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Abstract 

Background  Robots can generate rich kinematic datasets that have the potential to provide far more insight into 
impairments than standard clinical ordinal scales. Determining how to define the presence or absence of impair-
ment in individuals using kinematic data, however, can be challenging. Machine learning techniques offer a potential 
solution to this problem. In the present manuscript we examine proprioception in stroke survivors using a robotic 
arm position matching task. Proprioception is impaired in 50–60% of stroke survivors and has been associated with 
poorer motor recovery and longer lengths of hospital stay. We present a simple cut-off score technique for individual 
kinematic parameters and an overall task score to determine impairment. We then compare the ability of different 
machine learning (ML) techniques and the above-mentioned task score to correctly classify individuals with or with-
out stroke based on kinematic data.

Methods  Participants performed an Arm Position Matching (APM) task in an exoskeleton robot. The task produced 
12 kinematic parameters that quantify multiple attributes of position sense. We first quantified impairment in indi-
vidual parameters and an overall task score by determining if participants with stroke fell outside of the 95% cut-off 
score of control (normative) values. Then, we applied five machine learning algorithms (i.e., Logistic Regression, Deci-
sion Tree, Random Forest, Random Forest with Hyperparameters Tuning, and Support Vector Machine), and a deep 
learning algorithm (i.e., Deep Neural Network) to classify individual participants as to whether or not they had a stroke 
based only on kinematic parameters using a tenfold cross-validation approach.

Results  We recruited 429 participants with neuroimaging-confirmed stroke (< 35 days post-stroke) and 465 healthy 
controls. Depending on the APM parameter, we observed that 10.9–48.4% of stroke participants were impaired, while 
44% were impaired based on their overall task score. The mean performance metrics of machine learning and deep 
learning models were: accuracy 82.4%, precision 85.6%, recall 76.5%, and F1 score 80.6%. All machine learning and 
deep learning models displayed similar classification accuracy; however, the Random Forest model had the highest 
numerical accuracy (83%). Our models showed higher sensitivity and specificity (AUC = 0.89) in classifying individual 
participants than the overall task score (AUC = 0.85) based on their performance in the APM task. We also found that 
variability was the most important feature in classifying performance in the APM task.

Conclusion  Our ML models displayed similar classification performance. ML models were able to integrate more 
kinematic information and relationships between variables into decision making and displayed better classification 
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performance than the overall task score. ML may help to provide insight into individual kinematic features that have 
previously been overlooked with respect to clinical importance.

Keywords  Stroke, Proprioception, Robotics, Position sense, Machine learning, Deep learning

Introduction
Proprioception is the sense of body position, motion, and 
force based on information from muscle spindles, Golgi 
tendon organs, cutaneous receptors, joint receptors, and 
efference copy of motor commands [1–4]. Proprioceptive 
impairments are common after stroke [5–7] and occur 
in as many as 64% of stroke survivors [8]. These impair-
ments are associated with deficits in learning sequences 
of movements [9], as well as decreased independence, 
quality of life, and poor functional recovery [10].

Clinical assessments of proprioception have tradi-
tionally relied on coarse observer-based examinations. 
Most often, patients are asked to close their eyes while 
an examiner moves the distal part of the patient’s finger, 
or the entire finger, up or down. The patient is asked to 
report the position of their fingertip/finger. Alternatively, 
some clinicians administer the Thumb Localization Test 
[11]. This is a simple test in which the clinician passively 
moves the patient’s hand to a random position overhead 
while the patient’s eyes are closed, and the patient must 
then reach to grasp their passively moved thumb with the 
opposite hand. Unfortunately, these clinical tests have 
poor reliability, lack resolution, and display ceiling effects 
[12, 18–20]. Some research groups have designed stand-
ardized clinician-administered tests such as the Notting-
ham Sensory Assessment [12], Wrist Position Sense Test 
(WPST) [13, 14], and Rivermead Assessment of Soma-
tosensory Performance (RASP) [15] in attempts to deal 
with the issues outlined above.

However, much of the field studying proprioception 
has moved to the use of automated measurement tools 
[16, 17]. Robotic and instrumented assessments are 
commonly used in research studies of upper extremity 
proprioception [13, 21–23]. Some authors have used pas-
sive movement threshold detection paradigms [24, 25], 
whereas others have used single limb position-matching 
[26–29] or mirror-matching tasks [29–31]. Our group 
has significant experience using a robotic arm posi-
tion matching task in individuals after stroke [31–34]. 
The arm position matching task, which we used in this 
study, relies on mirror matching and can measure vari-
ous aspects of an individual’s position sense, including 
variability in matching positions, systematic shifts in 
the perceived workspace, and perceived contraction or 
expansion of the workspace. This task can be adminis-
tered quickly (~ 3  min) and has several advantages over 
typical clinical measures, including generating reliable, 

continuous measures of position sense after stroke, lack 
of floor or ceiling effects, and the fact that the interpre-
tation of human examiners is not required [31]. Robotic 
proprioceptive testing produces a rich dataset of kin-
ematic measures that quantify impairments that can be 
difficult to assess at the bedside by a clinician observer.

Robotic assessments of proprioception can generate 
a large volume of data that may eventually be useful in 
predicting outcomes and planning for treatment after 
stroke. Machine Learning (ML) may be helpful in this 
regard. Several different ML methods exist, each tak-
ing advantage of different mathematical processes and 
algorithms. Some ML methods are more appropriate for 
certain types of data [35, 36]. Several past studies have 
attempted to predict clinical outcomes following stroke 
(e.g., discharge from a rehabilitation unit to home, risk 
of medical complications, risk of readmission to hos-
pital) using standardized observer-based clinical scales 
[37–43]. Many of these studies relied on Logistic Regres-
sion, although a few used Machine Learning techniques 
[53–56]. ML techniques are highly effective algorithms 
that are driven by large volumes of data and can aid in 
prognosis. They are a set of powerful algorithms capable 
of modeling hidden and complex relationships between 
clinical variables and treatment outcomes without nec-
essarily relying on any formal statistical assumptions 
[44]. Recently, Deep Learning-based approaches such 
as Deep Neural Networks, a broader family of ML tech-
niques, have achieved impressive results across a variety 
of Artificial Intelligence (AI) fields [45–49]. Deep Learn-
ing approaches are inspired by the human brain’s abil-
ity to abstract high-level representations from low-level 
sensory stimuli [50]. These multi-leveled approaches can 
be mathematically represented as multi-layered neural 
networks and recently are able to be trained in layer-wise 
backpropagation to obtain tractable optimization [51]. 
These techniques are currently state-of-the-art in appli-
cations of speech recognition, image processing, com-
puter vision, and natural language processing [52].

ML techniques have begun to receive some atten-
tion in the field of stroke recovery. ML has been used 
for predictive modelling of recovery using the Barthel 
Index [57] and to help interpret data collected from 
Inertial Measurement Units in post-stroke gait [58]. 
There are significant opportunities for the use of ML 
techniques as interest continues to grow in the use of 
kinematic measures to quantify sensory and motor 
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functions. Identifying particular kinematic attributes 
that may not be easily recognized on clinical exami-
nation, predicting recovery following stroke and/or 
identifying specific kinematic attributes that might be 
important for targeted intervention would seem to be 
potential uses of ML in stroke recovery. In the current 
study, we sought to examine the ability of ML tech-
niques to use kinematic data to determine whether 
or not an individual had a stroke. Our experimental 
example was chosen to provide a good test of the abil-
ity of different ML techniques to use kinematic data to 
classify stroke history when the outcome was known. 
We chose to do this with data from a proprioceptive 
task, as clinical assessments can be unreliable and 
making such a determination based on clinical data 
or individual kinematic parameters could prove to be 
substantially challenging. Further, post-stroke proprio-
ceptive deficits can significantly impact stroke recov-
ery. Studies have linked impaired proprioception with 
poorer motor recovery [59–63] and longer lengths 
of hospital stay [64]. Given the challenging nature of 
quantifying proprioception, we felt it may provide an 
ideal test case for the utility of ML techniques. Suc-
cess at using complex kinematics from a robotic pro-
prioceptive task to classify stroke, could bode well for 
future more challenging classification tasks in other 
neurologic conditions where the diagnosis is not yet 
known.

In the present study, we examined the performance 
of individuals with stroke and healthy controls on 
a robotic Arm Position Matching (APM) task. The 
goals of this study were: (1) to compare the different 
ML and DL techniques with a more traditional model 
that relied on the 95% cut-off score of normative data 
for different attributes of position sense, determin-
ing which technique flagged the highest number of 
stroke participants as abnormal, (2) to compare differ-
ent ML and DL techniques, and their ability to classify 
whether someone has had a stroke or not, and (3) to 
examine the relative importance of different parame-
ters measured in the APM task and their usefulness in 
classifying whether or not someone has had a stroke.

Methods
Participants
Participants with stroke were recruited from the inpa-
tient acute stroke or stroke rehabilitation units at the 
Foothills Medical Centre, the Dr. Vernon Fanning Care 
Centre in Calgary, Alberta, Canada, and Providence 
Care, St Mary’s of the Lake Hospital, Kingston, Ontario, 
Canada. Inclusion criteria for participants with stroke 
were: recent onset (< 35 days) of first clinical stroke and 
age ≥ 18  years. Exclusion criteria for participants with 
stroke were: other underlying neurological conditions 
(e.g. Parkinson’s, Multiple Sclerosis), upper limb orthope-
dic impairments, inability to understand task instructions 
or evidence of apraxia [65]. Neurologically intact control 
participants who also met the inclusion and exclusion cri-
teria above, but had no history of stroke, were recruited 
from the communities of Calgary, Alberta, and Kingston, 
Ontario, Canada. This study was reviewed and approved 
by the University of Calgary Conjoint Health Research 
Ethics Board and the Queen’s University Research Eth-
ics Board. All participants gave written informed consent 
before performing the assessment.

Robotic assessment
Robotic Device The robotic assessment of position sense 
was performed using a Kinarm Exoskeleton robotic 
device [66] (Fig. 1A; Kinarm, Kingston, Ontario, Canada), 
which permits movements of the arm in the horizontal 
plane involving horizontal abduction/adduction of the 
shoulder and flexion/extension of the elbow. The pla-
nar robot has 2 degrees of freedom, articulating at both 
the shoulder and elbow. The device records at a rate of 
1000 Hz and has a position resolution of 0.1 mm. Partici-
pants were seated in a height-adjustable wheelchair base 
with their arms supported against gravity. The device was 
fit to each participant’s arm by research staff who were 
trained to conduct the robotic assessment. The robot 
was wheeled to a 2D virtual/augmented reality display. 
The visual display is capable of projecting virtual targets 
into the plane of the participant’s arm during calibration 
and task performance. Given the focus on propriocep-
tive function, visual stimuli were not displayed on the 
screen during the experiment. Direct vision of the upper 

(See figure on next page.)
Fig. 1  Arm Position Matching (APM) task. A The Kinarm exoskeleton robot. B Typical healthy control participant data. The robot moved the 
participant’s passive right hand to one of 9 spatial locations (filled symbols). The participant then attempted to mirror match with the left active 
hand (open symbols). The solid blue line connects the average final positions of the outer eight target locations of the matching hand (active 
hand). Solid green line connects the outer eight targets for the robot moved passive hand. The dashed blue line is the mirror reflection of solid 
blue line, which allows a visual comparison of the average final outer 8 positions of the active and passive (robot-moved) hands. Ellipses represent 
one standard deviation of the matched positions. The ellipses represent trial-to-trial variability, where a larger ellipse means the participant was 
less consistent (i.e., more variable) in matching the position of their passive hand with the active hand. C An exemplar stroke participant who 
demonstrated high variability in position matching. D An exemplar stroke participant who demonstrated a contracted sense of their workspace. E 
An exemplar stroke participant who demonstrated a spatial shift of their workspace
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E. Stroke - Spatial Shift
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Fig. 1  (See legend on previous page.)
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extremities was occluded by a shutter and a bib. The set-
up and calibration procedures took between 6 and 8 min 
for each participant.

Arm Position Matching Task The Arm Position Match-
ing (APM) task was used to assess the individual’s posi-
tion sense of their arm and has been described previously 
[31–34, 67]. Participants were instructed to relax one 
arm (passive hand) and let the robot passively move their 
hand to one of four/nine spatial locations separated by 
20/10  cm (Fig.  1B, 9-target task). The 4-target protocol 
is spaced on a 2 × 2 grid with targets spaced at 20  cm 
intervals in the X- and Y-directions. The 9-target proto-
col is the same as the 4-target protocol but includes nine 
targets spaced on a 3 × 3 grid at 10  cm intervals. Tar-
get locations were pseudo-randomized within a block. 
Each block contained one trial at each target location 
and participants completed six blocks. The robot moved 
the passive hand using a bell-shaped speed profile (max 
speed < 1  m/s). After the robot completed the passive 
movement, participants were asked to move their other 
arm (active hand; Fig.  1B) to mirror-match the spatial 
position of the passive hand. Participants were granted as 
much time as necessary to match the active hand position 
with the passive hand. Participants notified the examiner 
when they had matched their hand position, and the 
examiner triggered the next trial. Each participant com-
pleted either the 4-target or 9-target task protocol [68]. 
For the stroke participants, the affected arm was always 
the passive hand. Healthy control participants completed 
the task twice, where each arm served as the passive hand 
once and we consider data from each arm as a separate 
participant in the analysis [69].

Robotic task parameters
The following parameters were used to quantify task per-
formance after completing all trials: (a) trial-to-trial Vari-
ability (Var) of the active hand, (b) Spatial Contraction/
Expansion Ratio (Cont/Exp) of the area matched by the 
active hand, (c) Systematic Spatial Shifts (Shift) between 
the passive and active hands, and (d) Absolute Error (AE).

Variability: Variability in Arm Position Match-
ing (APM) describes the trial-to-trial consistency of 
the active hand in matching the same target position 
(Fig.  1C). It was calculated as the standard deviation of 
the active hand’s position for each target location. The 
mean of the standard deviations was then calculated 
across all target positions in the x-coordinate (Varx), 
y-coordinate (Vary), and resultant linear variability of 
both coordinates (Varxy):

(1)Varxy =
√

Varx
2 + Vary

2

Spatial Contraction/Expansion Ratio: Spatial Con-
traction/Expansion Ratio describes whether a par-
ticipant displayed contraction or expansion of their 
perceived workspace (Fig. 1D). It was calculated as the 
matched area/range of the workspace of the active hand 
relative to the passive hand. This parameter was cal-
culated for the matched x-coordinates (Cont/Expx) by 
finding the difference between the mean x-coordinate 
of the three left and three right targets for the active 
hand compared with the passive hand:

A similar procedure was used to calculate contrac-
tion/expansion in the y-coordinate (Cont/Expy) using 
the range of the top and bottom three targets. Spatial 
contraction/expansion in both the x- and y- coordi-
nates (Cont/Expxy) was calculated by finding the area 
spanned by the active hand for the eight border targets 
and then normalized by the total spatial area spanned 
by these same targets using the passive hand.

Systematic Spatial Shifts: Systematic Spatial Shifts 
describe constant errors between the active and pas-
sive hands (Fig.  1E). These errors were calculated as 
the mean error between the passive and active hands 
for each target position. The mean was then calcu-
lated using the means for all target locations. System-
atic shifts were calculated in the x-coordinate (Shiftx), 
y-coordinate (Shifty), and combined across both coor-
dinates to provide a measure of the resultant shift in 
matched positions (Shiftxy):

Absolute Error: Absolute Error describes the mean 
absolute distance error between the position of the 
active and passive hands. The mean absolute distance 
error between the active hand and the target posi-
tion was calculated across all trials in the x-coordinate 
(AEx), y-coordinate (AEy), and combined across both 
coordinates (AExy):

A total of 12 parameters were used to measure per-
formance in the arm position matching task.

Z-score: For each of the parameters above, we relied 
on the Dexterit-E software [70] associated with the 
Kinarm to calculate a Z-score. The Z-score or stand-
ardized score, is the distance, measured in standard 
deviations, that a data point falls from the mean of the 
healthy cohort. Kinarm (Kinarm, Kingston, ON) [71] 

(2)Cont/Expx =
rangexactive
rangexpassive

(3)Shiftxy = Shiftx
2 + Shifty

2

(4)AExy =
√

AEx
2 + AEy

2
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uses a consistent methodology for developing normal 
models to calculate the Z-scores of each parameter. 
Parameter scores from the distribution of the norma-
tive data set (developed from neurologically intact 
controls) are transformed using a Box-Cox power 
transformation to convert the distribution to a nor-
mal distribution [72]. The transformed data are fitted 
by accounting for age, sex, handedness, and robotic 
platform (exoskeleton, endpoint robot) using Multiple 
Linear Regression (MLR). After the first regression, 
the standard deviation of the residuals is then modeled 
using a second MLR accounting for the same factors 
(age, sex, handedness, robotic platform). Z-scores are 
calculated using the residuals of the first regression and 
standard deviation modeled by second regression for 
each parameter. Z-scores are the particular values from 
the mean, i.e., a Z-score of 1 signifies that a value was 
1 standard deviation above the mean, and a Z-score 
of −  1 signifies that a value was 1 standard deviation 
below the mean of the healthy control data.

To ensure the distribution was “close-to-normal”, the 
skew and kurtosis of the final distribution were calcu-
lated and compared to the following criteria (Eqs.  5 
and 6). These criteria were selected from Pearson and 
Please [73] so that it is statistically valid to use para-
metric tests with the Z-scores.

where σ is the standard deviation, and µ3 and µ4 are the 
third and fourth moments of the mean.

Task Score:  A task score gives a global measure of a 
participant’s performance for a given task. It measures 
how far the participant’s performance is from the best 
performance. The first stage in calculating the task 
score is to convert the task parameter scores into stand-
ardized Z-scores (described above). The second stage is 
to identify whether the best performance for a given 
metric reflects large negative Z-scores, large positive 
Z-scores, or near zero Z-scores. The Z-scores are trans-
formed into Zeta scores using Eq.  7 for those param-
eters in which best performance is one-sided (i.e., large 
negative or large positive Z-scores).

where ‘+’ is used when poor performance is positive and 
‘-’ is used when poor performance is negative.

(5)skew : abs(
√

β1) ≤ 0.8,
√

β1 =
µ3

σ 3

(6)kurtosis : 2.4 ≤ β2 ≤ 3.6,β2 =
µ4

σ 4

(7)ς =
√
2 • erfc−1(

1

2
• erfc

(

±z
√
2

)

)

In the final stage, task scores are calculated based on 
the performance of healthy controls. The root-sum-
square (RSS) distance of Z-scores and Zeta scores are cal-
culated using Eq. 8 for healthy controls. RSS distance is 
also known as the Euclidean distance and is transformed 
into a Z-score using a Box-Cox transform. The Z-score of 
the RSS distance is then transformed to a one-sided sta-
tistic using Eq. 7.

where 
∑

i z
2
i  includes all two-sided parameters and 

∑

j ς
2
j  

includes all one-sided parameters.
Task scores are always positive. A score of 0 corre-

sponds to the best performance, and increasing values 
represent poorer performance. If the task score is > 3.29 
(that is normally 1 in 1000) for control participants, then 
that participant was classified as an outlier for the task 
and removed. Outliers were removed to improve the 
robustness of the modeling process of normative data 
sets.

Clinical assessments
A broad range of clinical assessments was performed 
to characterize the impairment of stroke participants 
in this study. The assessments served to quantify sensa-
tion, movement, cognition, and functional abilities. The 
assessments were performed by a physician or physio-
therapist who had expertise in stroke rehabilitation. They 
were blinded to the results of the robotic assessment.

Position sense was clinically assessed using the Thumb 
Localization Test (TLT) [11] because it has been used 
to quantify whole-limb position sense in many stud-
ies involving stroke [74–82]. In this test, the examiner 
moves the participant’s stroke-affected arm to a position 
in front of the participant at or above eye level, lateral to 
the midline with the participant’s eyes closed. The par-
ticipant is then asked to pinch the thumb of that limb 
with the opposite thumb and forefinger (reaching limb). 
Participants were scored as 0 if their performance was 
considered normal (completed task perfectly) to 3, which 
is considered markedly abnormal (the participant was 
unable to find his or her thumb and did not climb up the 
affected arm to locate it).

Motor impairment was assessed using the Purdue 
Peg Board test (PPB) (Lafayette Instrument Co., Lafay-
ette, IN, USA) [83] and the Chedoke-McMaster Stroke 
Assessment (CMSA) [84]. In the PPB assessment, par-
ticipants placed as many small pegs as possible into holes 
in a board over 30  s using one hand. The participant is 
required to use the proximal upper extremity to keep the 
hand in the appropriate position to retrieve and insert 

(8)rssDistance =
√

∑

i

z2i +
∑

j

ς2
j
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each peg as a test of fine motor skills. The CMSA relies 
on the concept of stages of motor recovery, which was 
first introduced by Twitchell [85]. The CMSA classifies 
participants into subgroups based on the stage of motor 
recovery. The 7-point scale corresponds to seven stages 
of motor recovery, where a score of 1 is considered the 
most abnormal and a score of 7 is normal.

Functional abilities were assessed using the Functional 
Independence Measure (FIM) [86]. It is used as a metric 
for independence within activities of daily living. Within 
the 18-item scale, 13 items are considered motor tasks, 
and 5 items are considered cognitive tasks. In the current 
manuscript, we present the total FIM score (measured 
out of 126) and the FIM score for the motor component 
(measured out of 91).

Data analysis
Data analysis was done using Machine Learning and 
Deep Learning techniques in the Python program-
ming language (version 3.7.4) [87]. In the first step of 
our analysis, we determined when stroke participants 

were impaired on robotic parameters using the Z-scores 
described above. We determined the 95% cut-off score 
of control performance (Task score > 1.96 is consid-
ered as impaired and Task score ≤ 1.96 is considered as 
unimpaired) on each robotic parameter to find whether 
an individual participant failed on a given parameter. 
When a stroke/control participant’s score fell outside of 
the control range, they were classified as impaired on that 
robotic task. Our primary analysis compared the impair-
ment rate found on individual parameters and the overall 
task score (so called cut-off score technique) versus the 
ability of Machine Learning and Deep Learning tech-
niques to determine impairment. Data imputation was 
unnecessary as there were no missing data in the sample 
of control and stroke participants.

Machine learning and deep learning
Flowchart of the Classification Models: The workflow 
blueprint of the data classification models is shown in 
Fig.  2. The K-fold cross-validation (K = 10, CV) train-
ing and testing data represent the outcome measures 

K-fold CV 
Training 
Labels

K-fold CV 
Training 
Data

Feature 
Scaling

Supervised 
ML/DL 

Algorithms

Training 
Features

Training

Testing

K-fold CV
Testing 
Data

Classification 
Model

Testing 
Feature

Feature 
Scaling

Mean and Standard 
Deviation of CV of 
Model Performance 

K-fold CV 
Testing 
Labels

K-fold CV 
Predicted 
Labels

Model Prediction, Evaluation, and
Interpretation

Mean of CV of Sensitivity 
and Specificity Analysis

Fig. 2  The workflow of K-fold (K = 10) cross-validation (CV) of the machine learning and deep learning models. The training and testing data refer 
to outcome measures derived from the position matching task in each stroke and control participant. The model generates a label that classified 
each individual participant as a control or participant with stroke
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(features) derived from the Arm Position Matching 
(APM) task (12 parameters) of each control and stroke 
participant. K-fold CV training and testing data were 
classified and labeled into two different categories (“con-
trol” and “stroke”). This data was passed through feature 
extraction and scaling processes. It was then fitted to the 
supervised machine learning and deep learning models. 
After evaluation, we calculated the mean and standard 
deviation across the K-fold CV for all model performance 
metrics. Finally, we calculated receiver operating charac-
teristic curves (ROC curves) for the mean of the K-fold 
cross-validated results of each model.

K-fold Cross-Validation (CV): The K-fold Cross-Valida-
tion procedure randomly divided the dataset into K-dis-
joint folds. One-fold was used for testing and remain 
K-l folds were used for training the model. This process 
was repeated K-times until the testing was performed on 
all K folds. All folds contained equal data points unless 
otherwise specified. We applied K-fold cross-validation 
(where K = 10) to estimate the performance and reliabil-
ity of each classification algorithm and enable meaningful 
comparison between classification models. The perfor-
mance of the classification models was evaluated by the 
mean and standard deviation across the K-fold datasets.

Features: A feature represents a measurable piece of 
data that can be used for analysis. It is also known as an 
“attribute” or “variable”. In our case, features were the 
Z-score data of the 12 task parameters (Variability X, 
Variability Y, Variability XY, etc.), such that all features 
were selected for our analysis. The features were then 
normalized using the min–max normalization (where 
the minimum value of that feature got transformed into 
0, the maximum value got transformed into 1, and every 
other value got transformed between 0 and 1) so that the 
variance of the features was in the same range. Then, fea-
tures were trained and tested using machine learning and 
deep learning models. After that, we classified partici-
pants with each model and evaluated model performance 
using the following metrics: accuracy, precision, recall, 
F1 score, receiver operating characteristics (ROC) curve, 
and feature importance.

Classification methods
We applied five Machine Learning (ML) techniques: 
Logistic Regression (LR) [88], Decision Tree (DT) [89], 
Random Forest (RF) [90], Random Forest with Hyper-
parameters Tuning (RFT) [91], and Support Vector 
Machine (SVM) [92]. We also applied one Deep Learn-
ing technique: Deep Neural Network (DNN) [93] for 
the classification (or supervised learning) of stroke and 
control data. We chose these 6 techniques as the type of 
data we were using is compatible with their application. 
All 6 techniques are commonly used for different ML 

problems [94–97]. Further, we expected that because of 
the differences between the techniques, that each tech-
nique had the potential to produce a different result 
when analyzing the same data. We hypothesized that the 
Random Forest model would outperform the other mod-
els because it represents an ensemble learning method 
rather than a single decision tree [98, 99].

Logistic Regression (LR): We used a Logistic Regression 
model to classify each participant as a stroke or control 
based on their performance in the arm position match-
ing task. For that purpose, we implemented a logistic 
regression classifier that was fitted in the binary logis-
tic regression regularization. This regularization added 
a penalty as model complexity increased to ensure the 
model generalized the data and prevented overfitting 
with an increase in parameters. LR model assumes a lin-
ear relationship between the input features and output. 
The binary logistic model had a dependent variable with 
two possible outcomes as healthy control and stroke. We 
used a tolerance of 0.0001 and the maximum number of 
iterations of 100 as criteria to stop network training.

Decision Tree (DT): We implemented a Decision Tree 
classifier as one of predictive modeling. It uses a tree-
like model in which each internal node (non-leaf ) is 
labeled with an input feature. The arcs coming from a 
node (branch) labeled with an input feature are labeled 
with each of the possible values of the target feature or 
the arcs lead to a subordinate decision node on a differ-
ent input feature. Each leaf node is labeled with a class 
either healthy control or stroke. This model splits the 
nodes of all available features/parameters and then 
selects the splits, which results in the most homogeneous 
sub-nodes.

Our decision tree classifier implementation consisted 
of the following parameters: Gini impurity as a criterion 
to measure the quality of split, best as a splitter to choose 
the best split, the maximum depth of the tree as 4, and 
the minimum number of samples at the leaf node as 1.

Random Forest (RF): We implemented an ensemble 
learning model (i.e., a Random Forest classifier). It is 
a classification algorithm consisting of many decision 
trees, which uses bagging and feature randomness when 
building each individual tree. It tries to create an uncor-
related forest of trees whose prediction by committee is 
more accurate than that of any individual tree. The out-
put of the random forest model was the class selected by 
most trees.

The parameters included in our implementation were: 
the number of estimators (the number of trees in the for-
est) was 100, Gini impurity as the criterion for the infor-
mation gain, the minimum number of samples required 
to split an internal node was 2, and the minimum number 
of samples required to be a leaf node was 1. We examined 
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the different number of maximum depths of the tree for 
the DT model and found that the maximum depth of 
four gave us the best classification accuracy. The lower 
number made our model faster, but not as accurate, and 
higher number gave more accuracy but slow and risk of 
overfitting.

Random Forest with Hyperparameters Tuning (RFT): 
We tuned the hyperparameters (a hyperparameter is a 
parameter whose value is used to control the learning 
process) of the Random Forest model to determine the 
best hyperparameters. It relies more on experimental 
results than theory, and thus the best model to determine 
the optimal settings was by trying many different combi-
nations to evaluate each model’s performance.

The tuned hyperparameters of the random forest 
model were: the number of trees in the forest, the maxi-
mum number of levels in each decision tree, the maxi-
mum number of features considered for spotting a node, 
the minimum number of data points placed in a node 
before the node is split, and the minimum number of 
data points allowed in a leaf node.

Support Vector Machine (SVM): We implemented a 
Support Vector Machine (SVM) classifier. It constructed 
a set of hyperplanes (hyperplanes are decision bounda-
ries that help to classify the data points) in high-dimen-
sional space to perform the classification task. The 
model transformed the data to find an optimal boundary 
between outputs (control or stroke). A good separation is 
achieved by the hyperplane that had the largest distance, 
or functional margin, to the nearest training data point of 
any class.

Our implementation included the following param-
eters: the regularization parameter that must be strictly 
positive, the Radial Basis Function (RBF) type kernel, the 
size of the kernel cache as 200 MB, the pseudo-random 
number generator was used for shuffling the data for 
probability estimators, and tolerance of 0.001 was applied 
as the network stopping criterion.

Deep Neural Network (DNN): We also implemented a 
Deep Learning technique, namely, Deep Neural Network 
(DNN). It is a part of a broader family of machine learn-
ing techniques based on artificial neural networks.

Our DNN classifier implementation consisted of three 
hidden layers between input and output layers. The first 
hidden layer had 12 units with the Rectified Linear Unit 
(ReLU) as the activation function, the second hidden 
layer had 8 units with the ReLU as the activation func-
tion, and the third hidden layer had 1 unit with the sig-
moid function as the activation function. We also used: 
binary cross-entropy as loss function, the Root Means 
Square propagation optimizer (RMSprop), the batch size 
of 10, and the number epoch of 100. We examined dif-
ferent numbers of epochs (i.e., 50, 100, 200, 500, 1000, 

2000, 3000, 5000, 10,000, 20,000, 50,000) for the DNN 
model and found that 100 epochs gave us the best perfor-
mance metrics. An epoch refers to the number of passes 
of the entire training dataset the deep learning technique 
has completed. The input layer had 12 units for 12 fea-
tures, and the output had 1 unit to predict a 0 or 1 that 
maps back to the “healthy control” or “stroke” class. Each 
layer of nodes trained a distinct set of features based on 
the output of the previous layer. The feature hierarchical 
process of our DNN model made it capable of handling 
very large, and high-dimensional datasets with billions of 
parameters passed through nonlinear functions.

Feature importance
Feature importance [100] in machine learning refers to 
techniques that assign a score to each feature based on 
their usefulness in the classification task. The score is 
expressed as a percentage. We applied different feature 
importance techniques/calculations for the different 
machine learning techniques. For LR and SVM models, 
feature importance was based on an information-theo-
retic criterion, measuring the entropy in the changes of 
predictions, and perturbation of a given feature [101]. A 
perturbation, in this instance, is an analytical method to 
determine an approximate solution of nonlinear equa-
tions for which exact solutions cannot be obtained. 
For the DT, RF, and RFT models, feature importance 
was computed as the mean and standard deviation of 
the impurity decrease within each tree [102]. Impurity 
decrease is the total decrease in node impurity averaged 
over all ensemble trees and node impurity is a measure 
of the homogeneity of the labels at a node. In general, a 
higher score of feature importance means the specific 
feature has a large effect (importance) on the model that 
is being used to classify participants as “stroke” and “con-
trol”, and a lower score means the specific feature has less 
impact on the classification model.

Results
Participant Demographics: Data were collected from 429 
stroke participants and 465 healthy control participants. 
Demographics and clinical features of all groups are sum-
marized in Table 1. Ninety-three percent of control and 
92% of stroke participants were right-hand dominant. 
Two control and three stroke participants were scored as 
having mixed handedness on the Edinburgh Handedness 
Inventory [103]. Forty-eight percent of stroke partici-
pants were observed to have proprioceptive impairment 
based on the Thumb Localization Test (TLT) test. Sev-
enty-six percent of stroke participants demonstrated 
motor impairments on their affected arm based on the 
Chedoke-McMaster Stroke Assessment (CMSA) test.
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Data Visualization: To visualize the distribution 
of scores on the robotic task parameters, we plotted 

histograms of each parameter. Variability Y for stroke 
and control participants is presented in Fig. 3. This exem-
plar figure demonstrated that the distribution of values of 
the Variability Y parameter overlapped between stroke 
and control participants. We chose to present Variability 
Y because this parameter had the most influence on the 
classification tasks (see Fig. 6). Similar findings were seen 
when examining the distributions of the other param-
eters (see Additional file  1: Figure S1). The overlap of 
stroke and control data highlighted the challenge of dif-
ferentiating normal from abnormal behavior based on a 
single parameter.

Cut-off Score Technique, Machine Learning, and 
Deep Learning Classifier Models:  We first examined the 
impairment rates for individual robotic parameters and 
the overall task score using the 95% cut-off score tech-
nique. Figure 4A shows the mean and standard deviation 
of impairment rates from the tenfold cross-validation of 
individual parameters (Variability, Contraction/Expan-
sion ratio, Shift, and Absolute Error) and the overall 
task score to find the number of impaired participants. 
The result indicates that the highest number of partici-
pants were impaired on the parameter Variability XY 
(48.4%) followed by the other two variabilities: Variabil-
ity Y (47.1%) and Variability X (45.2%) parameters using 
the cut-off technique based on individual parameter. The 
least number of participants were impaired on parameter 
Shift X (10.9%), followed by Shift Y (11.5%) and Shift XY 
(20.3%). The overall task score impairment rate was 44% 
based on the 95% cut-off score technique.

We then went on to examine the mean and standard 
deviation of tenfold cross-validated performance metrics 
i.e., accuracy, precision, recall, and F1 score [104] of the 
Machine Learning and Deep Learning models (Fig. 5B). 
The results of this analysis indicated that RF and RFT 
had the highest and nearly similar accuracy (83.0% and 
82.8%). In the case of precision, LR had a higher value of 
86.6% than any other classifier. Again, for recall (78.0%) 
and F1 score (81.4%) metrics, RF had a higher value of 
than any other classifier. In terms of standard deviation, 
LR had the highest spread out over a range of 4.1% for 
accuracy, 7.8% for recall, and 4.9% for F1 score, whereas 
DT had the highest spread out over a range of 5.6% for 
the precision compared with other classifiers.

Receiver operating characteristic (ROC) curve: We 
implemented five Machine Learning classifier models, 
namely Logistic Regression (LR), Decision Tree (DT), 
Random Forest (RT), Random Forest with Hyperparam-
eters Tuning (RFT), Support Vector Machine (SVM), 
and one Deep Learning classifier model, namely Deep 
Neural Network (DNN) to classify data into two catego-
ries: “control” and “stroke”. The mean ROC curve and 
Area Under the Curve (AUC) value for the classification 

Table 1  Demographic and clinical information for the sample of 
894 participants of healthy control and stroke

Data are presented as the mean (range) unless otherwise noted. Square brackets 
for TLT, CMSA scores indicate the actual number of individuals who obtained a 
given score on the test, e.g., 210 individuals scored 0 on the TLT

M—Male; F—Female; R—Right; L—Light; A—Ambidextrous; H—Hemorrhagic; 
I—Ischemic; TLT—Thumb Localizing Test; CSMA—Chedoke-McMaster Stroke 
Assessment; PPB—Purdue Peg Board; and FIM—Functional Independence 
Measure

*2 scores were missing

Control (n = 465) Stroke (n = 429)

Age 51 (20–88) 63 (18–92)

Sex 244 M, 221 F 280 M, 149 F

Dominant Hand 434 R, 29 L, 2 A 393 R, 33 L, 3 A

Days since Stroke · · · 17 (1–34)

Types of Stroke · · · 370 I, 59 H

TLT [0, 1, 2, 3]

 Affected Side · · · [210, 104, 73, 30]*

CMSA [1–7]

 Affected Arm · · · [29, 33, 51, 58, 61, 80, 103]

 Unaffected Arm · · · [0, 0, 0, 0, 15, 94, 320]

CMSA [1–7]

 Affected Hand · · · [31, 33, 37, 43, 74, 93, 104]

 Unaffected Hand · · · [0, 0, 0, 0, 7, 125, 297]

PPB

 Affected Side · · · 6.9 (0–17.5)

 Unaffected Side · · · 10.5 (2.5–19)

 FIM (Total Score) · · · 93.7 (37–126)

 FIM (Motor) · · · 65 (13–91)

Fig. 3  Histogram showing the distribution of Variability Y values 
in healthy controls and participants with stroke. The percentage 
on the y-axis is the participant count in each bin normalized to the 
number of participants with stroke (n = 429) and control (n = 465). 
An Additional file 1: Supplementary figure 1 is available and 
demonstrates the histogram distribution of all parameters of healthy 
controls and stroke participants
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Fig. 4  A Performance metrics when classified based on individual parameters (Var: variability, Cont/Exp: contraction/expansion, Shift, AE: absolute 
error) of arm position matching task, as well as overall task score to find the number of impaired participants. B Performance metrics (accuracy, 
precision, recall, and F1 score) for the machine learning and deep learning models (LR: Logistic Regression, DT: Decision Tree, RF: Random Forest, 
RFT: Random Forest with Hyperparameters Tuning, SVM: Support Vector Machine, DNN: Deep Neural Network)



Page 12 of 18Hossain et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:15 

performance of LR, DT, RF, RFT, SVM, and DNN mod-
els is shown in Fig.  5A. We also present the ROC and 
AUC for the overall task score which is calculated from 
individual parameter scores as outlined in the meth-
ods for comparison. The best possible classifier model 
would yield a point in the upper-left coordinate (0,1) of 
the ROC space, representing 100% sensitivity and 100% 
specificity, which is called a perfect classification. The LR 
model had the highest AUC (AUC = 0.900) value for the 
classification task, suggesting that LR had the best sepa-
ration capability between control and stroke, followed 
by the RFT model (AUC = 0.898). RFT model performed 
slightly better at classification than RF (AUC = 0.888). 
SVM and DNN models performed similarly to the RFT 
model (AUC = 0.897). The DT performed the worst at 
the classification task among all models (AUC = 0.852). 
In summary, LR had the highest level of sensitivity and 
specificity, whereas DT had the lowest level of specificity 
and sensitivity among models. For comparison, the over-
all task score had an AUC = 0.853.

Fig. 5  Mean of tenfold cross-validation of the receiver operating 
characteristic (ROC) curve and area under the curve (AUC) for the 
classification performance of LR, DT, RF, RFT, SVM, DNN, and task 
score. The dashed line corresponds to classification due to random 
chance (AUC = 0.5, i.e., 50% sensitivity and 50% specificity)

Fig. 6  Mean and standard deviation of K-fold (K = 10) cross-validation of feature importance based on individual parameters (Var, Cont/exp, Shift, 
and AE) obtained from LR, DT, RF, RFT, and SVM models. Due to the complex structure of Deep Neural Network (DNN) model, we could not plot the 
feature importance using DNN model
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Feature Importance: The mean and standard devia-
tion of tenfold cross-validation of feature importance 
based on individual parameters (Variability, Contraction/
Expansion ratio, Shift, Absolute Error) obtained using 
LR, DT, RF, RFT, and SVM models for the classification 
task is shown in Fig. 6. We were not able to plot feature 
importance using the DNN model because of its com-
plex structure. We can see that different models had dif-
ferent feature importance scores in percentage. Across 
the models, some features tended to have higher feature 
importance scores, whereas others tended to have lower 
feature importance scores. For instance, we observed 
that Variability Y was the most important feature of all 
models for the classification task, followed by Variability 
XY and Variability X. The least important feature tended 
to be Shift XY, followed by Shift X and Shift Y. Although, 
many features contributed similarly for the classification 
task using LR, RF, RFT, and SVM models, the relative 
importance of the features appeared to be different in the 
DT model (see Fig. 6).

Discussion
Proprioceptive impairment is a common consequence of 
stroke. Traditional clinical approaches to assess proprio-
ception have known issues with reliability [18] and tend 
to rely on simplistic observer-based ordinal scales. This 
has led to the development of different instrumented 
assessment tools [31] [13, 105]. Assessments such as 
robotics, which can provide detailed kinematic measures, 
have the potential to offer new insights into the nature 
and severity of the proprioceptive impairments that 
occur after stroke. Employing machine learning tech-
niques to explore the complex datasets that are generated 
by robotic assessments may prove valuable in this regard. 
ML techniques may help to highlight features in the data 
that may be important, but not obvious with other types 
of analyses.

The current manuscript represents our first foray into 
using ML techniques to classify robotic proprioceptive 
kinematic data from stroke survivors. We attempted to 
contrast the prevalence of proprioceptive deficits as iden-
tified by a previously used [31] standardized technique 
that relies on cut-off scores based on the 95% distribu-
tion of healthy control performance to the information 
derived from several different machine learning tech-
niques. Using the cut-off score technique, we observed 
that the percentage of individuals classified as impaired 
on any given task parameter was between 10.9% and 
48.4%. Variability parameters tended to detect the larg-
est number of impaired individuals. Neuroimaging 
studies have shown performance on these parameters 
correspond with several areas of the brain including S1, 
posterior parietal cortex, supramarginal gyrus, superior 

temporal gyrus, transverse temporal gyrus, and arcu-
ate fasciculus [106, 107]. Using an overall task score 
cut-off developed from the individual parameters which 
were equally weighted, 44% of individuals were deemed 
impaired. In order to more directly compare the cut-
off score performance to what can be derived from ML 
techniques, we examined the area under the ROC curves 
using the overall task score and determined that accuracy 
of the overall task score was 85%. The machine learning 
techniques, on the other hand, demonstrated compara-
tively higher sensitivity and specificity, with areas under 
the ROC curves ranging from ~ 85% to 90.0% (depending 
on the given technique) when trying to classify whether 
participants did or did have a stroke based on their per-
formance in the robot. Machine learning, by taking 
advantage of different parameter weightings and the rela-
tionships between parameters, performs better at clas-
sifying whether someone had a stroke. The cut-off score 
technique, on the other hand, tries to determine who 
does or does not have a proprioceptive impairment based 
on robotic performance (i.e., prevalence of propriocep-
tive deficits).

The cut-off score technique allows examination of 
individual kinematic variables in comparison to healthy 
controls (e.g., Variabilityxy), whereas the machine learn-
ing techniques, as employed, do not. In itself, individual 
parameters may be important for appreciating the nature 
of a patient’s deficits at the granular level required to 
precisely design an intervention. However, working with 
clinicians and researchers over the years, our group has 
been asked repeatedly to develop an overall task score 
that can be quickly and easily interpreted and poten-
tially used as a primary outcome for clinical trials. The 
overall task score that was developed relies on summing 
the individual components, assuming equal weighting 
for each parameter, to determine a single score [108]. 
Despite the mathematical complexity in generating nor-
mative scores, this method is simplistic in its implemen-
tation as all parameters are equally weighted which may 
or may not be the most appropriate method to generate 
an overall score, particularly as some parameters may be 
highly correlated.

Machine learning techniques, as we employed them, 
did not calculate the prevalence of proprioceptive defi-
cits like our cut-off score technique. Rather, we calculate 
and compare the accuracy, precision, recall and F1 score 
of the different ML techniques in attempting to classify 
whether someone had a stroke or not based on partici-
pant performance in the behavioural task. In general, all 
of the machine learning techniques we employed per-
formed reasonably well. Perhaps this is not surprising as 
the machine learning techniques developed weighting 
values for the individual parameters (see Fig.  6), unlike 
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the equal weighting assigned when generating overall 
task scores. When exposed to new data, machine learn-
ing models learn, grow, modify, change, and develop 
by themselves. Simply put, machine learning and deep 
learning techniques do this process by leveraging algo-
rithms that learn from data in an iterative process, which 
is not possible using traditional data analysis methods. 
These differences considered, the ML models performed 
only slightly better than the overall task score.

Determining whether someone has had a stroke or not 
based on their performance in a robotic task, on the sur-
face, may seem a bit impractical as the majority of cases 
of stroke already have a diagnosis based on clinical obser-
vations and confirmed with some form of neuroimaging 
(either computed tomography or magnetic resonance 
imaging). In the current manuscript, however, knowl-
edge of the diagnosis provided a ground truth for us to 
test the performance of machine learning and make com-
parisons to the way which we have historically analyzed 
robotic data. While we do not see using machine learn-
ing to make the diagnosis of stroke using kinematics to 
be practical, our study demonstrates the potential utility 
of machine learning tools. Going forward, we foresee the 
utility of machine learning in being able to predict recov-
ery patterns. There is also potential utility in classify-
ing other disease conditions based on kinematics where 
the diagnosis is not always as clear cut as stroke (e.g., 
Movement Disorders) for which we have neuroimaging 
evidence.

In the present manuscript, the machine learning 
techniques we employed, for the most part, performed 
similarly. While these similarities were perhaps not so 
surprising based on other published studies that have 
shown relatively low variability in the results produced by 
different machine learning techniques [109–113], there 
are differences between how some of these techniques 
were mathematically operationalized (e.g., Logistic 
Regression vs. Support Vector Machines). These differ-
ences ultimately led to variability in the features/param-
eters the techniques considered most important (Fig. 6). 
In retrospect, our group would have been challenged to 
predict, a priori, why some features were deemed more 
important than others from what we have seen of pre-
vious studies based on neuroanatomic or neurophysi-
ologic underpinnings. However, the highest variability 
and impairments rates in our dataset were noted to be in 
the parameter Variability Y which, in hindsight, explains 
why this feature was so important to many of the ML 
techniques. While overfitting can be a concern when 
using machine learning, we used a relatively large dataset 
with a cross-validation approach to minimize the risk of 
this. In the end, the similar performance of the different 

models may simply stem from the fact that the underly-
ing dataset used was the same.

Our study is not without its limitations. The APM task 
we employed requires both hemispheres and as such may 
be more likely to be impacted by a stroke lesion, than 
other tasks that can be used to study proprioception such 
as the just noticeable difference method. Individuals with 
hemispatial neglect may have difficulty performing the 
arm position matching task [114] and the results of APM 
in an individual with hemispatial neglect can be difficult 
to disentangle from those of someone with isolated pro-
prioceptive loss as the two impairments often co-exist. In 
the present study, we did not provide the ML algorithms 
with information about the presence or absence of hemi-
spatial neglect as this would have ensured correct clas-
sification on the basis of the presence of the syndrome. 
Further, the ML techniques we employed required hun-
dreds of datasets from individual participants which 
required thousands of hours to collect. In general, these 
techniques do not respond well to missing or unknown 
data, although we did not test this in the present study 
as we had no missing data. Like most analysis techniques 
used, there is always some chance of error inherent in the 
predictions that are made. If there is bias in the data that 
is used to train the machine learning techniques, this can 
be carried over to when a model is deployed for testing. 
In the present paper, we employed tenfold cross-vali-
dated datasets as this has been recommended to achieve 
stable results compared to traditional statistical analyses 
(e.g. T-test, ANOVA, Chi-Square) [115]. We then tested 
the model on a dataset that was not used in training to 
decrease the risk of bias.

As neurorehabilitation begins to incorporate more 
technology in both clinical practice and research settings, 
the opportunities for employing techniques like machine 
learning will continue to grow and evolve. Thoughtful 
application of these techniques may provide new insights 
into longstanding clinical problems. We could potentially 
see these types of techniques being used to identify prog-
nostic factors for recovery following stroke or other dis-
ease states. There are already examples of this elsewhere 
in healthcare: clinical variables to predict post-stroke 
outcomes [113, 116–120], medical imaging diagnosis 
[121–124], drug discovery and manufacturing [125–127], 
identifying diseases and diagnosis [128, 129], outbreak 
prediction [130, 131], etc. Further, artificial intelligence 
may be helpful in guiding rehabilitation for individual 
patients based on their characteristics using information 
gleaned from thousands of patients’ journeys. Machine 
learning provides us with a newer set of analysis tools to 
enhance our understanding of data. Careful implementa-
tion could lead to significant changes in the way we carry 
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out stroke rehabilitation in the future, but more study is 
needed.

Conclusions
In this work, we applied five machine learning techniques 
(i.e., LR, DT, RF, RFT, and SVM) and one deep learning 
technique (i.e., DNN) to classify stroke patients from 
control participants using kinematic information from a 
robotic assessment of proprioception. The resulting AUC 
of the ROC curve can range up to 90% depending on the 
classifiers used. Also, we were able to find the important 
features, which contributed significantly to the classifica-
tion task. The machine learning and deep learning mod-
els we demonstrate here can be readily applied to other 
clinical and medical research. We see them potentially 
being useful for classification using kinematics in  situ-
ations where the diagnosis is, as yet, unknown and for 
identifying data elements (features) that are not imme-
diately obvious as important in more classical analysis 
techniques. Future studies may allow the prediction of 
recovery using ML models.
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