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Abstract

Dementia with Lewy bodies (DLB) is clinically defined by the presence of visual hallucinations, 

fluctuations, REM sleep behavioral disorder, and parkinsonism. Neuropathologically, it is 

characterized by the presence of Lewy pathology. However, neuropathological studies have 

demonstrated the high prevalence of coexistent Alzheimer’s disease, TDP-43, and cerebrovascular 

pathologic cases. Due to their high prevalence and clinical impact on DLB individuals, clinical 

trials should account for these co-pathologies in their design and selection and the interpretation 

of biomarkers values and outcomes. Here, we discuss the frequency of the different co-pathologies 

in DLB and their cross-sectional and longitudinal clinical impact. We then evaluate the utility 

and possible applications of disease-specific and disease non-specific biomarkers and how co-

pathologies can impact these biomarkers. We propose a framework for integrating multi-modal 

biomarker fingerprints and step-wise selection and assessment of DLB individuals for clinical 

trials, monitoring target engagement, and interpreting outcomes in the setting of co-pathologies.
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Introduction

The principle of parsimony guides clinical diagnosis. In neurodegenerative disorders, the 

clinical signs and symptoms have previously been correlated with neurodegeneration in 

discrete and selectively vulnerable nervous system regions. A prior prevailing view has been 

that a combination of distinctive clinical and brain changes is characteristic of singular 

neurodegenerative processes [1]. However, neuropathological studies have challenged this 

concept, showing that cognitively impaired individuals almost invariably have multiple 

pathologies [2, 3]. Dementia with Lewy bodies (DLB), the second most common 
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neurodegenerative dementia, exemplifies this, with various co-pathologies being the norm 

rather than the exception [4–16]. However, the clinical impact of co-pathologies in DLB 

has been incompletely studied, as most studies are based on autopsy retrospective clinic-

pathological correlation [9, 13, 14, 17–21]. In addition, some studies have not distinguished 

DLB and Parkinson’s disease dementia participants, which, whilst representing different 

points along a Lewy body disease continuum, have differing clinical presentations and 

patho-aetiological mechanisms [7, 22].

DLB is clinically defined by the presence of dementia together with its core clinical features 

[5]: fluctuating cognition, well-formed recurrent visual hallucinations, REM behavioral 

sleep disorders, and parkinsonism. Research criteria now include the DLB prodromal 

stages for individuals with mild cognitive impairment, delirium-onset, and psychiatric-

onset presentations [23]. These DLB clinical diagnostic and prodromal DLB research 

criteria also include indicative biomarkers tuned predominantly to impacts of α-synuclein-

led neurodegeneration [5, 23]. Co-pathologies in DLB can impact clinical phenotype, 

disease progression, and structural and functional biomarker findings. Neurodegenerative 

co-pathologies are defined by the deposition of specific misfolded proteins [4, 24–33]. There 

are several biomarkers available to quantify Aβ and tau brain deposits in-vivo, thanks to 

the development of sensitive and specific biofluid and imaging biomarkers. In addition, 

several tissue and CSF assays are now available to detect α-synuclein presence [34–43]. 

Cerebrovascular pathology is the most prevalent non-neurodegenerative co-pathology with 

multiple manifestations that can be evaluated using MRI [2, 44, 45].

Evaluation of these co-pathologies may offer the opportunity to better predict clinical 

progression, enable individualized approaches to treatment, and improve the clinical trial 

design. Here, we evaluate the clinical features and presentation of DLB in the context 

of underlying co-pathologies and emerging biomarkers to their potential to quantify 

neuropathological change. We then consider the implications of these findings for future 

clinical trials.

Neuropathology and Prevalence of Co-Pathologies

DLB’s hallmark is Lewy pathology, which encompasses Lewy bodies and Lewy neurites, 

defined by the presence of misfolded α-synuclein. Lewy pathology is also the hallmark 

lesion of Parkinson’s disease (PD), and together both conditions are collectively classified 

as Lewy body disease. The DLB neuropathological criteria enable the evaluation of 

the likelihood of Lewy pathology leading to a DLB presentation [5]. However, the 

amygdala-predominant and brainstem stages do not lead to a DLB clinical presentation. 

DLB prevalence increases with age, but aging is also associated with an increased 

prevalence of multiple neurodegenerative and cerebrovascular diseases that contribute to 

cognitive impairment [2, 46]. Therefore, it is not surprising to observe multiple brain 

pathologies in aging individuals with cognitive and motor disorders [2, 3, 47]. In addition, 

neurodegenerative and cerebrovascular pathology have different distribution patterns and 

injury mechanisms, further adding to the heterogeneity of brain changes [44, 48–53]. The 

prevalence of these pathologies is outlined below and summarized in Table 1.
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Alzheimer’s Disease Pathology

Alzheimer’s disease (AD) co-pathology, defined by the presence of amyloid-beta (Aβ) 

plaques and tau neurofibrillary tangles, is present in more than 50% of DLB individuals, 

with a higher prevalence compared to both Parkinson’s disease (PD) and PD dementia 

(PDD) [6–10]. AD has been linked to a greater Lewy pathology burden [22, 51, 54] and is 

the only co-pathology considered when interpreting neuropathological findings in DLB that 

is recognized in the 2005 and 2017 guidelines [5, 55].

TDP-43 Pathology

Previous studies reported a wide prevalence range of TDP-43 pathology in DLB. Study 

differences are likely the result of differences in sampled areas and the definition of 

additional TDP-43 co-pathology. TDP-43 co-pathology in DLB follows an anatomical 

distribution consistent with limbic-predominant age-related TDP-43 encephalopathy (LATE) 

[12, 13, 27]. TDP-43 pathology burden is associated with greater Lewy pathology burden 

and the presence of AD co-pathology, exemplifying the complex interrelations between the 

different neuropathologies.

Frontotemporal Lobar Degeneration Tau and other Neurodegenerative Conditions

Frontotemporal lobar degeneration (FTLD) Tau pathology is less prevalent [22], and likely 

plays a minor role as a DLB co-pathology. Aging-related Tau astrogliopathy (ARTAG) is 

prevalent in individuals with dementia [56], including Lewy body disease (PD and DLB 

combined) [22].

Cerebrovascular Pathology

Cerebrovascular pathology inversely correlates with Lewy pathology [16] and DLB clinical 

features [57], which indicate that a lower threshold of neurodegenerative pathology may be 

necessary for clinical dementia expression in the presence of cerebrovascular co-pathology. 

Autopsy studies have reported a high prevalence of cerebral amyloid angiopathy (CAA) in 

up to two-thirds of individuals with DLB [13]. Increased CAA is more prevalent in DLB 

individuals with AD co-pathology. Within the Lewy body disease group, CAA is highest 

in DLB, followed by PDD, and lowest in cognitively unimpaired PD [13, 17]. Similarly, 

microbleeds are more frequent in DLB than in PDD, PD, and control participants [58–60]. 

In one neuroimaging study, microbleeds were associated with the systolic blood pressure 

but not with amyloid-beta (Aβ) PET values [61]. Compared to AD, DLB showed a similar 

burden of microbleeds [58]. There are inconsistent findings regarding the prevalence of 

infarcts in DLB compared to controls [16, 62], which might result from differences in 

the inclusion criteria of studies. A recent review showed no relationship between large 

cortical or small subcortical infarcts or intracerebral hemorrhage and the presence of Lewy 

body dementia [45]. Nevertheless, the same review showed increased MRI-assessed white 

matter hyperintensity (WMH) burden in individuals with DLB compared to cognitively 

unremarkable participants, which was consistently supported by neuropathological data. An 

ongoing challenge is that whilst WMH are considered a marker of cerebrovascular disease, 

other etiologies, including AD-associated pathology and axonal loss, may associate with 

WMH [63–65].
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Clinical Impact of Co-pathologies in DLB

Co-pathologies are not only prevalent, but they will also likely affect the clinical 

presentation and disease progression by compounding brain dysfunction. Therefore, the 

impact of each co-pathology needs to be evaluated to predict clinical progression and 

understand the outcomes of treatments.

Cross-Sectional Clinical Associations of Co-Pathologies in DLB

From a cognitive standpoint, DLB individuals with an AD biomarker profile show poorer 

performance in memory and orientation tests than those without AD [72]. AD is the co-

pathology with the greatest clinical impact, and pathological Aβ and tau levels have been 

related to worse global cognition [73–77]. Conversely, there are conflicting results regarding 

the effects of AD biomarkers values on the clinical presentation and core features of DLB. 

Several studies have reported that a higher burden of AD co-pathology or abnormally 

phosphorylated tau (p-tau) cerebrospinal fluid (CSF) levels decrease the odds of presenting 

core DLB features [9, 73, 78]. [79]. However, Aβ and tau PET studies have not found 

associations between AD biomarker positivity and DLB core features [74, 80, 81]. One 

study identified a higher frequency of visual hallucinations in DLB individuals with an AD 

CSF profile [82].

Limited data exist on the implications of TDP-43 co-pathology on clinical phenotype in 

DLB. One recent study found that individuals with TDP-43 co-pathology had a lower 

likelihood of presenting visual hallucinations and parkinsonism and were, therefore, less 

frequently diagnosed as probable DLB during life [15]. Although the presence of TDP-43 

is also associated with older age and a higher likelihood of concomitant tau deposition, 

the lower likelihood of a clinical DLB diagnosis in individuals with Lewy pathology and 

TDP-43 co-pathology persisted even when considering these factors [15].

As noted above, cerebrovascular lesions in DLB correlate negatively with the severity 

of Lewy pathology [16, 83]. This association is consistent with cerebrovascular lesions 

lowering the threshold for dementia in individuals with AD and Lewy pathology [2]. 

However, the evaluation of WMH associations has led to conflicting results. WMH burden 

has shown inconsistent associations with visual hallucinations [57, 62], which may suggest 

that the location of the WMH makes a contribution [66, 84]. Several studies found no overall 

association of WMH with cognition [66, 69, 70, 84]. However, some studies point to the 

importance of WMH, which affect cholinergic white matter pathways and a modulating 

effect of apolipoprotein E (APOE) ε4 [57, 85, 86]. Parkinsonism and cognitive fluctuations 

are not associated with WMH burden [57]. The etiology of WMH in MR has also been 

debated and may reflect axonal degeneration due to cortical neuronal loss rather than 

ischemia/small vessel disease per se [65].

Limited information is available on the impact of ethnicity on DLB. One study reported a 

higher prevalence of Lewy pathology in African Americans than whites, although the study 

did not specifically evaluate DLB [87]. No results are available specifically considering 

co-pathologies. In a study assessing sex differences, AD co-pathology led to a lower 

frequency of RBD and parkinsonism in men and women, with men also presenting with 
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a lower frequency of cognitive fluctuations and visual hallucinations in the presence of AD 

co-pathology [88]. How the presence of co-pathologies impacts caregivers is unknown.

Longitudinal Associations of Co-Pathologies in DLB

DLB individuals with an AD CSF profile have a faster cognitive decline [89]. MMSE 

decline correlated with Aβ plaques, neurofibrillary tangles, and Lewy pathology [90]. The 

age of onset of dementia is lower in patients with high tau and amyloid beta [90, 91]. 

Overall, shorter survival appears to be linked with increased Aβ pathology [8, 92, 93], with a 

lower impact of tau pathology [8, 93]. The severity and distribution of Lewy pathology also 

have an effect; DLB patients with diffuse neocortical and occipital Lewy pathology showed 

a more rapid disease course than those with brainstem and limbic Lewy pathology [51, 93].

Implications of Genetic Findings

DLB shares its genetic risk factors with AD (APOE) [94–97] and PD (α-synuclein -SNCA- 

and β-glucocerebrosidase -GBA-) [96, 97]. However, different regions within SNCA have 

been associated with PD and DLB [96, 98], and APOE remains significantly associated 

with DLB in individuals with no or low burden of AD pathology [95]. Most of DLB’s 

heritability is based on genetic risk variants associated with a small increase in DLB risk, 

with recent studies showing rare monogenic pathogenic mutations [99]. Clinically, APOE 
ε4 is associated with a faster disease progression and shorter survival in DLB [100, 101]. 

Future studies will need to evaluate the pathological changes that mediate this progression. 

Conversely, AD co-pathology is less prevalent in DLB individuals with GBA mutations [7]. 

These results indicate that genetic risk factors play an important role in the frequency of 

co-pathologies and clinical outcomes in DLB.

Biomarkers in the Setting of DLB Co-pathologies

An inherent limitation of the neuropathological studies is the cross-sectional evaluation of 

pathology at the time of death, which does not inform when these pathologies appear and 

how they interact during the disease’s course. The recent explosion of available biomarkers 

has made it more possible to assess co-pathologies in vivo, enabling their detection 

even at prodromal disease stages. Biomarkers can be classified based on their modality 

or the pathological feature they quantify. From a modality perspective, biomarkers can 

be subdivided into neuroimaging, biofluid, neurophysiological, tissue-based (biopsy), and 

technology-based objective measures. Biomarkers can also be broadly divided into disease-

specific and disease-nonspecific regarding the measured pathological feature. Disease-

specific biomarkers include biomarkers that quantify specific changes to an underlying 

pathology, like Aβ biomarkers. Conversely, disease non-specific biomarkers measure 

changes that are not specific to a pathology, like brain atrophy evaluated using structural 

MRI sequences. We will discuss the utility of the biomarkers based on the pathological 

feature they measure because this aligns better with their role within a diagnostic and 

outcomes framework. These biomarkers are described below and summarized in Table 2.
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Disease-Specific Biomarkers

Disease-specific biomarkers quantifying Aβ, tau, TDP-43, and α-synuclein are valuable 

biomarkers with the potential to indicate the presence of each co-pathology. Traditionally 

these biomarkers included CSF assays and PET scans [102–104], although, despite recent 

advances, there is still a lack of a sensitive and specific ligand for α-synuclein. Several 

studies show that PD individuals present lower CSF tau levels than controls [105–107]. It 

is unclear what is the reason for this phenomenon or whether this occurs in DLB. Further 

studies with autopsy validation will need to evaluate if different CSF tau biomarker cutpoints 

are needed in Lewy body disease, including DLB. Initial flortaucipir PET studies in DLB 

individuals indicate higher binding than healthy controls and cognitively unremarkable PD 

individuals, with a wide range of binding and correlate with MMSE scores [80, 108]. 

The newly developed plasma Aβ and tau assays will offer less invasive, easily deployable 

biomarkers [109–111]. Plasma tau levels are elevated in DLB individuals with pathological 

CSF Aβ values, and higher levels also predict worse baseline cognition and faster cognitive 

decline in the same individuals [110]. CSF real-time quaking-induced conversion (RT-QuIC) 

and protein misfolding cyclic amplification (PMCAand α-synuclein [42]assays can detect 

α-synuclein [43]. One manuscript presented a CSF TDP-43 RT-QuIC assay [112]. Initial 

studies in PD participants have shown high sensitivity and specificity of α-synuclein seeding 

assays, which have been tested in multiple tissues and biofluids with variable sensitivities 

[34–40], in addition to CSF. Some of these studies have also included DLB participants 

showing high accuracy in CSF and skin samples [36, 39]. In addition, skin α-synuclein 

immunohistochemical evaluation can accurately classify PD individuals [41].

Disease-Nonspecific Biomarkers

Disease-nonspecific biomarkers can measure synaptic loss, brain atrophy, neuronal 

dysfunction, and glial activation across different neurodegenerative diseases. These changes 

correlate with the degree of cognitive impairment in dementia and are known to play a 

significant role in disease presentation and progression [4, 113]. However, these biomarkers 

reflect changes secondary to a range of pathologies either in singular or in combination and 

must be interpreted accordingly in clinical practice and trials. These characteristics make 

these biomarkers suitable for investigating the underlying pathology’s impact on DLB [4, 

114].

Structural and Functional Imaging Biomarkers—Multiple structural and functional 

approaches have been evaluated in DLB [114], including MRI, CT, SPECT, EEG, and 

FDG-PET. As noted previously, biomarkers are now included in the diagnostic criteria 

for DLB [5] and, more recently, the research criteria for prodromal DLB criteria [23]. 

These neuroimaging modalities capture downstream, cumulative changes resulting from the 

combined pathologies present in DLB individuals (or any other dementia). The processed 

images can be scored using visual rating scales and easily performed in the routine clinical 

setting. Conversely, more quantitative measures like volumetry and cortical thickness 

quantifications are more sensitive techniques [115] and are desirable as outcome measures 

in clinical trials. They have been used to evaluate differences in brain atrophy patterns in 

people with DLB with and without underlying AD co-pathology [116, 117]. Neuroimaging 

implications of limbic TDP-43 co-pathology in DLB remain to be studied.
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Changes in structural connectivity are evaluated using the diffusion tensor imaging (DTI) 

technique and higher tensor modeling techniques such as fixel-based analysis. These 

techniques have been applied in at-risk groups for PDD [118]; whether this approach is 

sensitive to tau and other co-pathologies within the DLB spectrum is still a topic of debate 

[119]. Emerging techniques sensitive to tissue changes, such as quantitative susceptibility 

mapping or quantitative multiparameter maps, have not yet been directly evaluated in DLB 

alongside pathological data but show greater promise based on correlations with clinical 

measures in PD [120]. Similarly, MRI substantia nigra free water values are increased in 

PD and atypical parkinsonism and could serve as diagnostic and imaging outcome measures 

[121, 122], but further work is needed in DLB.

Beyond structural changes, functional MRI and metabolic/perfusion nuclear medicine 

imaging techniques can track dysfunction in specific brain regions, including 

temporoparietal and occipital hypometabolism in DLB seen on 18F fluorodeoxyglucose 

(FDG) and SPECT perfusion imaging. The “cingulate island sign” (occipital 

hypometabolism with relative sparing of the posterior cingulate cortex) appears to 

distinguish those with DLB from other dementias [81]. It could indicate either 

nonsignificant or a low burden of AD co-pathology [123]. Different metabolic patterns have 

already been used to detect different underlying pathologies and progression risks in PD 

[124, 125]. However, their use is still limited in the DLB and needs further evaluation.

CSF and blood markers of neurodegeneration, synaptic dysfunction, and glial 
activation—Several non-specific neurodegenerative biomarkers have been developed to 

evaluate axonal damage, glial involvement, and synaptic dysfunction in CSF and blood 

samples.

Axonal damage can be quantified by measuring the neurofilament light chain (NfL), 

a structural component of the neural cytoskeleton. In axonal injury, NfL is released 

into the extracellular space leading to its increase in CSF and plasma [126, 127]. 

Higher CSF and blood NfL levels are already present in the prodromal DLB phase and 

correlate with short-term outcomes [127, 128]. The available evidence suggests that co-

pathologies influence NfL because its values increase across multiple types of brain injuries, 

including neurodegenerative, traumatic, inflammatory, and vascular conditions [127, 129]. 

Glial-related markers are elevated in DLB compared to controls [130]. Proposed biofluid 

biomarkers of synaptic dysfunction have not yet been assessed in DLB [113].

Integration of Multiple Biomarkers—Traditionally, a single diagnosis has been 

assigned to patients with motor or cognitive disorders. Following this approach, biomarker 

studies aim to distinguish one pathology from the other, assuming they are mutually 

exclusive (Figure 1A). However, neuropathological studies have demonstrated that 

cognitively impaired individuals have multiple pathologies leading to their cognitive changes 

[46, 47]. The AT(N) framework accommodates the integration of different processes (Aβ, 

tau, and neurodegeneration) to classify individuals within the AD spectrum [131, 132]. 

The latest version of the AT(N) framework also discusses the possibility of categorizing 

biomarker values into a three-range approach and evaluating biomarkers targeting other 

pathologies to assess their potential contribution in AD. We propose a new biomarker 
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quantitative approach (Figure 1B) in DLB that integrates pathology disease burden (Aβ, 

tau -differentiating different tau species-, TDP-43, and vascular changes) and processes 

such as inflammation and neurodegeneration into different quantitative axes leading to a 

specific biomarker fingerprint for each individual. It also includes normal and pathological 

range definitions. The integration of quantitative values in the fingerprint allows for 

potential changes in biomarker cutpoints (red and green shading boundary) on an individual 

basis based on established factors that impact biomarker performance (adjusting plasma 

biomarker cutpoint values based on renal clearance, or gray matter volume/thickness 

cutpoints based on age).

Implications for Clinical Trial Design

The new diagnostic criteria and the increasing number of Lewy pathology biomarkers will 

facilitate the recruitment into clinical trials by including participants at potential earlier 

stages and greater access to biomarkers to increase the diagnostic sensitivity and exclude 

participants without Lewy pathology.

Most clinical trials have not evaluated the impact of co-pathologies on treatment response. 

Evaluating co-pathologies in future clinical trials will be crucial because of their impact 

on clinical presentation, cognitive performance, disease progression, and biomarkers, as 

summarized above [6, 7, 73–77, 82, 89, 152, 153]. One study suggested that treatment 

with acetylcholinesterase inhibitors (AChEI) was associated with a slower rate of cognitive 

decline in DLB patients with concomitant AD (although, in this study, DLB without AD 

were not evaluated) [154]. Conversely, DLB individuals with negative amyloid PET scans 

experience a more significant response to AChEI treatment than those with positive Aβ PET 

scans [155].

There are two overall consequences of co-pathologies for DLB clinical trial design. First, 

co-pathologies in DLB will need to be treated, for example, the administration of AD 

disease-modifying therapies (and symptomatic therapies) in DLB participants with AD 

co-pathology. Second, clinical trials evaluating DLB-specific treatments should stratify DLB 

participants and account for the potential effect of co-pathologies. This approach will 

be relevant for symptomatic therapies or treatments that do not specifically target Lewy 

pathology. However, in clinical trials targeting Lewy pathology (or another disease-defining 

protein deposit), participants could be selected based on their biomarker-defined presence 

instead of the clinical presentation.

In theory, participants with DLB with coincident AD pathology or vascular risk factors 

may benefit from disease-modifying therapies that successfully treat these conditions. 

This approach could also be extended to symptomatic therapies. To test this hypothesis, 

successful disease-modifying therapies and symptomatic treatments for co-pathologies 

should be evaluated in randomized clinical trials recruiting DLB individuals with co-

pathologies confirmed by appropriate disease-specific biomarkers.

Current neurodegenerative disease clinical trials confirm the presence of the targeted 

pathology using biomarkers, but these trials usually do not account for the presence of 
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co-pathologies. Therefore, clinical trials design calls for a combination of biomarkers to 

confirm the pathology of interest and to identify relevant co-pathologies. This information 

would have multiple applications: 1) influencing the inclusion and exclusion criteria for 

study entry, 2) trial stratification and evaluation of outcomes during the clinical trial, which 

includes integration of a multi-modal biomarker approach that is able to model the impact of 

each co-pathology. Biomarker use could decrease participant heterogeneity to increase effect 

sizes and decrease sample sizes, but current evidence in DLB is insufficient to evaluate the 

potential benefits.

These disease-specific biomarkers identify the misfolded proteins that define the different 

neurodegenerative conditions and therefore detect the different co-pathologies. However, 

these same biomarkers might not be adequate clinical trial outcome measures, at least 

based on recent AD clinical trials targeting Aβ [156, 157]. Therefore, disease non-specific 

biomarkers that define downstream changes closer to the cognitive outcomes could represent 

better outcome measures [131, 156, 157]. Future prospective cohort studies need to 

investigate how quantifying these co-pathologies informs longitudinal clinical changes and 

neurodegeneration biomarkers that could serve as outcomes in clinical trials [158].

There is insufficient data from clinical cohorts characterizing biomarkers performance, 

genetic heterogeneity, and co-pathology prevalence in DLB individuals with multiple 

comorbidities or belonging to different minority and underserved populations leading to 

health disparity. This lack of diversity and access difficulty in research studies and clinical 

trials is not unique to DLB [159]. In addition, stringent clinical criteria and lack of diverse 

recruitment in clinical trials also can limit the generalizability of their results and an 

equitable access to them as highlighted in other medical fields [160]. Studies including 

AD participants have shown differences in biomarker values in these groups [158, 161]. 

Ongoing and upcoming DLB clinical studies and trials need to consider the multiple aspects 

laid out by the National Institute on Aging Health Disparities Research Framework [162]. 

Strategies to increase enrollment and access to research studies and clinical trials are vital to 

achieving these goals [163]. In the future, plasma biomarkers could offer a less invasive and 

more cost-effective diagnosis. Disease-specific plasma biomarkers are at a more advanced 

stage in AD; however, they are currently not ready to be used as a stand-alone diagnostic 

marker o in primary care [164].

Figure 2 summarizes a framework to evaluate and account for co-pathologies in DLB 

clinical trials. It aims to integrate multi-modal biomarker approaches in DLB to develop 

personalized treatment selection and outcome evaluation approaches. The first stage includes 

the selection of the disease stage and phenotype based on clinical criteria. Earlier disease 

stages, including prodromal DLB [23] and rapid eye movement behavioral disorder (RBD) 

[165], offer earlier treatment windows. The second step includes DLB biomarkers to confirm 

the underlying Lewy pathology. The third step would consist of biomarkers that assess 

the presence of co-pathologies and quantify neurodegeneration. All this information is 

integrated during the fourth step to identify subgroups and different progression rates for 

endophenotyping and stratification. This leads to personalized treatment selection in step 5. 

Step 6 evaluates target engagement biomarkers that track changes that correlate with future 

clinical outcomes.
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This framework can also accommodate innovative clinical trial designs such as adaptive 

methodologies and master protocols [166]. Adaptive methodologies are pre-specified 

modifications to a clinical trial protocol during the data collection period [167], which 

include: changes to eligibility criteria, endpoints, dosage or patient allocation, sample size 

re-estimation, and addition or termination of treatment arms [168]. These modifications can 

be implemented in master protocols, a type of clinical trial that uses a single protocol to test 

a single drug in different diseases (basket trial), multiple drugs in a single disease (umbrella 

trials), or multiple therapies (separately or in combination) in multiple diseases in parallel 

(platform trials) [169]. These novel designs improve operational efficacy, include broader 

patient populations, share a single common control group (thus requiring fewer participants), 

cycle between therapies, simplify comparison across sub-studies, and increase the number of 

treatments tested [169]. These new methodologies could improve our ability to account for 

co-pathologies.

Conclusion

Individuals with DLB frequently present concurrent co-pathologies that impact clinical 

presentation and progression. Therefore, it is likely that combined disease-specific disease-

modifying therapies will be required to affect all the pathologies contributing to the clinical 

signs and symptoms. However, our current understanding of co-pathologies’ impact is 

limited because current evidence is mainly derived from retrospective autopsy studies. 

Another challenge is identifying ideal disease non-specific biomarkers that closely correlate 

with clinical outcomes and serve as reliable clinical outcomes. An additional caveat is 

that these disease non-specific biomarkers pathologies might reflect changes from multiple 

pathologies.

Future approaches will require integrated multi-modal biomarkers with different functions. 

To inform clinical trials and care, we need cohort studies that evaluate disease-specific 

biomarkers to characterize the prevalence, impact, and progression of co-pathologies in 

prodromal and early dementia stages. Clinical trials will also need disease-nonspecific 

biomarkers that closely correlate with meaningful clinical outcomes and serve as outcomes 

in clinical trials. The design of these cohort studies should further evaluate the studied 

biomarkers’ current evidence to advance them towards clinical application and provide 

initial evidence of the emerging biomarkers [170]. The cohorts should recruit DLB 

individuals representing diverse socioeconomic, races, ethnicities, and risk factors.

Here, we proposed a multi-axial biomarker integration approach and a multi-step process 

for selection, stratification, evaluation of target engagement, and interpretation of clinical 

trial results in DLB. This multi-layered biomarker approach will provide a personalized 

assessment of pathologies guiding recruitment into clinical trials and interpreting its 

outcomes. Once disease-modifying therapies are available, this process will help predict 

different response rates to treatments and guide potential treatment approaches that combine 

various drugs targeting each pathology present in the brain.
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Figure 1. Application of diagnostic biomarkers.
A) Biomarker applied to identify a single pathology/diagnosis and exclude other 

pathologies/diagnoses (differential exclusion diagnosis). B) Application of biomarkers 

to independently identify the different underlying processes leading to cognitive and 

movement disorders. The radar chart approach accommodates the inclusion of quantitative 

biomarker data along each axis, including a threshold into normal (green) and pathological 

(red) biomarker value ranges and offering a specific biomarker fingerprint for each 

individual. The purple line and dots represent a hypothetical patient. A: Amyloid β; 

AD: Alzheimer’s disease; CGI: Cytoplasmatic glia inclusion; CVD: Cerebrovascular 

disease; DLB: Dementia with Lewy bodies; FTLD: Frontotemporal lobar degeneration; 

I: Inflammation; LATE: Limbic-predominant age-related TDP-43 encephalopathy; LP: 

Lewy pathology; N: Neurodegeneration; S: α-Synuclein; T: Tau; S: α-synuclein; V: 

Cerebrovascular pathology; 3R: 3-repeat tauopathy; 4R: 4-repeat tauopathy.
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Figure 2. DLB clinical trial framework accounting for the presence of co-pathologies.
After the initial selection of participants based on clinical disease severity (step 1), Lewy 

pathology needs to be confirmed based on α-synuclein disease-specific biomarkers (step 

2). Co-pathologies are then screened using additional biomarkers (step 3). The combined 

biomarker information could be part of exclusion or inclusion criteria or be considered 

during the clinical trial for stratification (step 4) or as co-variates. The biomarker fingerprint 

(See figure 1B) will estimate the predicted disease progression rate and identify the 

combination of treatments for each individual (step 5). Finally, biomarkers can be used 

to verify target engagement and as clinical trial outcome measures (step 6). In steps 2 and 3, 

the inner green circle represents the biomarker modalities like skin biopsies, neuroimaging 

(PET, SPECT, and MRI), blood, and cerebrospinal fluid). The outer circle represents the 

biomarker measurement, including radiotracer binding, quantification of vascular pathology 

through MRI, immuno-assays, real-time quaking-induced conversion, or protein misfolding 

cyclic amplification performed on biofluid samples.
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Table 1

Co-pathology in dementia with Lewy bodies

Type of Neurodegenerative 
Condition

Type of Pathology Prevalence in DLB

Alzheimer’s disease Amyloid-beta (Aβ) 
plaques 
Tau neurofibrillary 
tangles

48–88% of individuals with DLB have intermediate- or high-level AD pathology 
versus 17–62% in PDD and 7–10% in those with PD who are dementia free [7–
10]. 
AD pathology is associated with a greater Lewy pathology burden [51].

TDP-43 and limbic-
predominant age-related 
TDP-43 encephalopathy 
(LATE)

TDP-43 13–60% of individuals with DLB [11–15]
More prevalent in the advanced neocortical Lewy pathology (LP) stages, in the 
presence of AD co-pathology in DLB vs. individuals with PD who are dementia-
free [11, 13, 15]

Frontotemporal lobar 
degenerations Tau (FTLD)

Tau Less prevalent compared to other co-pathologies

Other Tau-related 
neurodegenerative conditions, 
including aging-related Tau 
astrogliopathy (ARTAG)

Tau Not studied in DLB alone
In Lewy body disease overall (PD + DLB): 31% of participants without AD 
co-pathology [22]
72% in the presence of AD co-pathology [22]

Cerebrovascular Pathology Microinfarcts
Gross infarcts

Neuropathological samples [16]
Microinfarcts 26.7%
Gross infarcts 6.7%16

MRI-based samples] [57, 62
18.8–27%

Cerebral amyloid 
angiopathy (CAA)

Neuropathological samples
CAA 66.7% none to intermediate AD neuropathological changes versus 94.7% 
CAA prevalence in individuals with high AD neuropathological changes [13]
CAA is highest in DLB (82%−91%), followed by PDD (50%), and lowest in 
cognitively unimpaired PD (21.7%) [13, 17]

Cerebral microbleeds 
(usually associated 
with CAA)

Are also more frequent in DLB (30%−45.2%) than in PDD (26.1%), PD (11.5%), 
and control participants (17.1%) [58–60]. However, one study that compared 
participants with DLB with and without microbleeds did not find differences in 
florbetapir binding and found that high systolic blood pressure was the factor 
associated with microbleeds in DLB [61]

White matter 
hyperintensities 
(WMH) burden

It may be ↑ in DLB vs. healthy controls [59, 62, 66–68], although reports are 
inconsistent [69–71]
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Table 2:

Biomarkers in the Setting of DLB Co-Pathologies

Pathological change Biomarker modality Implications in dementia with Lewy bodies

Disease-Specific Biomarkers

Aβ CSF and PET biomarkers
Plasma assay [109]

Both modalities accurately predict the presence of Aβ plaques in the 
brain [102, 133] and are in good agreement with each other [103].
Conversion to pathological values of CSF Aβ tends to precede PET 
abnormalities [134].

Tau CSF and PET biomarkers
Plasma assay [110]

Correlates with tau brain deposition [102, 135]; typically detect 
neurofibrillary tangle pathology present in AD rather than FTLD-
Tau pathology [136, 137].
New tracers are being developed to quantify FTLD-Tau pathology 
[138].

α-synuclein CSF real-time quaking-induced 
conversion (RT-QuIC) [39, 42] and 
protein misfolding cyclic amplification 
(PMCA) [43] 
Skin [34–36, 39, 41]
Olfactory Mucosa [37–39]
Submandibular gland [39, 40]
Colon [39]

Binary detection of the presence/absence of α-synuclein only. Less 
useful to quantify disease progression. Further studies are needed in 
DLB.

Disease Nonspecific Biomarkers

Synaptic loss CSF and blood biomarkers [113] Structural and functional imaging alterations are strongly correlated 
with fluid-based biomarkers of synaptic and neurodegenerative 
tissue change [139].

Brain atrophy Imaging techniques using either MRI Correlates with the degree of cognitive impairment and is known to 
play a significant role in disease presentation and progression [114].
Present in brain aging and can follow a different pattern in 
cognitively impaired individuals [140, 141].

Neuronal dysfunction and 
damage

CSF and blood biomarkers [128, 142] Structural and functional imaging alterations strongly correlate with 
fluid-based biomarkers of synaptic and neurodegenerative tissue 
change [139] and can track change in-vivo [113].

Glial activation CSF and blood biomarkers [130]

Structural and Functional Imaging Biomarkers

Relative preservation of 
medial temporal lobe 
structures

MRI 
CT

Included in the diagnostic criteria for DLB [5].

Reduced basal ganglia 
dopamine transporter 
uptake

SPECT

Increased focal and diffuse 
abnormalities

EEG

Reduced occipital 
metabolism/cingulate island 
sign

FDG-PET

Insular thinning and gray 
matter atrophy

MRI Reported as requiring further investigation in the research criteria 
for prodromal DLB.

Medial temporal lobe 
structures atrophy

Visual rating scales Greater atrophy in multiple brain regions than in controls and 
relative preservation of medial temporal lobe structures compared 
to AD [143–145].
AD co-pathology is associated with greater medial temporal lobe 
atrophy in DLB, demonstrating that AD co-pathology (and possibly 
TDP-43) modifies imaging patterns in people with DLB [143, 146, 
147].

Abnormalities in the 
cholinergic system

Volumetry and cortical thickness 
quantifications

Atrophy of nucleus basalis of Meynert in prodromal MCI stages 
[148]
Associations between nucleus basalis of Meyner atrophy, Aβ, and 
cognitive changes differ in AD and DLB [149].
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Pathological change Biomarker modality Implications in dementia with Lewy bodies

Limbic TDP-43 co-
pathology

RT-QuIC [42] Studies are needed in DLB.

Higher WMH burden MRI Associated with more neurodegeneration in DLB [57, 67, 150], 
particularly in brain areas that receive dense cholinergic input [57], 
which may have implications for the cholinergic treatment of DLB.

Structural connectivity 
changes

Diffusion tensor imaging (DTI) 
technique and higher tensor modeling 
techniques such as fixel-based analysis

Seen in at-risk groups for PDD [118].
Studies are needed in DLB.

Quantitative susceptibility mapping 
Quantitative multiparameter maps

Applied in PD [120], revealing a correlation with clinical change.
Studies are needed in DLB.

Temporoparietal and 
occipital hypometabolism

18-Fluorine 18F fluorodeoxyglucose 
(FDG) and SPECT perfusion imaging

Further studies are needed in DLB with co-pathologies.

“Cingulate island sign” FDG-PET May indicate a lower Braak neurofibrillary tangle stage at autopsy 
[123].

Abnormalities in 
serotonergic systems

Volumetric measures and PET 
radiotracers

Further studies are needed in DLB with co-pathologies.

CSF and blood markers of neurodegeneration, synaptic dysfunction, and glial activation

Neuro-axonal damage Neurofilament Light (NfL) Elevated already in prodromal DLB stages, higher levels in the 
presence of AD co-pathology [151].

Glial-related change Glial fibrillary acidic protein (GFAP), 
the soluble triggering receptor 
expressed on myeloid cells 2 (sTREM2, 
mainly expressed by microglia), 
and S100 calcium-binding protein 
B (S100B, mainly expressed by 
astrocytes).

Elevated in DLB compared to controls [130].

Synaptic dysfunction Fluid-based biomarkers: synaptosomal-
associated protein 25 (SNAP-25), 
Synaptogamin-1, neurogranin, and β-
synuclein.

Further studies are needed in DLB with co-pathologies.
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