-cell-specific
centrality. Furthermore, we developed a statistical frame-
work for differential centrality analysis that revealed cell-
type-specific functional defects in disease genes. Applying
this analytical framework to brain scRNA-seq data from
autism studies, we found elevated dysregulation of the in-
teraction networks in inhibitory and excitatory neurons of
disease condition.

MATERIALS AND METHODS

Single-cell transcriptome data for network construction

To construct CGNs, we used scRNA-seq data generated
from biopsy samples of breast, lung, colorectal, and ovar-
ian cancers with cell type annotations obtained from Qian
et al. (10). For pan-cancer comparative network analysis,
we focused on five major cell types in the tumor microenvi-
ronment: T cells, B cells, myeloid cells, cancer-associated fi-
broblasts (CAFs), and endothelial cells (ECs). For the study
of autism spectrum disorder (ASD), we constructed CGNs
for cell types found in the brain using scRNA-seq data
obtained from Velmeshev et al. (11). The pre-annotated
cell types were merged with more granular representations
to include ECs, oligodendrocytes, astrocytes (AST-FB and
AST-PP), microglia, inhibitory cells (IN-PV, IN-SST, IN-
SV2C and IN-VIP), excitatory cells (L2/3, L4, L5/6 and
L5/6-CC), and others (Neu-mat, Neu-NRGN-I and Neu-
NRGN-II).

Reference-free CGN construction with single-cell transcrip-
tome data

For network construction, we only considered protein-
coding genes defined by the consensus coding sequence
(CCDS) database. We built four variants of the co-
expression networks, each of them based on each scRNA-
seq dataset. In the first co-expression network, we calcu-
lated Pearson correlation coefficients (PCC) between gene
pairs using a count matrix of single-cell transcriptome data,
which was log-normalized by the NormalizeData() func-
tion of the Seurat package. Only links with PCC > 0.8 were
retained for the rawPCC network. The second type of co-
expression network was based on the de-noised count ma-
trix from MetaCell (12,13). To calculate the PCC between
gene pairs, we used metacells generated with unified thresh-
old and parameters. We discarded cells with fewer than 500
UMIs and used the parameters K = 30 and alpha = 2
for mcell mc from coclust balanced(). The third type of co-
expression network was based on a count matrix with im-
putation of dropouts by SAVER (14,15) and exclusion of

genes with >99% zero values. The last type of co-expression
network was based on data transformation using bigSCale2
(16). The recursive method was used for the clustering pa-
rameter of compute.network(), and the PCC was calculated
using the transformed Z-score matrix.

The accuracy of co-expression networks based on meta-
cells, SAVER, and bigSCale2 was evaluated using a
Bayesian statistical framework and log likelihood score
(LLS) (17). In this scheme, gold standard gene pairs were
used to evaluate the likelihood of data-driven gene pairs
such as co-expression links. In brief, for the prioritized gene
pairs inferred from the given data (D), we calculated LLS
for every 1,000 links sorted by the data intrinsic score using
the following equation:

LLS =
(

P (L|D) /P(¬L|D)
P (L) /P (¬L)

)

where P(L|D) and P(¬L|D) account for the probability of
positive and negative gold standard gene pairs in a given
dataset, respectively, and P(L) and P(¬L) represent the
probability of gold standard positive and negative gene
pairs, respectively. We used a set of 260 962 gold standard
positive gene pairs obtained from HumanNet (8). A set
of gold standard negative gene pairs was inferred as being
composed of all links not included among gold standard
positives.

For the construction of CGNs using GRNboost2 (18),
2416 transcription factors (TFs) gathered from previous
publications (19,20) were used as input, and the top 0.1%
of links were retained for the final networks.

Reference-guided CGN construction with single-cell tran-
scriptome data

scHumanNet was developed by modifying the SCINET
framework (9) which utilizes imputation, transformation,
and normalization of scRNA-seq data. Single-cell gene
expression data were pre-processed using the ACTIONet
package (21). By identifying the archetypes within the
scRNA-seq dataset, ACTIONet learns the dominant tran-
scriptional patterns representative of cell types and states.
This approach produces a transformed gene activity score
matrix, which is the basis for inferring gene-pair interac-
tions. For each gene pair from the gene score activity matrix,
a minimum activity score threshold is applied to assess the
strength of the interactions in a group of cells. If each gene
in the examined interaction passes the threshold determined
by the transformed cell type activity score and a link exists
in the reference interactome, it is deemed cell-type-specific
and retained in the resultant CGN. Although the SCINET
package provides edge weights based on the aggregated P-
value of a likelihood score, we used the LLS from our refer-
ence interactome, HumanNet, as the edge weight. The LLS
for HumanNet edges was also calculated by Bayesian statis-
tics as described above and in Supplementary Methods. We
measured the network centrality of each gene based on the
sum of LLSs to all its neighbors. Because the human in-
teractome is biased towards the ribosome complex (22), we
excluded ribosomal proteins from the final candidate hub
genes. HumanNet provides three-tire interactome models
(8). We have tested all tiers of interactome models and found
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that the most extensive one, HumanNet-XC, gives best re-
sults in general. Therefore, we used the HumanNet-XC for
scHumanNet.

Significance test for network hubness

The statistical significance of hub genes was calculated us-
ing the FindAllHub() function in the scHumanNet pack-
age. For each CGN, randomized networks were generated
by swapping edges with equal probability using the igraph
package function rewire(), and the centrality scores of all
genes were collected. This process was iterated until at least
10 000 centrality scores were gathered, which were then
used to generate a null distribution. By default, Benjamini–
Hochberg correction was applied for each P-value, and hub
genes with false discovery rate (FDR) <0.05 were selected
for each CGN.

Predicting cell-type-specific genes for B and T cells

To test the cell-type relevance of genes, we compiled T-
and B-cell-associated genes from the Gene Ontology (GO)
database. We used reliable annotations by considering only
evidence based on traceable author statement (TAS), in-
ferred from direct assay (IDA), inferred from mutant phe-
notype (IMP), or inferred from genetic interaction (IGI).
By selecting GO term descriptions that contained either
‘T cell’ or ‘B cell’, we obtained 289 genes associated
with T cells and 89 with B cells. We conducted a sim-
ilar compilation for other cell types but could not ob-
tain enough associated genes for statistical testing. We
identified differentially expressed genes (DEGs) using the
function FindAllMarkers() from the Seurat v3.2.3 pack-
age with default parameters ‘wilcox’ for test.use, ‘0.25’ for
logfc.threshold, and ‘0.1’ for min.pct. We selected protein-
coding DEGs with positive log-fold changes for B or T
cells (q-value < 0.05) as cell-type-specific genes. Finally, we
measured the weighted degree centrality of genes using the
sum of edge scores for other network construction methods:
PCC (rawPCC, MetaCell, SAVER and bigSCale2), impor-
tance score (GRNboost2), and weighted score (SCINET).
Only significant DEGs and hub genes were used to compare
cell-type relevance.

Predicting cell-type-specific TFs

TFs specific for B and T cells were obtained from the TF-
Marker database (23) and subsequently filtered using the
TRRUST database (24), resulting in 42 T-cell-associated
TFs and 14 B-cell-associated TFs. The top 100 hub genes
identified by scHumanNet were extracted from each cell
type and filtered using the 2416 TFs collated from previ-
ous publications (19,20). The top 100 DEGs based on log-
fold change values were selected and filtered using the same
TF gene list. Hypergeometric tests were performed with all
genes in HumanNet (18,593) as the gene space.

Compactness analysis of gene sets to identify relevant cell
types

We implemented the Connectivity() function in scHuman-
Net to evaluate network compactness of a group of genes.

Briefly, 10,000 random gene sets with the same number
of genes as the test gene set were selected to generate a
null model. To preserve the network topological proper-
ties for the random gene sets, we used rejection sampling,
whereby we selected a gene with ±20% degree of connec-
tivity for each real gene when permuting. Significance was
measured using the rank of observed within-group connec-
tivity in the null distribution. Genes that exert their func-
tion in a specific cell type tend to be connected to each
other in a network specific to the cell type. The degree of
compactness was measured using the significance of within-
group connectivity. We performed compactness analysis for
a set of immune checkpoint molecule (ICM) genes (25)
and 33 breast cancer prognostic signature gene sets col-
lected from Huang et al. (26). For the GGI97 signature,
only 76 out of 97 genes were evaluated in this study be-
cause the others had been either discontinued or depre-
cated in the NCBI gene database (Supplementary Table
S1). Their relevance to the cell cycle was assessed using
manual curation and accepted databases. Genes that were
included in ‘Cell Cycle’ of KEGG 2021, ‘G2-M Check-
point’ of MSigDB 2020 and ‘Cell Cycle Homo sapiens’
of Reactome DB 2016 were considered cell cycle-related.
Other genes were curated manually, and those that in-
cluded ‘DNA replication’ and ‘mitotic spindle’ were also
included. Of the 76 signature genes, 24 were detected in
the breast cancer T-cell network and their functional con-
nectivity was assessed through Connectivity() with default
parameters.

Survival analysis on The Cancer Genome Atlas (TCGA)
breast cancer samples

Only direct neighbors of the GITR gene in the T-cell net-
work for breast cancer were considered connected to GGI97
signatures. TCGA data were downloaded through the GDC
portal using the TCGAbiolinks R package. HTseq counts
were preprocessed using TCGAanlayze Preprocessing(),
with ‘0.6’ as the cor.cut parameter. The data were subse-
quently normalized using TCGAanalyze Normalization().
The preprocessed count data were normalized with sample-
specific size factors calculated using DESeq2. To iden-
tify genes indicative of good patient outcomes, we consid-
ered 23,192 genes from TCGA-derived expression matrix,
of which 1,078 BRCA samples were separated based on
the top 30th and bottom 30th percentile of test gene ex-
pression. P-values from the Kaplan–Meier log test were
corrected using the Benjamini–Hochberg method, yield-
ing 236 genes with FDR <0.05, which were regarded as
predictive of good prognosis. For survival analysis, sam-
ples were separated into high and low groups based on
median GITR expression. The correlation between GITR
expression for each bulk sample and the composition
of T cells was calculated using the geometric mean of
CD3D, CD3E and CD3G. The survival group was divided
into high and low groups based on the median of ei-
ther single gene expression or geometric mean expression
of the gene set. Network visualization of the breast can-
cer T-cell scHumanNet was performed using the igraph
R package.
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Differential centrality analysis for ASD genes

For each CGN, the degree of centrality was assessed based
on the sum of edge weights (LLS). Because network size af-
fects the degree of centrality score, we used percentile ranks,
whereby the most central gene had a value of 1 and the least
central one had a value of 0. We assigned a value of 0 to
genes that were not included in at least one of the networks.
For each gene, we calculated the differential percentile rank
of centrality (diffPR) by subtracting the percentile rank in
the control network from the percentile rank in the disease
network.

PRx,N =
{

percentile rank by degree centrali ty in Nx (x ∈ N)
0 (x /∈ N)

di f f PRx = PRx,ASD − PRx,Control

where x represents a gene and N represents a disease or con-
trol network for a given cell type.

The percentile rank was calculated using the dplyr pack-
age percent rank(). The diffPR for each gene ranged from
-1 to 1, with positive values indicating higher connectivity
in the disease network.

For a significance test of differential centrality, we used
the FindDiffHub() and TopDiffHub() functions in scHu-
manNet. Briefly, FindDiffHub() finds a distribution of null
diffPR values for every gene by random permutation of
the control network to measure the significance of the ob-
served differential centrality. Random sampling of diffPR
values continues until one million random values accumu-
late. Benjamini–Hochberg correction was applied to calcu-
late the FDR. For TopDiffHub(), the diffPR of the genes
was assessed and filtered for non-zero values. By default,
genes within the top 5% of diffPR values were selected as
differential hub genes. To define lost and gained hub genes
in the disease network, 0.7 was set as the threshold. Ac-
cordingly, control hub genes with a percentile rank > 0.7
were assessed for their diffPR distribution. We observed a
clear bimodal pattern dividing the genes around a specific
diffPR value. Genes with diffPR of the same threshold or
above (absolute value) were considered as hub genes and
were characterized by large changes between healthy con-
trols and disease CGNs. Functional enrichment analysis
was performed using the enrichR package (27) with pathway
terms derived from five pathway databases: Elsevier Path-
way Collection (as of March 2022), BioPlanet v.1.0, Reac-
tome 2016, GO Biological Process (GOBP) (as of March
2022), and GO Molecular Function (GOMF) (as of March
2022).

RESULTS

scHumanNet effectively retrieves genes specific for each in-
tratumoral cell type

To evaluate whether CGNs obtained by scHumanNet
(Figure 1A) were more suitable than those generated by
other inference methods for the study of cell-type-specific
gene functions, we compared various reference-free and
reference-guided approaches. Using published breast can-
cer scRNA-seq data (10), we constructed networks for T
cells, B cells, myeloid cells, ECs, CAFs, and cancer cells us-
ing five reference-free methods, including rawPCC, Meta-

Cell (12), SAVER (14), GRNboost2 (18), and bigSCale2
(16), as well as one reference-guided method, SCINET (9)
based on PCNet (28). Network size across cell types and
network inference methods varied widely (Supplementary
Table S2). Although GRNBoost2 is a network inference
method restricted to TF-target regulatory interactions, we
included the method in our comparison because it is the
base algorithm for SCENIC (29), a widely applied network
modeling method in single-cell biology. The network con-
struction methods compared vary in terms of what types
of interactions they consider, and we found that for scHu-
manNet a wide definition of interactions, which includes ev-
idence based on functional relations, allowed for the best
results.

The functional importance of network nodes is mea-
sured by their centrality. Cell-type-specific genes presum-
ably play important roles in the corresponding cell types.
Therefore, we expected that genes with high centrality val-
ues in each CGN were enriched for cell-type-specific genes.
Using weighted degree centrality based on the edge scores
of each network, we compared the top 100 genes from
each network. In this way, we could disregard differences
in network size. Interestingly, not much overlap was ob-
served between any of the six network construction meth-
ods when assessing the top 100 hub genes for each cell
type (Figure 1B, Supplementary Figure S1), and this pat-
tern remained the same with top 50 and 200 hub genes
(Supplementary Figure S2) To determine if the hub genes
were prioritized for cell-type-specific functions, we assessed
the area under the receiver operating characteristic curve
(AUROC) score for each cell-type-specific entry. Using the
Azimuth celltype database (30), which contains signature
marker genes extracted from large scRNA-seq datasets, we
observed a higher retrieval rate of cell-type signature genes
by centrality in reference-guided CGNs than in reference-
free CGNs (Figure 1C). Similarly, the association between
the top 100 hub genes and each of the Azimuth cell-type
signature genes tended to be stronger in CGNs generated
via reference-guided methods than in those that relied on
reference-free methods (Supplementary Figure S3). Among
reference-guided CGNs, scHumanNet prioritized cell-type-
specific genes better than SCINET, especially among B and
T cells. These results suggest that scHumanNet is supe-
rior to other CGN construction methods in retrieving cell-
type-specific functions of human genes. We also found that
scHumaNet prediction for cell-type-specific genes is robust
against contamination of other immune cell subsets from
the same dataset (Supplementary Methods and Supplemen-
tary Figure S4).

scHumanNet reveals commonality and differences among
CGNs across cancer types

The function of tumor-infiltrating cells in cancer is often
investigated using cell-type-specific gene expression. Here,
we show that network biology can complement expression-
based functional studies. To this end, we used scHuman-
Net to construct CGNs for T cells, B cells, myeloid cells,
ECs, CAFs, and cancer cells from breast, colorectal, lung,
and ovarian cancers. Next, we examined whether these
CGNs could provide functional insights linked to cell type
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or disease status. Statistics for CGNs relative to each can-
cer type are summarized in Supplementary Table S3. Net-
work comparisons across different types of non-cancerous
cells revealed that only a minor portion of nodes and edges
was shared across cell types in all cancers (Figure 2A, B);
whereas a large portion was shared across cancer types (Fig-
ure 2C, D; Supplementary Figures 5, 6). These results indi-
cate that CGNs generated by scHumanNet are shaped pri-
marily by the cellular context rather than the disease or tis-
sue context. Notably, the ratio of unique edges to shared
edges across cancer types was larger than that of unique
nodes to shared nodes in all cell types, indicating that net-
works for the same cell type are rewired in different tissue
and disease contexts.

scHumanNet centrality and compactness predict cell-type
specificity of gene functions

Rewiring gene interactions in different cell types might
change the network centrality of genes with differential
functional importance across cellular contexts. Given that
hub genes with a high degree of centrality interact with
many other genes in a given cellular context, we hypothe-
sized that they were more likely to play important roles in
maintaining functions specific to the given cell type. There-
fore, we investigated whether scHumanNet hub genes for
each type of tumor-infiltrating cell could reflect cell context-
dependent functional importance across cancer types. To
evaluate cell-type specificity, we utilized the GO database to
collate genes reliably associated with either B or T cells (Ma-
terials and Methods). Next, we assessed the power of scHu-
manNet to predict genes specific for each cell type based
on overlap with genes known to function in B or T cells.
Notably, the network-based and expression-based candi-
date genes specific for each cell type showed low concor-
dance (0.05–0.13 Jaccard similarity index), indicating com-
plementarity of the two predictions (Figure 3A, Supplemen-
tary Figure S7). Moreover, the intersection between the two
predictions showed strong overlap with known cell-type-
specific genes. Interestingly, for the most part, network-
based predictions showed a similar or higher overlap with
known cell-type-specific genes than expression-based pre-
dictions, further confirming that scHumanNet hub genes
could effectively identify cell-type-specific genes.

We anticipated that ICMs would be enriched among
genes specific for tumor-infiltrating cells. Hence, we com-
piled 43 previously identified ICMs (Supplementary Ta-
ble S4) (25) and compared their overlap with scHumanNet
hubs and DEGs across cell types. For all cell types, we ob-
served higher retrieval of ICMs by scHumanNet hub genes
than by DEGs (Figure 3B). Notably, in all cancer types
and cell types, the ICMs retrieved by DEGs were subsets of
those retrieved by scHumanNet (Supplementary Data S1).

We prioritized genes using weighted degree of central-
ity in the CGNs constructed by scHumanNet and found
that it was highly predictive of cell-type-specific hallmark
genes (Supplementary Data S2). Based on this observation,
we chose to more closely investigate TFs, which are key de-
terminants for the differentiation and maintenance of par-
ticular cell identities. Cell-type-specific differential expres-
sion analysis is often insufficient to detect TFs for a given

cell type because of a generally low basal level of expres-
sion. Instead, a network-based approach has been widely
used to infer TF-target interactions (29,31). We hypothe-
sized that network centrality in CGNs could effectively pri-
oritize TFs specific for a certain cell type. To evaluate the
prediction of TFs specific for cell types by DEGs and scHu-
manNet centrality, we retrieved cell-type-specific TFs from
TF-Marker (23), a manually curated cell-type-specific TF
database. Because of the limited number of entries, we could
analyze only TFs specific for B and T cells. By comparing
the enrichment of known cell-type-specific TFs among the
top 100 prioritized genes by scHumanNet centrality with
those identified by differential expression, we found that the
network-based approach was consistently better at priori-
tizing TFs in both B and T cells across cancer types (Mate-
rials and Methods, Supplementary Data S3).

We also found that scHumanNet centrality could pre-
dict cell-type-specific disease-associated genes. For exam-
ple, the top 15 hub genes in T cells from all types of
cancers included those involved in cell-mediated immunity
(GZMB, PRF1 and IFNG) and immune checkpoint sig-
naling pathways (TIGIT and CTLA4) (Figure 3C, Sup-
plementary Figure S8, Supplementary Data S2). Notably,
four of the five hallmark genes for T-cell immunity (PFR1,
IFNG, TIGIT and CTLA4) were not found among the
top 50 DEGs (Supplementary Data S4). In B cells, TLR7
and TLR9 were found to be pan-cancer central genes
but were not detected as DEGs. In myeloid cells, the
top 50 pan-cancer central genes included seven genes in-
volved in myeloid cell differentiation (CD4, FCER1G,
IRF8, TYROBP, TLR2, TREM2 and ITGAM), but only
two of them (FCER1G and TYROBP) were found among
the top 50 DEGs. In CAFs from ovarian cancer, but
not from other cancer types, 11 aldehyde dehydrogenase
genes (ALDH1L1, ALDH1L2, ALDH3A2, ALDH1A3,
ALDH1A1, ALDH1A2, ALDH2, ALDH1B1, ALDH4A1,
ALDH9A1 and ALDH6A1) were prioritized in the top 100
hub genes by scHumanNet. Aldehyde dehydrogenase has
been associated with poor survival as it promotes tumor
growth in ovarian cancer (32). Notably, none of the 11 alde-
hyde dehydrogenase genes were among the top 100 DEGs
in CAFs from ovarian cancer. The NOTCH1 gene is ex-
pressed in ECs, where it promotes metastasis (33). We found
NOTCH1 among the top 20 hub genes in endothelial CGNs
for all four cancer types (7th for breast, 13th for colorectal,
11th for lung and 19th for ovarian cancers), but not among
the top 200 DEGs in all cancer types. These results suggest
that network centrality using scHumanNet can be more ef-
fective than differential expression analysis in identifying
genes that play important roles in a given cellular context.
These results also suggest that FindAllHubs() in scHuman-
Net can identify hub genes with cell-type-specific functions
in both healthy and disease contexts.

Rewiring molecular networks across different cell types
may result in differential within-group connectivity (or
compactness), which can also be used to estimate functional
relevance. As a proof-of-concept, we utilized ICM genes
and genes specific to B and T cells. The Connectivity() func-
tion in scHumanNet tests the significance of within-group
connectivity against a nonparametric null model using re-
stricted random sampling that does not require the iden-
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Figure 2. Commonality and differences between CGNs generated by scHumanNet across cancer types. (A, B). Upset plots for five CGNs (T cells, B cells,
myeloid cells, CAFs, and ECs) show overlap with respect to nodes (A) and edges (B) across cancer types. (C, D). Node (C) and edge (D) overlap of T-cell
networks among four cancer types (OvC, ovarian cancer; CRC, colorectal cancer; BC, breast cancer; LC, lung cancer).

tification of optimal parameters (Methods). As expected,
ICM genes and those specific for B and T cells were associ-
ated with T-, B- and T-cell types, respectively, in all cancer
types (Figure 3D). This suggests that the network-based ap-
proach provides a complementary and intuitive method for
assigning gene sets to functionally relevant cell types based
on compactness.

Cell type deconvolution of cancer prognostic signatures using
scHumanNet

ICMs showed the highest compactness in the T-cell net-
work, which is consistent with their cellular role. We hypoth-
esized that we might deconvolve disease-associated gene sig-

natures obtained from bulk tissues into individual cell types
using their network compactness across CGNs by scHu-
manNet. For example, cancer prognostic signatures are pre-
sumably associated with cancer cells because they are typi-
cally identified in tumor tissues. However, tumor tissues of-
ten contain also non-cancerous cells, such as stromal and
immune cells, and some prognostic genes may exert their
functions in non-cancerous cells of the tumor microenvi-
ronment. To test this hypothesis, we examined 33 prognos-
tic signatures reported in breast cancer (26). We measured
the normalized within-group-connectivity of each prognos-
tic signature across the CGNs using scHumanNet (Figure
4A). As expected, we observed strong network compactness
for many prognostic signatures from non-cancerous cells,
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Figure 3. Prediction of cell-type-associated genes via differential expression analysis and network centrality by scHumanNet. (A) Overlap of significant
DEGs and significant hub genes for B- and T-cell networks in breast cancer (q-value < 0.05). The numbers in square brackets correspond to Jaccard
indices. Overlap of genes specific for B- and T-cell functions was assessed for prediction by hub genes and DEGs (set A and set C) and their intersection
(set B). (B) Number of ICMs retrieved via FindAllMarkers() (DEG) and FindDiffHubs() (scHumanNet) in different cancer types. (C) Heat map showing
the percentile rank of top 15 hub genes (nodes) and interactions (edges) of each breast cancer network. Values were scaled per row. Results for other cancer
types are reported in Supplementary Figure S6. Genes highlighted in red were not among the top 50 DEGs retrieved by the FindAllMarkers() function
in the Seurat package. (D) Within-group connectivity between ICMs, T-cell GO genes, and B-cell GO genes for all annotated cell types in scHumanNet
and for each cancer type (OvC, ovarian cancer; CRC, colorectal cancer; BC, breast cancer; LC, lung cancer) (*P < 0.05, **P < 0.01, ***P < 0.001 by
non-parametric test)
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Figure 4. Deconvolution of breast cancer signatures to cell types with scHumanNet. (A) Normalized within-group connectivity of each breast cancer
signature in six cell-type-specific networks by scHumanNet. Within-group edge counts were normalized to the number of genes for each cell-type-specific
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particularly from T cells for the ‘T-cell metagene signature’
(Tcell) (34), ‘97-gene genomic grade index’ (GGI97) (35),
‘127-gene classifier’ (Robust) (36), and ‘64-gene expression
signature’ (Pawitan) (37). These results indicate that T-cell
function may in part account for the clinical outcomes of
breast cancer.

Next, we focused on the GGI97 signature (Supplemen-
tary Figure S9A), which has been extensively studied and
clinically validated to have an inverse correlation with sur-
vival and a positive association with chemotherapy re-
sponse (38). GGI97 genes were mostly associated with the
cell cycle and G2/M checkpoint pathways (47/76 genes)
(Supplementary Data S5). Additionally, the 24 GGI97
genes detected in the T-cell network were closely connected
to each other (P = 0.0001) (Supplementary Figure S9B,
C) and significantly enriched in cell cycle-related functions
(P = 0.0075 by hypergeometric test) (Supplementary Ta-
ble S1), suggesting a role for T cell cycle control in an-
titumor activity. We also found that many GGI97 genes
were connected to genes with a high degree of central-
ity and important for T cell antitumor activity (GZMB,
PDCD1, KLRC1, TNF and ICOS) (Supplementary Fig-
ure S9D). In particular, genes directly connected to GGI97
signature genes were enriched in the T cell receptor sig-
naling pathway (Figure 4B), indicating that a high GGI97
score primed the immune system for a better response to
chemotherapy (39).

T cell proliferation is important in the immunotherapy
response. Out of 24 GGI97 signature genes in the T-cell
network, 18 were direct neighbors of Ki67 (Figure 4C), a
known marker of cell proliferation. The GGI97 signature
is associated with poor survival, which was confirmed by
the median expression of GGI97 genes in TCGA-BRCA
samples (Figure 4D). To understand the role of GGI97
genes in T cells, we examined the top 10 hub genes directly
connected to GGI97 genes in the T-cell network. Notably,
GITR (TNSFR18), a hub gene directly connected to Ki67,
was prognostic of positive clinical outcomes (Figure 4E,
Methods). Importantly, the expression of GITR did not cor-
relate with the abundance of T cells (Methods), ensuring
that we observed the cellular effect of GITR regardless of
T-cell composition in each tumor sample (Supplementary
Figure S9E). GITR has a co-stimulatory role (40) which is
essential for CD8+ T cells to mount an antitumor immune
response. When T cells bind to the ligand GITRL, GITR
promotes the proliferation of effector T cells and damp-
ens the suppressive activity of regulatory T cells (41). The
GGI97 signature is predictive of chemotherapy responses.
Chemotherapy can promote the cancer-immunity cycle by
releasing neoantigens from dead cancer cells. Thus, the ben-
eficial effect of GITR can be explained in terms of antitu-
mor immunity. Moreover, we believe that the prognostic ef-
fect of the GGI97 signature in chemotherapy is tied to T-
cell function via GITR. Consistent with our results, GITRL
combined with anti-PD1 immunotherapy was shown to be
effective against breast cancer, resulting in enhanced T-cell
activation, proliferation, and memory differentiation (42).
Taken together, our findings demonstrate that scHuman-
Net can deconvolve cancer prognostic signatures into cell
types and identify key targets for therapeutic approaches in
specific cell types.

Identification of disease-associated cell types using differen-
tial hubness analysis in scHumanNet

Another application of scHumanNet is the identification
of differential hubs, that is, genes whose centrality changes
significantly between two biological contexts, such as dis-
ease and healthy conditions. The FindDiffHub() function
in scHumanNet assigns ranks to the genes based on the de-
gree of centrality in each context-specific network, and then
identifies those genes whose percentile rank has changed
significantly compared to a null model. In addition, the
TopDiffHub() function allows users to extract the top n
differentially ranked genes (Materials and Methods). Using
differential hubness analysis with scHumanNet, we investi-
gated ASD, a neurodevelopmental disorder with strong her-
itability (43). ASD is characterized by difficult social inter-
action and communication, repetitive behavior, and/or sen-
sory susceptibility, and is likely to have many different ge-
netic and environmental causes. A large cohort study by the
SFARI consortium identified 1231 genes (44). However, the
mechanisms of action of most genes remain poorly under-
stood. We hypothesized that, in the disease condition, per-
turbation of SFARI genes could result in cell-type-specific
loss of wild-type molecular interactions. Thus, a decrease
in network centrality could point to disease-associated cell
types. Using a published dataset containing 104 559 cells
from 15 donors diagnosed with ASD and 16 matching con-
trols (11), we constructed seven CGNs for both healthy
and disease conditions (Figure 5A, Supplementary Table
S5, Materials and Methods). We found that the scHuman-
Net hub genes for each cell type were relevant to cell-type-
specific functions (Figure 5B). For example, the NMDA re-
ceptor subunit GRIN2B is a hub gene in both excitatory
and inhibitory neurons, and the TF SOX9 is a hub gene
in astrocytes (45). We also observed CD163, FCER1G and
CD14 as hub genes in microglia (46). Interestingly, unlike
the immune cell dataset, whereby a few hub genes were
also detected as marker genes via DEGs, most hub genes of
the brain scHumanNets were not prioritized via differential
expression analysis (Supplementary Data S6) and, indeed,
showed minimal overlap with cell-type-specific DEGs (Sup-
plementary Figure S10).

Our analysis also revealed that many genes differed sig-
nificantly in terms of network centrality between the control
and disease conditions, despite modest fold changes (Sup-
plementary Figure S11A). By assessing genes with the high-
est differences in centrality rank via FindDiffHub() with de-
fault parameters (Methods), we found that differential hubs
from excitatory and inhibitory neurons were significantly
enriched with SFARI genes, which contrasted with DEGs
being found mostly in ECs and astrocytes (Supplementary
Data S7, S8). In particular, the highest overlap between dif-
ferential hub genes and SFARI genes was observed in exci-
tatory neurons (Supplementary Data S8), although several
key ASD genes, including GRIN2B and MECP2 (47,48),
were found as differential hubs in inhibitory neurons. Even
though GRIN2B and MECP2 are expressed in both excita-
tory and inhibitory neurons, they were found to be differ-
ential hubs only in the latter (Supplementary Figure S11B),
implying that they may be functionally more important in
inhibitory neurons. This finding has been experimentally
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Figure 5. Differential hubness analysis between ASD and healthy control samples across CGNs by scHumanNet. (A) Overview of differential hubness
analysis by scHumanNet. Seven cell types were grouped and CGNs in normal and ASD conditions were constructed. (B) Top 15 hub genes in the combined
(control and ASD) networks for seven cell types. Genes highlighted in red were not among the top 50 DEGs identified by the FindMarkers() function
in the Seurat package. (C) Violin plot showing the normalized expression of CACNA1A for each cell type in ASD and healthy conditions. The statistical
significance of differences between cell types was not evaluated. (D) Network visualization of CACNA1A and neighboring genes in healthy (left) and ASD
(right) inhibitory neurons by scHumanNet. SFARI genes are in red (20 genes out of 72 neighbors in the healthy control, none in ASD). (E) Direct neighbors
of CACNA1A from normal inhibitory neurons by scHumanNet were assessed for enrichment using the GOBP database. The red vertical line corresponds
to a q-value of 0.05 corrected with the Benjamini–Hochberg method. (F) Distribution of diffPR values for genes with hubness (PR) > 0.7 in control cell
types. (G) Hallmark pathways of genes in ASD derived from five pathway databases (Reactome, BioPlanet, Elsevier Pathway Collection, GO Biological
Process, GO Molecular Function) and identified in inhibitory neurons (left) and excitatory neurons (right).
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validated in a mouse model (49) and suggested by a hu-
man study (50), in which inhibitory neurons were enriched
for overexpressed SFARI genes. Similarly, for CACNA1A,
we found that although it was not differentially expressed
in inhibitory neurons (Figure 5C), there was a significant
difference in terms of network centrality (Figure 5D), and
many of the functional interactions were lost in the ASD in-
hibitory neuron network. The interacting genes were mostly
associated with ion channels (Figure 5E), suggesting that
the function of neural regulation, especially in inhibitory
neurons, might be impaired by CACNA1A loss-of-function
mutations (51). These results demonstrated that differential
hubness analysis using scHumanNet could reveal disease-
associated cell types.

Finally, we investigated whether genes with high central-
ity in healthy conditions but low centrality in disease con-
ditions might provide insights regarding cell-type-specific
disease mechanisms (Methods). We found that excitatory
neurons, inhibitory neurons, and oligodendrocyte progeni-
tor cells had the highest frequency of loss-of-function genes
compared to other cell types (Figure 5F). Notably, genes
with high centrality in disease but low centrality in healthy
controls were less frequent across all cell types (Supplemen-
tary Figure S12A). Gene set enrichment analysis of hubs
lost in neurons revealed that their function was primarily as-
sociated with neuronal activity (Figure 5G). For inhibitory
neurons, the hub genes lost under healthy conditions were
enriched in ‘increased anxiety-related response’ (MGI Phe-
notype), ‘anterograde trans-synaptic signaling’ (GOBP),
and ‘ligand-gated cation channel activity’ (GOMF). In ex-
citatory neurons, the genes that lost centrality were enriched
in ‘chemical synaptic transmission’ (GOBP), ‘dopamine re-
ceptors signaling’ (Elsevier Pathway Collection) and ‘pro-
tein secretion’ (MSigDB Hallmark). These results imply
that, in disease conditions, these hub genes lost most of their
interactions with other genes, resulting in the dysregulation
of neuronal function in ASD. In contrast, genes that became
more central in ASD networks were not enriched in path-
ways related to neuronal function (Supplementary Figure
S12B).

DISCUSSION

An important goal of single-cell biology is resolving the cel-
lular heterogeneity of human diseases. Single-cell gene ex-
pression analysis may enable the identification of disease-
associated cell types based on the differential expression
of disease-associated genes in specific cell types. In the
present study, we described scHumanNet, a computational
platform for network-based analysis of cell-type speci-
ficity, which can complement expression-based approaches.
The core component of this platform is the reconstruc-
tion of CGNs, gene network specific to distinct cell types.
Single-cell transcriptome data have been utilized to con-
struct CGNs with either reference-guided or reference-
free network inference methods. The evaluation of in-
ferred CGNs is not a trivial task because of the lack of
high-quality and experimentally validated gene-gene in-
teractions for particular cell types. In fact, because of
the high false positive rate of inferred gene-gene interac-
tions from single-cell transcriptome data, functional hy-

potheses from these networks are generally based on a
group of edges rather than individual ones. Here, we val-
idated the quality of CGNs by the retrieval of cell-type-
specific genes among hub genes and network compactness
of functional genes in the corresponding cell types. In the
present study, we compared various approaches for CGN
inference from single-cell transcriptome data and found
that reference-guided methods outperformed reference-free
methods. These results can be explained by the noisy and
sparse nature of single-cell transcriptome data, which gen-
erate many false-positive gene-gene interactions (4). Fur-
thermore, among the two reference-guided CGN analy-
sis platforms, scHumanNet was superior to SCINET. Al-
though they utilized the same network inference algorithm,
they employed different reference interactomes. Previously,
we demonstrated that HumanNet, the reference interac-
tome of scHumanNet, performed significantly better than
other human gene networks, including the reference inter-
actome of SCINET, in predicting disease genes (8). This
indicates that the quality of the reference interactome is
key to the performance of reference-guided CGNs, and
future improvement of the former will further ameliorate
CGNs.

In this study, we have demonstrated two applications of
CGNs in the investigation of cell-type specificity of human
disease genes. First, the effects of disease genes can be de-
convolved into cell types based on the network compactness
of a group of disease genes across CGNs. For example, cell-
type deconvolution of breast cancer prognostic signatures
showed high compactness not only in cancer cells but also
in other tumor-infiltrating cells such as immune cells. The
importance of T cells in antitumor activity may account for
the large functional bias of prognostic genes towards T cells.
Indeed, one of the identified hub genes was GITR, a T-cell-
specific regulator that plays an important role in the survival
of patients with breast cancer. We believe that our network-
based approach for associating gene sets with cell types can
complement expression-based methods, such as GSVA (52)
and scfind (53). In the future, we may expand the scHuman-
Net platform to systematic cell type deconvolution of dis-
ease gene sets for all cell types of each tissue and thus gen-
erate CGNs for human cell atlas data. Second, we utilized
CGNs to identify disease-associated cell types based on dif-
ferential hubness between disease and healthy conditions
across cell types. Therefore, the scHumanNet platform al-
lows the analysis of differential hub genes. Using the scHu-
manNet pipeline, we identified inhibitory neurons as a ma-
jor cell type associated with ASD. These results suggest that
a network-based approach can complement an expression-
based approach to identify disease-associated cell types us-
ing single-cell transcriptome data.

There are some limitations to scHumanNet. Although
our results suggest that the reference-guided method yields
more biologically relevant CGNs, it comes at the expense of
being unable to discover novel interactions specific for the
cell type. In addition, cell type deconvolution may be unre-
liable with a small group of genes (e.g. a set of three genes)
because a statistical test for network compactness requires
a relatively large number of genes to ensure a sufficient de-
gree of confidence. Further studies are required to address
these shortcomings.
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In conclusion, we present scHumanNet, a computational
platform for single-cell network biology, capable of resolv-
ing the cellular heterogeneity of disease-related gene func-
tions. We demonstrate that scHumanNet can deconvolve
the functional effect of disease gene sets into cell types and
identify disease-associated cell types via topological analy-
sis of CGNs. These results suggest that scHumanNet will
boost our understanding of cell-type specificity of human
disease genes and thus advance precision medicine.
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