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Abstract

Clear cell carcinoma (CCC) of the cervix (cCCC) is a rare and aggressive type of human 

papillomavirus (HPV)-negative cervical cancer with limited effective treatment options for 

recurrent or metastatic disease. Historically, CCCs of the lower genital tract were associated 

with in utero diethylstilbestrol (DES) exposure, however the genetic landscape of sporadic cCCCs 

remains unknown. Here, we sought to define the molecular underpinning of cCCCs. Using a 

combination of whole-exome, targeted capture and RNA-sequencing, we identified pathogenic 

genetic alterations in the Hippo signaling pathway in 50% (10/20) of cCCCs, including recurrent 

WWTR1 S89W somatic mutations in 40% (4/10) of the cases harboring mutations in the Hippo 

pathway. Irrespective of the presence or absence of Hippo pathway genetic alterations, however, 

all primary cCCCs analyzed in this study (n=20) harbored features of Hippo pathway deregulation 

at the transcriptomic and protein levels. In vitro functional analysis revealed that expression of 

the WWTR1 S89W mutation leads to reduced binding of TAZ to 14–3-3, promoting constitutive 

nuclear translocation of TAZ and Hippo pathway repression. WWTR1 S89W expression was 

found to lead to acquisition of oncogenic behavior, including increased proliferation, migration 

and colony formation in vitro as well as increased tumorigenesis in vivo, which could be reversed 

by targeted inhibition of the TAZ/YAP1 complex with verteporfin. Finally, xenografts expressing 

WWTR1 S89W displayed a shift in tumor phenotype, becoming more infiltrative as well as less 

differentiated, and were found to be composed of cells with conspicuous cytoplasmic clearing as 

compared to controls. Our results demonstrate that Hippo pathway alterations are likely drivers 

of cCCCs and likely contribute to the clear cell phenotype. Therapies targeting this pathway may 

constitute a new class of treatment for these rare, aggressive tumors.

Keywords

Clear cell; cervix; Hippo pathway; massively parallel sequencing; WWTR1

INTRODUCTION

Clear cell carcinoma (CCC) of the cervix (cCCC) is a rare subtype of endocervical 

adenocarcinoma accounting for 3% of all cervical adenocarcinomas [1]. In contrast to the 

most prevalent type of cervical cancer, squamous cell carcinoma (SCC), cCCC is not related 

to human papillomavirus (HPV) infection [1,2]. Historically, CCCs of the lower genital 

tract were associated with in utero exposure to diethylstilbestrol (DES)[3,4], however today 

most CCCs are sporadic without a known etiology [2]. Although early-stage cCCCs have a 

good overall prognosis following radical surgical resection, cCCCs have a greater propensity 

to recur and metastatize, and advanced-stage disease is often incurable and associated 

with high mortality [5,6]. Current treatment options for recurrent or metastatic disease are 

limited, and novel therapeutic approaches for cCCCs are needed.

The etiology and genomic features of non-HPV related cervical cancers, including cCCCs, 

remain active areas of investigation. Boyd et al [7] performed a molecular analysis of 

24 vaginal and cervical CCCs and found microsatellite instability in 50% and 100% of 
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non-DES and DES-exposed cases, respectively. As part of The Cancer Genome Atlas 

(TCGA) project, common-type HPV-associated SCCs and adenocarcinomas were found 

to display an enrichment in APOBEC signatures, recurrent PIK3CA mutations (26%), 3q 

copy number gains (66%) and amplification of the Hippo signaling pathway component 

YAP1 (16%)[8]. Based on our previous genomic studies of rare epithelial malignancies that 

have resulted in the identification of novel genotypic-phenotypic correlations and convergent 

phenotypes [9–13], we posited that if cCCCs were driven by a highly recurrent if not 

pathognomonic genetic alteration these could potentially serve as therapeutic targets. Here, 

we sought to define the molecular underpinning of cCCCs using a combination of targeted, 

whole-exome and RNA-sequencing. Our analyses revealed recurrent alterations affecting the 

Hippo pathway in cCCCs, including WWTR1 S89W mutations. Functional in vitro and in 
vivo studies further demonstrate that WWTR1 S89W mutations are not only oncogenic and 

associated with phenotypic changes in these tumors but may also constitute the basis for new 

targeted therapeutics for patients with this disease.

MATERIALS AND METHODS

Samples

Following approval by the institutional review boards (IRBs) of the authors’ institutions, 

unstained tissue sections from formalin-fixed paraffin-embedded (FFPE) cCCCs were 

retrieved from Weill Cornell Medical Center (New York, NY) and Memorial Sloan 

Kettering Cancer Center (MSK; New York, NY). Patient consents were obtained following 

the respective IRB protocols approved by the authors’ institutions, and samples were 

anonymized before analysis. All tumors were centrally reviewed by two pathologists (K.J.P., 

C.M.), and a total of 20 tumors were classified as cCCCs and included in this study. The 

histopathologic criteria are detailed in Supplementary materials and methods.

Whole-exome, targeted capture and RNA-sequencing

Microdissected tumor and normal DNA from five cCCCs were subjected to whole-exome 

sequencing (WES) and from fifteen cCCCs to MSK-IMPACT sequencing, a massively 

parallel sequencing assay targeting all exons and selected introns of 468 cancer-related 

genes [14](see Supplementary materials and methods for details). Somatic mutations and 

copy number alterations (CNAs) were identified using validated bioinformatics methods 

[10,15,16]. TERT promoter mutations in the WES data were manually inspected using 

Integrative Genomics Viewer (IGV)[17]. CNAs and loss of heterozygosity (LOH) were 

defined using FACETS [18], as described [10,15]. ABSOLUTE (v1.0.6)[19] was employed 

to determine the cancer cell fraction (CCF) of each mutation [10,15]. DAVID pathway 

analysis was performed utilizing the results obtained from all cCCCs (n=20) based on genes 

affected by non-synonymous somatic mutations, amplifications or homozygous deletions 

[20]. Seven cCCCs were subjected to paired-end RNA-sequencing using validated protocols, 

as previously described [11,15],(see Supplementary materials and methods and [13,15,21–

28]).
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Cell lines

Parental immortalized human keratinocyte HaCaT (CVCL_0038) and HEK-293 

(CVCL_0045) cells were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA, USA). Cell line identification was confirmed by short tandem repeat (STR) 

profiling. Cells were tested for mycoplasma infection using the Universal Mycoplasma 

Detection kit (ATCC) and cultured according to the vendor’s instructions.

WWTR1 mutagenesis, vector construction and generation of stable cell lines

Introduction of the S89W mutation in pDONR223-WWTR1-WT (Addgene, Watertown, 

MA, USA, #82253) sequence changing the 89 codon of WWTR1 from TCG (Serine 

(Ser/S)) to TGG (Tryptophan (Trp/W)) was performed using the Q5 Mutagenesis Kit 

(New England) following the manufacturer’s protocol and transformed in NEB 5-alpha 

competent E. coli. The mutagenesis primers were F 5-CCGCTCGCACtggTCGCCCGCGT-3 

and 5-ACATGCTGGGCACCCCCAGC-3, and the introduced mutation was confirmed by 

Sanger sequencing. Vector construction and generation of stable cell lines are described in 

Supplementary materials and methods.

RT-qPCR

Total RNA was reverse-transcribed transcription into cDNA using SuperScript VILO 

Master Mix (ThermoFisher Scientific, Waltham, MA, USA), according to the 

manufacturer’s instructions. Quantitative TaqMan RT-PCR for WWTR1 (Hs00210007), 

AXL (Hs01064444), ITGB2 (Hs00164957), LMNB2 (Hs00383326) and CYR61 
(Hs00155479) was performed using QuantStudio3 (Applied Biosystems; ThermoFisher 

Scientific). Expression data were normalized to GAPDH (Hs02786624), as described [10].

Western blotting, immunohistochemistry and immunofluorescence

Protein extraction, standard western blotting, immunohistochemical and 

immunofluorescence analyses were performed as described [11,29,30], see also 

Supplementary materials and methods.

Immunoprecipitation

For Pan-14–3-3 immunoprecipitation, 8 µg of TAZ (E5P2N) antibody (Cell Signaling 

Technology, Danvers, MA, USA, #71192) was crosslinked to 25 µl of Protein G Dynabeads 

using a Pierce Crosslink Magnetic IP/Co-IP Kit (ThermoFisher Scientific) and following 

manufacturer’s instructions. Protein from HEK-293 cells was extracted with IP buffer 

(ThermoFisher Scientific), and 500 µg protein lysate was incubated with TAZ beads in 

500 µl IP buffer for 1 h at room temperature. Supernatant containing NuPAGE LDS buffer 

was subjected to western blotting (TAZ and tubulin antibodies, 1:1000) as described [11].

Luciferase experiments

HEK-293 cells expressing WWTR1 wild-type (WT), WWTR1 S89W mutation and empty 

vector as control were transfected with 90 ng of Hippo pathway reporter (8xGTIIC-

luciferase Addgene #34615) and 10 ng of transfection efficiency control Renilla-SV40 
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(Promega) using lipofectamine 3000 in 96-well plates (25,000 cells per well), as described 

[10].

Proliferation, scratch wound healing and colony formation assay

Cells were seeded, then proliferation, scratch wound healing and colony formation assays 

were performed as previously described [10–12], see also Supplementary materials and 

methods.

Xenograft studies

NOD Scid Gamma (NSG) mice (Jackson Laboratory, Bar Harbor, ME, USA) were used 

for in vivo studies and were cared for in accordance with guidelines approved by MSK’s 

Institutional Animal Care and Use Committee and Research Animal Resource Center. Six 

eight-week-old female mice were injected subcutaneously with 7.5 million HaCaT cells with 

Matrigel (Corning, Oneonta, NY, USA) in a 1:1 ratio. Once tumors reached an average 

volume of 100 mm3, mice were randomized to receive either verteporfin 100 mg/kg or 

vehicle control intraperitoneally every other day for one month. Mice were observed daily 

throughout the treatment period for signs of morbidity/mortality. Tumors were measured 

twice weekly using calipers, and volume was calculated (length x width2 × 0.52). Body 

weight was assessed twice weekly. After 4 weeks of treatment, tumor samples were 

collected for histological and immunohistochemical analysis. All tumors were reviewed by 

two pathologists (J.S.R.-F. and K.J.P.).

Inhibitors

The TEAD/YAP/TAZ association inhibitor verteporfin (Visudyne; #S1786, Selleckchem, 

Radnor, PA, USA) was resuspended in DMSO and used in proliferation, clonogenic, and 

scratch wound healing assays at 2 μM. The protein synthesis inhibitor cycloheximide 

(#HY-12320, MedChemExpress, Monmouth Junction, NJ, USA), resuspended in DMSO, 

was used for western blotting assay at 50 μM.

Statistical analyses

Statistical analysis was performed using Prism 7 (GraphPad Software, San Diego, CA, 

USA). Student’s two-tailed t-test was employed for comparison of means in parametric data. 

Heteroscedasticity was assessed for each comparison, and homoscedastic or heteroscedastic 

t-tests were employed as appropriate, as described [10,11]. A p-value<0.05 was considered 

significant.

RESULTS

Clinical and histologic features of cCCCs

Following central pathology review, twenty cCCCs were included in this study 

(supplementary material, Table S1). Histologically, these tumors displayed the characteristic 

histologic features of cCCCs, consisting of tubulocystic, papillary and solid structures 

composed of cells with clear or eosinophilic cytoplasm and ‘hobnail’ cells with moderate-to-

marked atypia and infrequent mitotic figures (Figure 1A). Patient median age at diagnosis 
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was 50.5 years (range 8–79). At the time of diagnosis, all stages, following the 2018 FIGO 

staging system for cervical cancer [31], were represented, with IB1 (8/20), IB2, IB3, and 

IIA (all 3/20) being the most common. None of the patients in our cohort was documented 

to have had a history of DES exposure. Eight patients recurred (40%) with a median 

disease-free survival of 21 (range 5 – 69) months (supplementary material, Table S1).

cCCCs harbor recurrent genetic alterations in the Hippo pathway

To define their genomic landscape, twenty tumor-normal cCCC pairs were subjected 

to WES (n=5) or targeted MSK-IMPACT sequencing due to limited quantity/quality of 

available DNA (n=15). cCCCs were found to have a relatively low mutation burden with 

a median of 0.94 somatic mutations/Mb (range 0.43–1.47) on WES, and of 2.63 somatic 

mutations/Mb (range 0–9.5) by MSK-IMPACT (supplementary material, Table S2). In 

addition to ARID1A mutations (4/20, 20%), a known genomic feature of other Mullerian 

clear cell carcinomas [32], this analysis revealed the presence of recurrent TERT (3/20, 

15%), NFE2L2 (3/20, 15%) and WWTR1 mutations (4/20, 20%; Figure 1B). The WWTR1 
mutations affected the S89W residue, which maps to the TEAD binding domain of TAZ, an 

effector of the Hippo signaling cascade (Figure 1C).

A pathway analysis based on the presence of pathogenic somatic mutations, amplifications 

and homozygous deletions further revealed a significant enrichment for alterations in 

curated Hippo pathway-related genes in these tumors (p<0.01, EASE Score, Fisher’s exact 

test; Figure 1D)[33]. Of the twenty cCCCs analyzed, ten (50%) were found to harbor 

pathogenic alterations affecting components of the Hippo signaling pathway, including 

WWTR1 (5/10, 50%), YAP1 (2/10, 20%), TEAD3 (1/10, 10%), TEAD4 (1/10, 10%), 

and LATS2 (1/10, 10%), which occurred in a mutually exclusive pattern. Specifically, we 

found four hotspot mutations and one amplification in WWTR1, one likely pathogenic 

S61W missense mutation [34,35] and one deletion in YAP1, one homozygous deletion in 

TEAD3, one amplification in TEAD4 and one likely pathogenic K784N missense mutation 

in LATS2 (Figure 1B and supplementary material, Table S2). Both the WWTR1 S89W and 

the YAP1 S61W mutations were found to be clonal (supplementary material, Figure S1) 

and to affect residues in the TEAD binding domains of their respective proteins, TAZ and 

YAP1, which contain the 14–3-3 binding motifs [36](Figure 1C). We subjected five cCCCs 

lacking mutations, amplifications or homozygous deletions affecting Hippo pathway-related 

genes to RNA-sequencing, but no fusion transcripts affecting Hippo pathway genes were 

identified (supplementary material, Table S3). Importantly, irrespective of the presence 

or absence of genetic alterations in the Hippo pathway, RT-qPCR analysis provided 

transcriptomic evidence of deregulation of the Hippo pathway in all cCCCs analyzed 

(supplementary material, Figure S2), suggesting the presence of epigenetic or genetic 

alterations not detected by the targeted sequencing approaches employed. Furthermore, 

using RNA-sequencing, cCCCs displayed a significant increase in expression of WWTR1 

and TAZ/YAP transcriptional targets (15/26; p<0.05; supplementary material, Figure S2) 

[36], providing further evidence of alteration of the Hippo pathway in cCCCs.
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WWTR1 S89W expression results in the acquisition of oncogenic properties

There is burgeoning evidence to demonstrate that the Hippo pathway plays important 

roles in the pathogenesis of different types of cancer [37], with recurrent amplification 

of YAP1 and WWTR1 being reported in SCCs of the head and neck, esophagus, lung, 

cervix [33] and ovarian cancers [38]. Somatic hotspot mutations have not been previously 

described as a recurrent mechanism of Hippo pathway alteration in cancer. Based on a 

study that experimentally assessed the effect of 19 WWTR1 non-synonymous mutations 

in MCF10A non-malignant breast epithelial cells, which identified the S89W mutation as 

functionally activating [36], we hypothesized that expression of WWTR1 S89W would be 

associated with oncogenic properties. To test this, we performed functional in vitro studies 

by expressing WWTR1 wild-type (WT), WWTR1 S89W mutation and empty vector as 

control (supplementary material, Figure S3). Given the scarcity of commercially available 

HPV-negative non-malignant cervical cell lines, we selected primary non-tumorigenic 

differentiation-competent HaCaT keratinocytes as model system, which have been employed 

by others for the study of cervical tumorigenesis [39–41]. As a second model, and to 

confirm the results obtained in HaCaT cells, we employed HEK-293 cells, which are widely 

used in cell biology/cancer research studies given their reliable growth and propensity for 

transfection [42]. In both HaCaT and HEK-293 cells, WWTR1 S89W expression resulted in 

a significant increase in proliferation and colony formation as compared to cells expressing 

empty vector control (control) or WWTR1 WT (Figure 2A,B). A scratch assay analysis 

revealed increased migration of HaCaT and HEK-293 cells upon stable expression of 

WWTR1 S89W when compared to cells expressing WWTR1 WT or control (Figure 2C). 

As expected, based on observations of WWTR1 amplification/overexpression [37], WWTR1 

WT expressing cells showed increased proliferation, colony formation and migration as 

compared to controls; however, cells harboring WWTR1 S89W consistently exhibited a 

significantly stronger oncogenic phenotype (Figure 2A–C).

Expression of WWTR1 S89W results in constitutive deregulation of the Hippo signaling 
pathway

TAZ has been reported to play pivotal roles in regulation of the Hippo signaling pathway 

[43,44]. Upon nuclear translocation, along with YAP, TAZ acts as a co-transcriptional 

activator of the pathway, thereby promoting tissue growth and cell viability [37]. We 

investigated whether WWTR1 S89W expression would result in alteration of this pathway in 

our cell models. We found that both HaCaT and HEK-293 cells expressing WWTR1 S89W 

displayed increased expression levels of key Hippo pathway target genes, including AXL, 

ITGB2, LMNB2 and CYR61 [44,45], when compared to the respective control and WWTR1 

WT cells (Figure 3A). This finding was further supported by quantitative western blot 

analyses, which revealed increased levels of AXL, ITGB2, LMNB2 and CYR61 proteins 

upon WWTR1 S89W expression in both cell models (Figure 3B). Again, the expression 

of WWTR1 WT was also associated with increased AXL, ITGB2, LMNB2 and CYR61 
gene expression, however, at significantly lower levels than in those expressing the WWTR1 

S89W mutation (Figure 3A). Our in vitro findings suggest that the oncogenic behavior of 

cCCCs harboring the WWTR1 S89W mutation can, at least in part, be explained by the 

deregulation of the Hippo pathway, corroborating the observation that this tumor suppressor 

pathway is consistently repressed in human cCCCs (supplementary material, Figure S2).
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WWTR1 S89W mutation stabilizes TAZ protein deregulating the Hippo pathway

We investigated the molecular mechanisms underlying the deregulation of the Hippo 

pathway in cells expressing the WWTR1 S89W mutation. TAZ activity is regulated through 

phosphorylation by LATS2, promoting proteolytic degradation or retention in the cytoplasm 

due to sequestering by the 14–3-3 protein [46,47]. To define whether TAZ stability is 

affected by the presence of the S89W mutation, we treated HaCaT and HEK-293 cells with 

the protein synthesis inhibitor cycloheximide (CHX) and observed that in cells expressing 

WWTR1 S89W, TAZ had a longer half-life than in those cells expressing WWTR1 WT 

in both HaCaT and HEK-293 cell lines (Figure 3C). Additionally, we hypothesized that 

WWTR1 S89W cells would exhibit constitutive Hippo pathway repression, and thereby 

be functionally activating, with expression of Hippo pathway targets due to higher rates 

of TAZ nuclear translocation. Immunofluorescence analyses revealed increased TAZ signal 

intensity in the nucleus of HaCaT and HEK-293 cells expressing WWTR1 S89W than in 

cells expressing WWTR1 WT, in which TAZ localization was limited to the cytoplasm 

(Figure 3D). Moreover, immunoprecipitation of TAZ in HEK-293 cells indicated that in 

WWTR1 S89W cells, the TAZ protein did not bind efficiently to 14–3-3, demonstrating 

that the S89W mutation reduces 14–3-3 cytoplasmic sequestration of TAZ, leading to TAZ 

nuclear translocation [46](Figure 3E). Finally, we performed a luciferase reporter assay with 

a specific Hippo/TEAD reporter containing eight TEAD binding sites [48] in HEK-293 

cells stably expressing control, WWTR1 WT and WWTR1 S89W. Increased activation of 

the Hippo/TEAD reporter was observed in cells expressing WWTR1 WT and WWTR1 

S89W, however, Hippo/TEAD activation was significantly enhanced in WWTR1 S89W 

expressing cells (Figure 3F). Taken together, these findings demonstrate that the WWTR1 
S89W mutation increases TAZ stability and promotes nuclear localization, thereby resulting 

in downstream constitutive repression of the Hippo signaling pathway.

Oncogenic and phenotypic properties can be reversed by inhibition of the TAZ/YAP/TEAD 
transcriptional complex

Verteporfin (Vysudine) targets the Hippo pathway by repressing the interaction between 

TAZ, YAP1 and TEAD, and is FDA approved for photodynamic treatment of vascular 

disorders of the eye [49]. Currently, verteporfin is being studied in clinical trials for 

the treatment of different tumor types, including cutaneous metastasis of breast and 

pancreatic cancer [50]. Given the deregulation of the Hippo pathway upon WWTR1 S89W 

expression in our in vitro models, we assessed whether inhibition of the TAZ/YAP1/TEAD 

transcriptional complex would result in reversal of the observed oncogenic phenotype 

induced by WWTR1 S89W expression. Upon treatment of HaCaT and HEK-293 cells 

with verteporfin, we observed significant inhibition of proliferation and colony formation 

in cells expressing WWTR1 S89W (Figure 4A,B and supplementary material, Figure S4). 

Verteporfin treatment also led to a significant decrease in migration rates of HaCaT and 

HEK-293 cells expressing WWTR1 S89W, which was not observed in controls or cells 

expressing WWTR1 WT (Figure 4C).
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Impact of the WWTR1 S89W mutation on tumorigenesis

We next sought to define the impact of WWTR1 S89W on tumorigenicity. HaCat cells 

expressing control, WWTR1 WT and WWTR1 S89W were injected subcutaneously into 

NSG mice. Consistent with our observations made in vitro, HaCaT cells expressing 

WWTR1 S89W grew faster and formed significantly larger tumors than cells expressing 

WWTR1 WT or control (Figure 5A). In addition, treatment of mice with verteporfin for 

33 days inhibited the acquired oncogenic potential of WWTR1 S89W expressing cells 

to control levels (Figure 5A), indicating that Hippo pathway deregulation is responsible 

for the increased tumor growth. Consistent with the in vitro observations and the notion 

that WWTR1 WT or WWTR1 S89W expressing xenografts are dependent on the Hippo 

pathway, verteporfin treatment resulted in necrosis only in the xenografts expressing 

WWTR1 WT or WWTR1 S89W (supplementary material, Figure S5). Importantly, mice 

treated with verteporfin did not show detectable clinical side effects or significant loss of 

body weight (supplementary material, Figure S5), indicating that verteporfin treatment is 

likely safe [51,52].

Histologic review of the xenografts revealed that whilst control HaCaT cells resulted in 

pure SCCs with squamous pearls and overt keratinization (Figure 5B), xenografts expressing 

WWTR1 WT and, in particular, WWTR1 S89W, displayed a phenotype shift, with tumors 

becoming more infiltrative and less differentiated, being composed of infiltrating ragged 

gland-like structures, nests and cords of tumor cells, with marked atypia. A systematic 

histologic analysis of the xenografts revealed that the degree of differentiation decreased 

in a stepwise manner according to the expression of EV, WWRT1 WT to WWTR1 S89W, 

whereas immunohistochemical analysis of the Ki67 labeling indices demonstrated that the 

proliferation levels increased in a stepwise manner from EV, WWRT1 WT to WWTR1 

S89W (Ki67 labeling index 33, 60 and 89, respectively; Figure 5B). Consistent with 

these observations, the expression and distribution of p40, a protein expressed in cells of 

the squamous lineage apart from terminally differentiated squamous cells, was higher in 

WWTR1 WT and WWTR1 S89W xenografts than in models expressing EV (p40-positive 

cells: EV 58%, WWTR1 WT 77%, WWTR1 S89W 92%). These findings are further 

supported by immunohistochemical analysis of vimentin expression (which is detected in 

poorly differentiated squamous cell carcinomas and in clear cell carcinomas (Figure 6), but 

either absent or only focally present in well differentiated squamous cell carcinomas), with 

an antibody that reacts with the human but not mouse vimentin, revealed a higher level 

of vimentin expression in xenografts expressing WT WWTR1 and WWTR1 S89W (Figure 

5B).

Immunohistochemical analysis further revealed that while TAZ expression was either absent 

or primarily cytoplasmic in the control and WWTR1 WT expressing xenografts, WWTR1 

S89W tumors showed increased nuclear TAZ expression (Figure 5B). Given that we 

observed WWTR1 S89W expression to lead to nuclear TAZ expression in both the in vitro 
and in vivo settings, we performed TAZ immunohistochemical analysis of primary cCCCs 

(n=13). Consistent with our in vitro and in vivo findings, strong nuclear TAZ expression was 

present in the human primary cCCCs (Figure 6).
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Taken together, our results not only implicate the Hippo pathway in the pathogenesis 

of human cCCCs and tumor phenotype changes, but also support the contention that 

pharmacologic inhibition of the Hippo pathway may constitute a potential novel targeted 

therapeutic approach for cCCCs.

DISCUSSION

cCCCs, while curable in the early stage, are associated with poor prognosis in the advanced 

setting [6]. Treatment options for metastatic or recurrent cCCC remain limited in part due 

to a lack of understanding of its genetic basis and pathogenesis. Here we demonstrate that 

cCCCs harbor recurrent alterations in the Hippo signaling pathway, with WWTR1 being the 

most commonly affected gene. At variance with other cancer types, including renal clear 

cell carcinomas, in which WWTR1 amplification has been documented [36], in cCCCs, 

we detected the presence of a recurrent WWTR1 S89W somatic mutation. In cases lacking 

this mutation, other somatic genetic alterations affecting the Hippo pathway, including 

those affecting YAP1, TEAD3/4 and LATS2, and/or activation of downstream targets were 

identified, consistent with the notion that CCCs may constitute a convergent phenotype, 

which is dependent on deregulation of this signaling pathway.

The Hippo pathway, critically important in the regulation of organ size and tissue 

homeostasis, is recurrently altered in certain cancers including mesothelioma, glioma, SCCs 

of the head and neck, and cervix [33,36]. Upregulation and/or overexpression of YAP1 

and TAZ, transcriptional co-activators of the pathway, contribute to tumor progression in 

multiple cancer types, including breast, lung, liver, colon and ovarian cancer [52,53]. The 

canonical Hippo pathway comprises a serine/threonine kinase cascade, in which MST1/2 

interacts with Salvador homolog 1 (SAV1) and phosphorylates LATS1/2, thereby activating 

them. Activated LATS1/2 in turn phosphorylates conserved serine residues on YAP1/TAZ, 

leading to cytoplasmic retention of YAP1/TAZ via 14–3-3 binding and degradation of 

YAP1/TAZ [47]. Recent studies have highlighted the oncogenic effects of mutating the 

LATS2 phosphorylation site of TAZ, S89, resulting in constitutive activation of TAZ (TAZ-

S89A), leading to increased cellular proliferation in multiple cell models [54–56]. Here, 

we demonstrate that the S89W missense mutation in WWTR1 increases TAZ stability and 

nuclear localization, resulting in constitutive repression, and thereby functional activation, 

of the Hippo pathway. As expected, we observed increased proliferation, colony formation 

and migration in our cell models in cells expressing WWTR1 S89W. Furthermore, we 

observed increased tumorigenesis in xenograft models injected with WWTR1 S89W cells, 

which could be reversed by verteporfin, a potent Hippo pathway transcriptional complex 

inhibitor, both in vitro and in vivo. Expression of WWTR1 S89W was not only found 

to be oncogenic but may also result phenotypic changes including the clearing of the 

cytoplasm and increased expression of markers of dedifferentiation, corroborating the notion 

that constitutive repression of the Hippo pathway plays a role in the pathogenesis of this 

aggressive form of HPV-negative cervical cancer.

In addition to the recurrent S89W mutation in WWTR1, we report on the S61W mutation in 

YAP1. The downstream effects of the S61W YAP1 mutation, akin to those of the WWTR1 
S89W mutation described here, have been reported to include reduced phosphorylation, 
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and subsequent protein stabilization and increased nuclear localization of YAP1, thereby 

resulting in an increase in TAZ/YAP1/TEAD transcriptional activity [34,35]. Interestingly, 

one cCCC studied here contained a YAP1 deletion, which would presumably have the 

opposite effect, however there are reports that YAP inversely regulates TAZ protein 

abundance [57,58].

Whilst previous studies have reported cervical cancers to have alterations in Hippo pathway 

genes, specifically YAP1 and WWTR1 amplification, the majority of these findings were 

reported irrespective of histologic subtype or in the more common type of HPV-driven SCCs 

[8,59,60]. The AACR Project GENIE reported the WWTR1 S89W mutation to be present in 

0.02% of all cancers, with the majority being cancers of gynecologic origin, including two 

cCCCs [61]. In the TCGA pan-cancer study [62], the WWTR1 S89W mutation was only 

detected in a single case (1/10967 samples, 0.009%), namely a FIGO grade 1 endometrioid 

endometrial cancer. Given that expression of WWTR1 S89W in HaCaT cells resulted in 

conspicuous cytoplasmic clearing in vivo, we sought to define whether this mutation would 

constitute a feature of not only cCCCs but also of other Mullerian carcinomas with clear 

cell phenotype. Re-analysis of the MSK-IMPACT sequencing data (v6/7) of ovarian and 

endometrial cancers revealed the presence of a WWTR1 S89W mutation in 1/1790 (0.06%) 

ovarian cancer, which was of clear cell histology, and WWTR1 S89W or S89L mutations 

in 5/2,093 (0.24%) endometrial carcinomas, two of which were CCCs (supplementary 

material, Figure S6). None of the remaining CCCs of the ovary (n=141) or endometrium 

(n=78) harbored WWTR1 S89 mutations. These data suggest that mutations affecting codon 

S89 of WWTR1 may be causally linked to a clear cell phenotype not only in cCCCs, but 

also in a subset of non-cervical Mullerian cancers. Of note, a subset of ovarian CCCs is 

known to express high levels of YAP at the protein level, correlating with poor prognosis 

[63,64]. Aside from a single case with a YAP1 missense mutation, we did not observe YAP1 
amplification in the 141 ovarian CCCs analyzed here.

This study has several limitations. Given the scarcity of non-malignant HPV-negative 

cervical cancer cell lines, the functional studies were performed in immortalized human 

keratinocytes (HaCaT) and in HEK-293 cells, which exact cell type is still a matter of 

contention [42]. HaCaT WWTR1 S89W xenografts were found to display phenotypic 

features distinct from the control cells, including clear cytoplasm, supporting the notion 

that these cells may be an adequate disease model. Although a likely pathogenic genetic 

alteration affecting the Hippo pathway was detected in only 50% (10/20) of the cases, 

features of Hippo pathway deregulation, including Hippo downstream target and/or nuclear 

TAZ protein expression, were found in all cCCCs analyzed here, supporting the importance 

of this pathway in the pathogenesis of these aggressive cancers. Further studies are 

warranted to determine alternative mechanisms that lead to increased TAZ/YAP1 complex 

activity. Given that this study was based on WES, MSK-IMPACT and RNA-sequencing, 

we cannot rule out genetic alterations affecting non-coding regions of Hippo pathway genes 

or translocations resulting in the deregulation of this pathway in cases not subjected to 

RNA-sequencing or epigenetic regulation of this pathway. Whole-genome sequencing and 

epigenetic profiling of cCCCs lacking the canonical Hippo pathway alterations reported 

here are warranted. Finally, given the small number of patients in our cohort, and the multi-

institutional nature of the study, correlations with mutation status and patient outcomes 
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could not be performed. Larger studies are required to elucidate the impact of Hippo 

pathway alterations on clinical outcomes of cCCC patients.

Despite these limitations, here we report on the observation that Hippo pathway alterations, 

particularly the somatic WWTR1 S89W mutation, likely constitute drivers of cCCCs, and 

may also be causative of the clear cell phenotype in a subset of cCCCs and, potentially, of 

Mullerian cancers. Our findings also offer a new potential therapeutic target for patients with 

these aggressive forms of HPV-negative cervical cancers, with FDA-approved inhibitors of 

the Hippo pathway available and currently under investigation in clinical trials for patients 

with other cancer types.
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Figure 1. Recurrent alterations affecting genes in the canonical Hippo signaling pathway in clear 
cell carcinomas of the cervix.
(A) Micrographs of representative hematoxylin and eosin-stained (H&E) sections of clear 

cell carcinoma of the cervix (scale bar 50 µm). (B) Heatmap depicting non-synonymous 

somatic mutations, amplifications and homozygous deletions identified in cCCCs subjected 

to MSK-IMPACT (n=15) or whole-exome sequencing (WES; n=5). Cases are shown in 

columns and genes in rows. Genetic alterations are color-coded according to the legend. 

Clinical stage is depicted in the phenotype bar (top). (C) Lollipop plots depicting the 

frequency of YAP1 S61W (top) and WWTR1 S89W (middle) mutations in cCCCs, 

including the protein domains of each gene. TEAD BD, TEAD binding domain; CC, 

coiled-coil region. Copy number plot of the cCCC5T harboring a WWTR1 amplification 

(bottom). The Log2-ratios are plotted on the y-axis according to genomic positions (x-axis). 

Chromosomes are depicted by alternating blue and red bands. (D) Frequency of activating 

(red) or repressing (blue) somatic genetic alterations affecting genes in the canonical Hippo 
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signaling pathway. The percentage of cCCCs harboring a somatic mutation or gene copy 

number alteration is depicted under the gene name. Pathway reported in Sanchez-Vega et al 
[33].
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Figure 2. WWTR1 S89W expression results in the acquisition of oncogenic properties in vitro.
(A) CellTiter-blue proliferation assay of immortalized human keratinocyte HaCaT and 

HEK-293 cells stably expressing empty vector (Control), WWTR1 wild-type (WWTR1 

WT) and WWTR1 S89W. Quantification of cell growth (%) relative to day 0. (B) 

Representative images of colony formation assay of HaCaT and HEK-293 cells stably 

expressing Control, WWTR1 WT and WWTR1 S89W (scale bars, 5 mm; bottom). 

Quantification of the number of colonies/ well (right). (C) Wound healing assay of HaCaT 

and HEK-293 cells stably expressing Control, WWTR1 WT and WWTR1 S89W. The 

migratory effects/ wound area was assessed at 0 and 24 h (Scale bar, 500 μm; bottom) 

and quantified (right). All experiments were performed in technical triplicate in at least 3 

independent replicates, and statistical analysis were performed comparing each condition 

to Control. Mean ± SD. n.s., not significant; *P<0.05, **P<0.01, ***P<0.001; two-tailed 

unpaired t-test.
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Figure 3. WWTR1 S89W expression results in the overexpression of Hippo pathway targets in 
vitro and in deregulation of the Hippo pathway.
(A) Quantitative assessment of Hippo pathway targets AXL, ITGB2, LMNB2 and CYR61 
transcripts in immortalized human keratinocyte HaCaT and HEK-293 cells stably expressing 

empty vector (Control), WWTR1 wild-type (WWTR1 WT) and WWTR1 S89W. Expression 

levels were normalized to GAPDH expression, and comparisons of mRNA expression levels 

were performed relative to Control. (B) Representative western blot analysis of Hippo 

pathway targets AXL, ITGB2, LMNB2 and CYR61 protein levels in HaCaT and HEK-293 

cells stably expressing Control, WWTR1 WT and WWTR1 S89W. Tubulin was used as 

protein loading control. Quantification (bottom) of protein levels as compared to Control. 

(C) Representative western blot analysis of TAZ protein levels in immortalized human 

keratinocyte HaCaT and HEK-293 cells stably expressing WWTR1 WT and WWTR1 S89W 

treated with 50 μM Cycloheximide (CHX). Tubulin was used as protein loading control. 

Quantification (bottom) of protein levels as compared to untreated WWTR1 WT cells. (D) 
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Representative confocal micrographs of immunofluorescence analysis of TAZ (green) and 

4–6-diamidino-2-phenylindole (DAPI, blue) in HaCaT and HEK-293 cells stably expressing 

Control, WWTR1 WT and WWTR1 S89W (scale bars, 50  μm). Quantification (bottom) of 

TAZ intensity/ cell in a nucleus/cytoplasm ratio. (E) Immunoprecipitation assay with TAZ 

antibody of HEK-293 cells stably expressing Control, WWTR1 WT or WWTR1 S89W. 

Western blot was performed using anti-TAZ and anti-pan 14–3-3 antibodies, and tubulin 

as loading control. (F) Hippo pathway luciferase reporter assay of HEK-293 cells stably 

expressing Control, WWTR1 WT and WWTR1 S89W. SV40-Renilla was used to normalize 

transfection efficiency. All experiments were performed in technical triplicate in at least 

3 independent replicates and statistical analysis was performed comparing each condition 

to Control (A,B,F), or to WWTR1 WT (C,D). Mean ± SD; n.s., not significant; *P<0.05, 

**P<0.01, ***P<0.001; two-tailed unpaired t-test.
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Figure 4. Inhibition of the Hippo pathway transcriptional complex by verteporfin results in the 
reversal of oncogenic properties in WWTR1 S89W expressing cells in vitro.
(A) CellTiter-blue proliferation assay of immortalized human keratinocyte HaCaT and 

HEK-293 cells stably expressing empty vector (Control), WWTR1 wild-type (WWTR1 

WT) and WWTR1 S89W treated with 2 µM verteporfin (VP) or untreated. Quantification of 

cell growth (%) relative to day 0. (B) Representative images of colony formation assay 

of HaCaT and HEK-293 cells stably expressing Control, WWTR1 WT and WWTR1 

S89W treated with 2 µM VP or untreated (scale bars, 5 mm; bottom). Quantification of 

the number of colonies/ well (right). (C) Wound healing assay of HaCaT and HEK-293 

cells stably expressing Control, WWTR1 WT and WWTR1 S89W treated with 2 µM VP 

or untreated. The migratory effects/ wound area was assessed at 0 and 24 h (Scale bar, 

500 μm; bottom) and quantified (right). VP, Verteporfin. All experiments were performed 

in technical triplicate in at least 3 independent replicates and statistical analysis was 
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performed comparing each condition to its corresponding untreated pair. Mean ±SD; n.s., 

not significant; *P<0.05, **P<0.01, ***P<0.001; two-tailed unpaired t-test.
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Figure 5. Tumorigenicity and phenoptypic assessment in xenograft assays
(A) Tumor growth of xenografts derived from immortalized human keratinocyte HaCaT 

cells expressing empty vector (Control), WWTR1 wild-type (WWTR1 WT) and WWTR1 

S89W treated with 2 µM Verteporfin (VP) or DMSO as control. VP, Verteporfin. 

Experiments were performed in 5 mice per condition. Mean ±SEM; n.s., not significant; 

*P < .05, **P < .01, ***P < .001; two‐tailed unpaired t-test. (B) Representative micrographs 

of sections of xenograft tumors derived from HaCaT cells expressing Control, WWTR1 

WT and WWTR1 S89W subjected to hematoxylin‐and‐eosin (H&E) staining, Ki67, p40, 

Vimentin and TAZ immunohistochemical analysis (scale bar, 100 µm).
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Figure 6. TAZ and vimentin expression in human primary clear cell cervical cancers.
Micrographs of representative sections of primary clear cell carcinomas of the cervix 

(cCCCs) subjected to H&E staining,TAZ and vimentin immunohistochemical analysis (scale 

bar, 50 µm).
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