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Abstract

We report an automated workflow for production free energy simulation setup and analysis 

(ProFESSA) using the GPU-accelerated AMBER free energy engine with enhanced sampling 

features and analysis tools part of the AMBER Drug Discovery Boost package that have been fully 

integrated into the AMBER22 release. The workflow establishes a flexible, end-to-end pipeline 

for performing alchemical free energy simulations that brings to bear technologies, including new 

enhanced sampling features and analysis tools, to practical drug discovery problems. ProFESSA 

provides the user with top-level control of large sets of free energy calculations, and offers 

access to the following key functionalities: 1) automated setup of file infrastructure; 2) enhanced 

conformational and alchemical sampling with the ACES method; 3) network-wide free energy 

analysis with optional imposition of cycle closure and experimental constraints. The workflow 

is applied to perform absolute and relative solvation free energy and relative ligand-protein 

binding free energy calculations using different atom-mapping procedures. Results demonstrate 

the workflow is internally consistent and highly robust. Further, application of new network-wide 

Lagrange multiplier constraint analysis that imposes key experimental constraints substantially 

improves binding free energy predictions.
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1 Introduction

Alchemical free energy (AFE) simulations have become an indispensable tool in computer-

aided drug discovery.1-7 In recent years, simultaneous advancement in computer hardware, 

simulation software, and free energy methods has enabled highly efficient and increasingly 

accurate GPU-accelerated AFE simulations to address a broad scope of real world drug 

discovery applications.2,8-14 AFE simulations rely on physics-based atomistic models and 

statistical-mechanics methods,1,6,13,15 and leverage the property that the free energy is a 

state function to enable non-physical thermodynamic pathways to be constructed that are 

more amenable to practical computation. AFE simulations are used in a wide range of 

contexts,15 but for the purposes of the current work, focus will be placed on the calculation 

of absolute and relative solvation (ASFE and RSFE) and binding (ABFE and RBFE) free 

energies that are of primary importance to computer aided drug discovery.1,12,13,16,17

Pharmaceutical companies routinely use GPU-accelerated AFE calculations to design 

potency and selectivity to circumvent off-target affects and guide the prioritization of 

compounds for synthesis and testing in the lead optimization cycle.1,12,13,16,17 Over the 

last several years, our lab has spearheaded the development of GPU-accelerated free 

energy simulation and analysis methods in AMBER1,9,10,18-23 and FE–ToolKit24-26 and 

provided advanced beta testing access to academic and industry partners through the 

AMBER Drug Discovery Boost (AMBER DD Boost) package12 to facilitate method 

validation before it’s integration into the official AMBER release versions. Among these 

have been the development of smoothstep softcore potentials and the introduction of 

flexible user control of interactions that enables optimization of alchemical transformation 

pathways,21,27 new alchemical enhanced sampling method (ACES)28 (see description in 

Supporting Information) to avoid kinetic traps and overcome local “hot-spot” problems in 

the λ dimension, and the release of FE–ToolKit to provide a robust set of network-wide 

free energy analysis tools that includes imposition of cycle closure and experimental 

constraints.24-26 The goal of the current work is to report a new automated workflow 

for production free energy simulation setup and analysis (ProFESSA) using the GPU-

accelerated AMBER free energy engine that integrates these new features, methods and 

analysis tools.
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Setting up of AFE calculations consists of a series of technical, detail-oriented steps that are 

mistake-prone. Moreover, practical drug discovery applications such as lead optimization 

cycles may require several hundred independent calculations, each run with identical 

settings to allow for maximum error cancellations and highest predictive accuracy. This 

makes automation an absolute necessity. Numerous tools have been developed that help 

facilitate automation of various stages of AFE calculations, such as generation of initial 

input, parameter and topology files,29-32 mapping out favorable alchemical pathways,,33 and 

analysis of production simulations.34 Several robust and validated workflows that provide 

different levels of automation along the end-to-end pipeline for AFE calculations also 

exist,23,32,35-37 the most notable being the commercially available FEP+ from Schrödinger 

that enables setup, execution, and analysis of AFE calculations.38 Very recently, other 

non-commercial workflows have been reported, including FEPrepare,39 a web-based tool 

for automated setup of RBFE calculations using NAMD, PyAutoFEP,40 an open-source 

tool that enables automated setup and analysis of AFE simulations using GROMACS, and 

BAT.py,41 a tool for automation of ABFE calculations for docking refinement and compound 

evaluation.

Herein, we introduce a flexible, end-to-end pipeline for performing AFE simulations using 

AMBER that brings to bear new technologies that we have developed as part of AMBER 

DD Boost, to practical drug discovery problems. This pipeline, referred to as ProFESSA 

(Production Free Energy Simulation Setup and Analysis), automates and optimizes the 

various laborious and time-consuming steps that are involved in the setup, equilibration 

and production/data collection, and analysis of ASFE, RSFE, and RBFE calculations using 

AMBER/AMBER DD Boost (Figure 1). ProFESSA uses a simplified input file that provides 

the user with top-level control over the intended AFE calculations, and offers the following 

key functionalities:

• Automated setup of file infrastructure - For a given network of transformations, 

the setup module of ProFESSA facilitates:

– Generation of “single-topology” parameter and coordinate files starting 

from crystal structures

– Generation of common core and softcore regions for individual 

transformations using multiple atom-mapping algorithms

– Generation of necessary AMBER input files and job submission scripts

• Enhanced conformational and alchemical sampling - ProFESSA brings together 

several of our recent methodological advances in enhanced sampling techniques 

to accelerate convergence in free energy (or regular MD) simulations, and 

improve precision of predicted ligand binding free energies. Specifically, the 

workflow enables the use of:

– ACES method28 as a tool to increase sampling along the coordinates 

that are most relevant to a given transformation
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– 2-state simulation setup in conjunction with HREMD to improve 

sampling and maintain equilibrium between windows along the entire λ 
dimension

– Robust equilibration and production protocol to alleviate initial 

conformational bias

• Seamless network-wide analysis - ProFESSA’s analysis module processes the 

simulation output files and uses BARnet and MBARnet methods to enable 

network-wide analysis of binding free energies with or without imposition of 

cycle closure and experimental constraints.

The remainder of the article is organized as follows: In section 2, we summarize the key 

functionalities of ProFESSA; in section 3, we provide details of the computational methods; 

in section 4, we present results and discussion for a series of illustrative test cases and 

comparison of results from calculations with several different simulation settings; lastly, in 

section 5 we conclude by recapitulating the key developments in this work, and discussing 

future direction.

2 Key Features of ProFESSA

The ProFESSA workflow has several practical and innovative features that enable robust 

production free energy simulations:

• Automated atom mapping between reference and target ligands using MCS, 

MCS-E and MCS-Enw algorithms.

• Automated generation of topology and starting configuration files.

• Thermodynamic integration and free energy perturbation simulations using 

AMBER GPU-accelerated MD engine.

• Integration of consistent real-state endpoint simulations for each ligand into 

2-state Hamiltonian replica exchange framework.

• Enhanced sampling with REST2 and new ACES methods.

• Robust network-wide analysis using MBARnet and BARnet with cycle closure 

and experimental constraints.

• Detailed reporting of statistical/error/network stability indexes for free energy 

estimates using FE-ToolKit.

The ProFESSA workflow integrates these recently developed features, methods and analysis 

tools, some of which are presented here for the first time such as network stability (Lagrange 

multiplier) indexes discussed below.

2.1 The ProFESSA input file

The ProFESSA input file (Figure S1 in Supporting Information), which is distinct from 

AMBER input files, is designed to provide the user with top-level control over the 

key aspects of ASFE/RSFE/RBFE calculations, while automating the laborious and time-
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consuming intermediate steps. The input file consists of a series of sections, where each 

section corresponds to a particular aspect of performing the AFE calculations. In the section 

Intended calculations, the user must specify a directory that contains the initial structure and 

parameter files that include for each ligand its mol2, frcmod, and lib files, and a PDB file 

of the protein-ligand complex, list of transformations or edges, and the number of lambda 

windows to be used in the RBFE simulations. Note that the component for generating 

ligand parameters is not included within the workflow. The user can either use antechamber 

and parmchk2 packages, which ship with AmberTools, to generate GAFF10,42 or GAFF243 

frcmod files for each ligand, or use their own defined force field files. In near future, the 

generation of ligand paramaters will be implemented and integrated with the ProFESSA 

workflow. In the section Action of the workflow the user specifies whether the workflow 

will be used for setup or analysis. In the section Identification of softcore and common 
core regions, the user can choose among several algorithms for automatic determination 

of the softcore and common core regions for the various specified edges. In the section 

Preparation of MD simulation boxes the user has the option of specifying details related 

to the preparation of AMBER format MD boxes from the initial input files. The user can 

specify protein force field to ff14SB44 or ff19SB via pff, ligand force field to GAFF10,42 

or GAFF243 via lff, and water model to TIP3P45 or TIP4P-Ew46 via wm. In the sections 

TI simulation setup and TI simulation details, the user can specify how the equilibration 

protocol will be set up and the key parameters that will be used in the RBFE simulations. 

In the section Job submission scripts, the user can specify details related to job submission 

scripts, and lastly in the section Analysis, the user can specify details related to the analysis 

of the RBFE simulations using FE–ToolKit.

2.2 Automated generation of common core (CC) and softcore (SC) regions

A critical step in the setup of a ASFE/RSFE/RBFE simulation is the one-to-one mapping 

of equivalent atoms in the reference and target ligand molecules that defines the common 

core (CC) and softcore (SC) regions.27 Defining the CC and SC regions manually is a simple 

task when performing a handful of these calculations between similar ligands but becomes 

increasingly tedious as the transformation network increases in size and complexity, and can 

become very time consuming and lead to human error. ProFESSA enables the automatic 

generation of the CC and SC regions associated with the various desired transformations 

with options of choosing three different algorithms, referred to as MCS, MCS-E, and 

MCS-Enw (Figure 2). MCS corresponds to the use of the Maximum Common Substructure 
search algorithm47 as implemented in the Cheminformatics software RDKit.48 MCS uses 

a similarity criterion to decide if an atom or bond matches between two structures and 

aims to identify their maximum overlap. MCS, while widely used in context of automated 

alchemical free energy simulations, in its original form may not always be suitable, 

particularly in cases where atom mapping based on “maximum overlap” is not desired, and 

may lead to unstable TI simulations or cycle closure issues. MCS-E (or “extended” MCS) 

is an atom-mapping algorithm we developed that builds on the original MCS algorithm 

and excludes from the “maximum overlap” region that is identified purely from structural 

similarity; i.e. atoms that differ either in chemical identity or hybridization. This extension 

leads to more stable TI simulations. MCS-Enw corresponds to a variant of MCS-E which 

ensures that the CC and SC regions of each unique ligand molecule are identical in all 
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transformations in which the ligand participates within the given network (nw). MCS-Enw 

is currently only available in AMBER DD Boost but will be incorporated into a future 

AMBER release. Such a definition, along with setting up each system automatically with 

identical number of solvent particles, would enable new network-wide enhanced sampling 

methods to be used where HREMD could be performed to exchange between simulations 

along different edges of the thermodynamic graph.

2.3 Automated generation of topology and starting configuration files

RSFE/RBFE simulations on a network of transformations (or ASFE simulations on a library 

of molecules) require the MD simulation boxes for the various TI calculations to be prepared 

in a consistent fashion, ideally with an identical number of solvent molecules, such that 

they are inter-operable with HREMD and ACES simulations for a given transformation. Our 

workflow can, in an automated way, generate all the necessary topology and configuration 

files using user-defined force field, water and ion models, box size and shape, ion 

concentration, and if specified, containing identical number of water molecules and ions. 

Moreover, the workflow has the flexibility to generate the topologies with and without 

hydrogen mass repartitioning (HMR) to enable longer MD time steps.

The initial configuration files for a given RSFE/RBFE calculation can be generated in two 

different ways. In the conventional approach, referred to here as the 1-state model (and has 

up until now been the only practical option in AMBER), only the reference ligand structure 

(in the case of RSFE) or receptor-reference ligand complex structure (in case of RBFE) is 

considered and corresponds to the λ=0 state (and the λ=1 state is extrapolated/built from 

the λ=0 state), while in the 2-state model introduced here, both the reference and target 

ligand structures (in case of RSFE) or receptor-reference ligand and receptor-target ligand 

complex structures (in case of RBFE) are considered and correspond to the λ=0 state and 

λ=1 state, respectively. The latter is particularly useful if the conformation of the receptor is 

significantly different in the receptor-reference and receptor-target complexes.

2.4 Automated generation of AMBER DD Boost input files for a robust equilibration 
protocol

Sufficient equilibration of starting structures is essential, particularly for accurate and 

precise RBFE predictions. ProFESSA utilizes an exhaustive and carefully chosen 

equilibration protocol illustrated in Figure 3 and generates the input file infrastructure 

necessary for running equilibration and production simulations. Equilibration simulations 

are divided into two phases; the first phase consists of rigorous equilibration of only the 

λ=0 state in the case of the 1-state model and both λ=0 and λ=1 states for the 2-state 
model. This is followed by the second phase in which all λ states are generated and 

equilibrated independently. In the case of the 1-state model, all λ states are generated 

from the equilibrated λ=0 state, while in the case of the 2-state model, the first half of 

the λ windows are generated from the equilibrated λ=0 state and the other half of the λ 
windows are generated from the equilibrated λ=1 state. Note: the 1-state model often leads 

to hysteresis when the reference and target ligands are switched, as this will change the 

starting conditions for the equilibration. For the 2-state model, initial conditions considering 

both end states symmetrically eliminate hysteresis. Production simulations are initiated from 
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the structures obtained at the end of the equilibration. The workflow allows top-level control 

on the production simulation parameters, such as simulation length, time step, use of replica 

exchange and ACES, and flags that are specific to AMBER DD Boost. The workflow also 

gives the user flexibility to skip some parts of the equilibration procedure, which the user 

can comment-out some parts of the equilibration procedure in the default slurm script, or 

provide their own slurm script.

3 Methods

All free energy calculations were performed using concerted transformation pathways, 

and a recently developed smoothstep softcore potential27 introduced in AMBER22.49 The 

functional form of this softcore potential includes an universal pairwise interaction with 

consistent power scaling of Coulomb and Lennard-Jones interactions with unitless control 

parameters and rigorous smoothing of the potential at the non-bonded cut-off boundary. The 

different classes of example systems were not all run using exactly the same procedures or 

force fields. For example, for the hydration free energy simulations the GAFF force field is 

used with TIP3P water to enable consistent comparisons with work of others,50,51 and a 1 

fs time step was used, rather than the more common 2 fs and 4 fs time steps when SHAKE 

is used with hydrogen mass repatitioning.52,53 In other cases, the more recent GAFF2 force 

field was used with TIP4PEw water model as is more commonly employed by the authors.

3.1 Absolute and relative hydration free energy simulations

We performed absolute and relative hydration free energy calculations for several molecules 

taken from FreeSolv database.54 Initial structures were taken from FreeSolv54 and 

simulations were prepared using the ProFESSA workflow. For the small molecules, the 

GAFF force field10,42 parameters along with AM1-BCC charges55,56 were used. The 

systems were solvated with TIP3P45 water and an initial buffer size of 20 Å. Any remaining 

net charge of the system was first neutralized and then solvated as 0.15 M ion concentration 

by addition of Na+ or Cl− ions (modeled using force field parameters of Joung and 

Cheatham57) as appropriate. Four independent trials of each simulation were performed 

by using different random number seeds to adjust the initial conditions. In the 2-state 

simulation setup, as a first step the solvated MD boxes for all systems were generated, 

the system with the fewest number of water molecules and ions was identified, and then 

appropriate number of water molecules and ions, lying toward the outer edge of the MD 

boxes, were deleted from all other systems such that all systems end up with identical 

number of water molecules and ions (this is done automatically in the ProFESSA workflow). 

The equilibration protocol used was analogous to that described in Figure 3. The production 

free energy calculations were performed using 25 λ windows, spaced as per the S2 schedule 

along the λ dimension ranging from 0 to 1 (0.0, 0.1768, 0.2298, 0.2694, 0.3027, 0.3323, 

0.3594, 0.3849, 0.4091, 0.4325, 0.4553, 0.4777, 0.5, 0.5223, 0.5447, 0.5675, 0.5909, 

0.6151, 0.6406, 0.6677, 0.6973, 0.7306, 0.7702, 0.8232, 1.0). Each window was run in 

the NPT ensemble at 300 K using the Langevin thermostat with a friction constant of 2.0 

ps−1 for 5 ns. The long-range electrostatics were evaluated with the particle mesh Ewald 

(PME) method.58,59 A cutoff of 10 Å was used for non-bonded interactions, including the 

direct space PME terms and particles interacting through softcore potentials. Only the bonds 
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involving hydrogen were constrained with the SHAKE algorithm60,61 except the atoms of 

ligands, and all simulations were performed using a 1 fs integration time step.

3.2 Relative binding free energy simulations

We examined six possible transformations between four ligands that target binding to 

protein Cyclin-dependent kinase 2 (Cdk2).38,62 The specific ligands chosen in this study 

were 1h1q, 1h1r, 1oiu, and 1h1s. Initial structures were taken from the published data and 

simulations were prepared using ProFESSA workflow, using the AMBER ff14SB44 force 

field for proteins, GAFF243 for ligands, TIP4P-Ew46 for water molecules. An initial buffer 

size of 20 and 16 Å were used for the aqueous and protein-ligand complex leg simulations, 

respectively. Three independent trials of each simulation were performed by using different 

random number seeds to adjust the initial conditions. In the 2-state simulation setup, as 

a first step the solvated MD boxes for all systems were generated, the system with the 

fewest number of water molecules and ions was identified, and then appropriate number of 

water molecules and ions, lying toward the outer edge of the MD boxes, were deleted from 

all other systems such that all systems end up with identical number of water molecules 

and ions. The equilibration protocol used is described in Figure 3. The production free 

energy calculations were performed using 25 λ windows, spaced as per the S2 schedule 

along the λ dimension ranging from 0 to 1 (0.0, 0.1768, 0.2298, 0.2694, 0.3027, 0.3323, 

0.3594, 0.3849, 0.4091, 0.4325, 0.4553, 0.4777, 0.5, 0.5223, 0.5447, 0.5675, 0.5909, 

0.6151, 0.6406, 0.6677, 0.6973, 0.7306, 0.7702, 0.8232, 1.0). The S2 scheduling is chosen 

ti guarantee the excellent replica exchange ration between λ windows, and to get the 

converge free energy results. The optimal λ scheduling will be expored in details in the 

future study. Each window was run in the NPT ensemble at 300 K using the Langevin 

thermostat with a friction constant of 2.0 ps−1 for 5 ns. The long-range electrostatics were 

evaluated with the particle mesh Ewald (PME) method.58,59 A cutoff of 10 Å was used 

for non-bonded interactions, including the direct space PME terms and particles interacting 

through softcore potentials. Only the bonds involving hydrogen were constrained with the 

SHAKE algorithm60,61 except the atoms of ligands, and all simulations were performed 

using a 1 fs integration time step.

4 Results and Discussion

Here we provide demonstrations of the use of the workflows to run alchemical free 

energy simulations using various new features including ACES enhanced sampling, 2-state 

Hamiltonian replica-exchange and ACES setup, and network-wide free energy analysis. The 

workflows are applied to examine absolute and relative solvation free energies of small 

molecules and relative binding free energies of ligand-protein complexes.

In order to facilitate these comparisons, we introduce an abbreviated notation that is used 

in the figures, tables and discussion: “SC2/R” and “SC2/N” indicates a gti_add_sc flag 

value of 2, with (SC2/R) and without (SC2/N) HREMD, respectively. The gti_add_sc flag 

controls the internal energy terms that are scaled by λ in the dummy state, and a value 

of 2 scales all electrostatic interaction, but maintains all internal bonded (including torsion 

angle) and Lennard-Jones (LJ) terms (except 1-4 LJ terms that are strongly coupled with 
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the torsion angles). A gti_add_sc value of 5 also scales torsion terms around rotatable 

single bonds, which creates an “enhanced sampled” dummy state. ACES uses this enhanced 

sampled dummy state along with HREMD. The ACES method has been described in detail 

elsewhere, and demonstrated to have advantages over other REST2-like implementations.28

4.1 Alchemical Enhanced Sampling with ACES using 2-state HREMD setup

2-state Hamiltonian replica exchange/ACES setup.—Setup of the Hamiltonian 

replica exchange framework for intermediate alchemical states in RBFE simulations 

is important. Within the limit of infinite sampling, results should not be sensitive to 

these initial conditions, but in practice the setup is very important. As discussed above, 

traditionally in AMBER setup of HREMD simulations for λ > 0 values would be 

determined from the structure of the λ = 0 state. Results would differ statistically in the 

ligands were reversed (hysteresis effect). In the 2-state approach both real state endpoint 

structures are considered simultaneously and intermediate states are created symmetrically 

in the HREMD setup. This eliminates problems of hysteresis as the setup and sampling are 

invariant to permutation of the ligands.

Here we demonstrate the use of ACES as robust alchemical enhanced sampling method. 

We focus on absolute and relative solvation free energies as these calculations do not 

require other features of the workflow such as 2-state Hamiltonian replica exchange setup. 

This provides a set of test cases that allows us to focus more on the ACES approach 

itself. A detailed description of the ACES approach and more comprehensive tests have 

been presented elsewhere.28 We chose a set of molecules examined previously in AMBER 

validation studies,20 and selected from the FreeSolv54 database (v0.51) for which the 

reported deviations between the calculated AMBER/GAFF and experimental solvation 

free energies (calculated using a different protocol described in published work50,51) are 

anomalously large28 (Table 1).

Figure 4 shows a regression of the calculated and experimental absolute solvation free 

energy (ASFE) values for 10 compounds listed in Table 1 using the SC2/N, SC2/R and 

ACES procedures. The R2 values range from 0.78-0.96, but this high correlation is mainly 

due to the large spread of ASFE values, hence we focus the discussion on the errors with 

respect to experimental values. It should be pointed out that the standard error estimates 

(obtained from 4 independent trials) are likely underestimates. Nonetheless, as will be 

discussed below, the close agreement between differences in the ASFE values and the 

corresponding RSFE values using different atom mapping procedures is strongly supportive 

that the errors with ACES are likely less than 0.25 kcal/mol. This is much smaller than the 

anomalously large differences with respect to the experimental values that are discussed.

Using SC2/N, which does not use HREMD, the mean absolute error (MAE) with respect to 

experiment is 2.4 kcal/mol and R2 correlation is 0.78. Using SC2/R that employs HREMD 

essentially produces the same errors and correlation. The origin of this invariance with 

HREMD is that the “dummy state” can become trapped due to hindered rotations about 

single bonds caused by the torsion angle and 1-4 LJ terms. ACES eliminates these terms to 

create an enhanced sampled “dummy” state that is then rigorously connected to the real state 
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through the replica exchange network. Using ACES, the MAE is reduced to 0.9 and the R2 

correlation increases to 0.96.

For example, the anomalously large error observed for propionic and acidic acid arises from 

the orientation of the acid proton which transitions from a syn O-C-O-H orientation in the 

gas phase (making an internal hydrogen bond) to an anti conformation in solution (creating 

an enhanced dipole moment).28,63 In the absence of ACES, the conformation of the real 

state remains trapped along the λ dimension and propagates to the dummy state, such that 

in the gas phase calculation the dummy state will remain in the syn orientation and in 

the aqueous phase calculation the dummy state will remain in the anti orientation, despite 

there being greater than 5 kcal/mol difference in potential energy between these states due 

to the presence of 1-4 LJ and torsion angle terms. The ACES approach eliminates these 

internal potential energy terms in the dummy state such that the conformational energies of 

the different proton orientations are nearly identical and there is negligible barrier between 

them. In this way ACES imposes enhanced sampling of the dummy (λ=1) state that creates 

a rigorous endpoint to connect gas phase and aqueous phase transformations, but in addition, 

through propagation of this ensemble through the HREMD network to the λ=0 state, further 

enables enhanced sampling of the real state. In the case of acids, it has been shown that with 

ACES enhanced sampling, the hydration free energy of acids are robust and independent of 

initial starting state.28

While better agreement with experiment using ACES is encouraging, it is not a proof 

that sampling is either complete or converged. To provide further supporting analysis, 

we performed RSFE calculations using different atom-mapping procedures (MCS, MCS-E 

and MCS-Enw) and compare the values to those derived from the ASFE calculations as 

differences. These are listed in Table 2. One should note that all transformations are 

considered in such a way that their experimental values are positive. First, the RSFE 

values are insensitive to the atom-mapping procedure, consistent with the robustness of 

the ACES methods (together with the new softcore potential and alchemical transformation 

pathway). The largest deviation between RSFE values is only 0.2 kcal/mol and occurs for 

methanol→methane with the MCS method (5.51 kcal/mol versus 5.30 kcal/mol for the 

other methods). This indicates internal consistency for the RSFE simulations using ACES. 

Second, the RSFE values are in very close agreement with the relative values (differences) 

between the ASFE values. In the case of the MCS-E atom mapping, the maximum 

difference is 0.05 kcal/mol for the 2-methylindol→methane transformation. Taken together, 

this illustrates the robustness of the ACES approach with 2-state setup.

4.2 Network-wide free energy analysis

In typical drug discovery applications of alchemical free energy methods, prediction 

(ranking) of the binding of a set of proposed compounds are made for a given target 

protein (and possibly also off-target proteins in order to achieve selectivity). As discussed 

above, a thermodynamic graph is constructed that connect these ligands through alchemical 

transformations. Typically this graph will contain a number of redundancies that create 

“closed cycles”, and in addition might also contain a few compounds for which the 

structure and binding affinity have been previously determined. Recently, we introduced 
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BARnet and MBARnet variational methods for network-wide analysis of RBFEs of a set of 

compounds connected in a thermodynamic graph with (optionally) an arbitrary number of 

experimental constraints or restraints.25 This method has been further extended through a 

constrained search formalism26 to analyze problematic edges in the thermodynamic graph, 

and where possible associate those edges with “uncertain” ligands within the network. 

Here we demonstrate the use of these methods to improve the robustness of RBFE 

predictions. Specifically, we examine the degree to which RBFE predictions using different 

atom-mapping procedures agree with one another and with experiment using different 

constraint procedures.

For this purpose, we will use a 4 node dense thermodynamic graph for ligands bound 

to Cdk2 (Fig. 2). We will consider RBFE values computed with ACES and the 2-state 

setup for edges of the thermodynamic graph using MCS, MCS-E and MCS-Enw mapping 

procedures. Full details for each atom mapping are provided in the Supporting Information 

(Tables S1-3). Table 3 lists the average RBFE values over the 3 atom mapping procedures, 

and shown in parentheses are the median absolute deviation (MAD) in RBFE values 

between atom-mapping procedures. Results are derived from the same simulation data, 

but are analyzed “unconstrained” (U), in the presence of cycle closure constraints (CCC), 

and also with additional constraints and data exclusion (“isolation”) discussed below. The 

correlation between experimental and calculated data for the three MCS, MCS-E and 

MCS-Enw methods can be found in Fig. 5. As we did before, in both Table 3 and Fig. 

5 the transformations are taken in such a way that their associated experimental values are 

positive.

Improving predictive accuracy of free energy estimates using Lagrange 
multiplier analysis and experimental constraints.—Unconstrained analysis (i.e., 

analysis of each edge of the thermodynamic graph independently, and not involving any 

“network-wide” constraints) gives poor correlation with experiment (R2=0.01) and mean 

absolute error (MAE) and root-mean-square error (RMSE) values of 1.56 and 1.74 kcal/mol, 

respectively. The largest median absolute deviation between RBFE values occurs for the 

1h1s-1h1r transformation (0.22 kcal/mol). The introduction of CCCs leads to similar results 

with no significant improvement of the correlation (R2=0.02) and of the MAE and RMSE 

(1.57 and 1.73 kcal/mol, respectively) relative to the unconstrained values. One notable 

difference from the table is that with CCCs, there is a systematic decrease of the MADs 

between the different atom-mapping methods for almost every ligand (e.g., the MAD for 

1h1s-1h1r is reduced from 0.22 to 0.03 kcal/mol). As will be illustrated below, this is related 

to the fact that introduction of cycle closure constraints makes the free energy estimates 

between different atom mapping procedures much more robust and internally consistent, 

even if, in the present case (due to force field errors) this does not directly translate into 

greatly improved predictions with respect to experiment.

In some cases the thermodynamic graph contains two or more compounds that have 

known binding affinities such that one or more RBFE values could be incorporated as 

an additional constraint in the analysis (regardless as to whether the edge corresponding to 

the constrained RBFE was explicitly computed or not). Introduction of such constraints can 

lead to substantial improvement of the overall correlation and agreement with experiment, 

Ganguly et al. Page 11

J Chem Inf Model. Author manuscript; available in PMC 2023 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and provides a powerful mechanism to integrate experimental measurements in free energy 

predictions. Here we illustrate how network-wide analysis provides valuable information 

not apparent in the analysis of individual edges, and enables identification of specific 

ligands and associated RBFE values that may warrant special attention or experimental 

determination in order to improve predictions across the entire network.

In our latest constrained search formalism,26 we introduce the concept of Lagrange 

multipliers along with cycle closure constraints as an index that reports on the overall 

reliability of the RBFE values corresponding to potentially “problematic” edges. Moreover, 

we also identify an “uncertain” ligand within the network as one which has associated edges 

with anomalously large Lagrange multipliers. In Fig. 6, we show the Lagrange multipliers 

for all the edges of the Cdk2 thermodynamic graph for the MCS, MCS-E and MCS-Enw 

mapping procedures by means of a color map, and the standard error estimates associated to 

the transformations of the same graph by means of the width of the lines denoting the edges 

(the wider the line, the bigger the error). Fig. 6 confirms that a network-wide analysis offers 

distinct new information through the Lagrange multipliers than what one could obtain from 

the standard errors obtained from analysis of the individual edge transformations. Moreover, 

one can see that, for the three mapping algorithms, the most uncertain ligand is 1oiu, since it 

is the one with associated edges with largest (average) Lagrange multipliers.

In the three cases, 1oiu-1h1q is flagged as the most problematic transformation. Thus, 

in Table 3 we show the RBFEs when the 1oiu-1h1q transformation is constrained to its 

experimental RBFE value (1 Expt). The correlation (R2=0.50) and MAE/RMSE (1.08/1.37 

kcal/mol) with respect to experimental values improve dramatically with respect to the U 

and CCC cases. Moreover, the MADs are uniformly small (0.01-0.07 kcal/mol) for all the 

six transformations. Extending this idea, as we have flagged 1oiu as the most “uncertain” 

ligand, and given that we have constrained it’s value (relative to the reference ligand 1h1q) 

to the experimental value, we further examine the effect of “isolating” 1oiu by excluding 

from the analysis all the rest of the transformations/graph edges connecting to it (1 Expt iso). 

This leads to further improvement of the correlation (R2=0.74) and MAE/RMSE (1.03/1.28 

kcal/mol) with respect to experimental values, but some what slightly more varied MAD 

values (0.02-0.09 kcal/mol) suggesting perhaps slightly less internal consistency between 

different atom-mapping procedures.

Improving internal consistency of free energy estimates from different atom-
mapping procedures using cycle closure constraints.—As suggested by the MAD 

values in Table 3, introduction of cycle closure and experimental constraints can lead 

to more robust free energy estimates with respect to atom-mapping procedure. This is 

important, as ultimately robust high-precision free energy estimates are necessary to be able 

to validate and ultimately improve force fields for improved prediction in drug discovery 

applications. A full analysis of the internal correlations and errors of the edge free energy 

estimates derived from the “U”, “CCC”, “1 Expt” and “1 Expt iso” analysis is shown in 

Table S1.4 of the Supporting Information. The free energy values for the MCS, MCS-E 

and MCS-Enw atom-mapping procedures using unconstrained “U” analysis have internal 

correlations (R2) that range from 0.81 to 0.95, and mean absolute errors that range from 

0.26-0.45 kcal/mol. Imposition of cycle closure constraints alone increases the internal 
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correlation range from 0.99-1.00 and reduces the MAE range from 0.06-0.22 kcal/mol. 

Further inclusion of the “1 Expt” constraint also has high correlation (R2 range 0.88-0.98) 

and further reduces the MAE range (0.06-0.15 kcal/mol). The “1 Expt iso” analysis also has 

high correlation (R2 range 0.96-1.00) but broader MAE range (0.05-0.26 kcal/mol). Thus, 

the inclusion of cycle closure constraints can dramatically increase the robustness of free 

energy predictions in the sense of making estimated values from different atom-mapping 

procedures much more aligned. Introduction of a further experimental constraint for an 

“uncertain” ligand, identified through Lagrange multiplier analysis, maintains this internal 

consistency, and further dramatically improves the accuracy of the predictions across the 

entire network.

To demonstrate the application of the ProFESSA workflow on a larger ligand-protein 

dataset, we include the Tyk2 system, which constructs the thermodynamic graph by 16 

ligands and forms 24 edges.38,64,65 Such graph is represented in Figure 7. Herein, we will 

compute with ACES and the 2-state setup for edges of the thermodynamic graph using 

MCS-Enw mapping procedures, and analyze the RBFE values with and without cycle closure 

constraints. Table 4 and Table 5 show the edge RBFEs and ligand BFEs obtained for the 

Tyk2 dataset, respectively. As we did before, in Table 4, the transformation directions are 

chosen in such a way that their associated experimental values are positive.

The unconstrained analysis of the edge RBFEs gives correlation with experiment of 0.24 

and MAE and RMSE values of 0.77 and 0.91 kcal/mol, respectively. The introduction of 

CCC on edges RBFEs leads to similar results for the correlation (R2=0.24) and of the 

MAE and RMSE (0.74 and 0.90 kcal/mol, respectively) relative to the unconstrained values. 

The ligand BFEs (node results) show better correlation (R2=0.70) and MAE and RMSE 

values (0.55 and 0.69 kcal/mol, respectively). As we did for the Cdk2 case, we have also 

tested introducing an experimental constraint in an edge properly identified by means of the 

optimization Lagrange multipliers (cf. Figure 7): jmc23~ejm55. As it can be seen in Figure 

8, the introduction of this constraint led to an improvement of both the correlation and the 

MAE with respect to the CCC results in the edge RBFE and the node BFE cases (R2=0.53, 

MAE=0.59 kcal/mol and R2=0.89, MAE=0.43 kcal/mol, respectively). Isolation of the most 

uncertain ligand (ejm55) as identified by the Lagrange multiplier analysis described above 

leads to only a very modest decrease in the MAE from 0.43 to 0.39 kcal/mol. These results 

are also shown in Figure 8.

4.3 Trouble Shooting Tips

The present version of the ProFESSA workflow is meant to create a robust and automated 

set of tools for performing alchemical free energy simulations of ASFEs, RSFEs and 

RBFEs, but should not be considered as “bullet proof” or used as a black box. Users 

should examine the rich output of stability and sensitivity indexes described above in order 

to identify potentially problematic transformations, and accordingly make adjustments to 

the system preparation and input control parameters. We have included in the Supporting 

Information some general guidelines that may assist in trouble shooting problems that can 

commonly occur. A current limitation of the ProFESSA workflow is the handling charge 

changing perturbations. This is an area of intense research and several approaches based on 
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Poisson-Boltzmann corrections,66 introduction of a co-alchemical ion,67 and the simulations 

recoupling and decoupling methods.41 A subset of these approached will be incorporated 

into the ProFESSA workflow in near future.

5 Conclusion

The reported ProFESSA workflow has been demonstrated to be a flexible and reliable for 

solvation and ligand-protein binding free energy calculations. ProFESSA automates and 

optimizes laborious and time-consuming steps that are involved in the setup, equilibration 

and production/data collection, and analysis of free energy calculations using AMBER/

AMBER DD Boost. This workflow thus addresses a critical barrier to progress in the 

field to create a robust automated end-to-end pipeline that enables deployment of large-

scale alchemical free energy simulations using AMBER across networks (thermodynamic 

graphs) of compound libraries. Key new technologies available within this workflow 

include optimized alchemical transformation pathways, new enhanced sampling methods 

and network-wide analysis tools. The workflow is applied to sets of absolute and relative 

solvation free energy and relative binding free energy calculations and shown to be 

internally consistent, with dramatic improvement achieved through inclusion of cycle 

closure and experimental constraints in the free energy analysis. Taken together, this work 

establishes a set of powerful new tools for drug discovery applications
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Figure 1: 
ProFESSA : An Automated workflow for Production Free Energy Simulation Setup and 

Analysis.
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Figure 2: 
Illustration of the MCS, MCS-E, and MCS-Enw algorithms for identification of SC and CC 

regions. Both panels (A) and (B) illustrate the edges that form the dense thermodynamic 

graph with Cdk2 ligands. SC regions identified by the MCS and MCS-E algorithms are 

indicated in panel (A) by red and blue circles, respectively, while SC regions identified my 

the MCS-Enw algorithm are indicated in panel (B) are indicated by green circles.
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Figure 3: 
Equilibration protocols used within the ProFESSA workflow.
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Figure 4: 
ASFE data calculated using ProFESSA. Left panel: Results obtained using gti_add_sc=2 

and no HREMD (SC2/N). Middle panel: Results obtained using gti_add_sc=2 and HREMD 

(SC2/R). Right panel: Results obtained using ACES.
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Figure 5: 
Edge RBFEs obtained for the Cdk2 dataset calculated using ProFESSA. The three panels 

illustrate results obtained from calculations with MCS, MCS-E, and MCS-Enw mapping 

algorithms, respectively.
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Figure 6: 
Lagrange multipliers and standard deviations associated to the edges of the 4 node Cdk2 

thermodynamic graph for three different atom-mapping algorithms.

Ganguly et al. Page 24

J Chem Inf Model. Author manuscript; available in PMC 2023 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Lagrange multipliers and standard deviations associated to the edges of the 16 node Tyk2 

thermodynamic graph.
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Figure 8: 
Edge RBFEs and ligand BFEs obtained for the Tyk2 dataset calculated using ProFESSA.
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Table 1:

Comparsion of absolute hydration free energy values (kcal/mol) for selected Free-Solv entries and molecules 

examined previously for AMBER validation with different simulation protocols, along with the experimental 

values where available.
a

FreeSolv
ID

Compound
name

ΔΔGhyd

SC2/N SC2/R ACES Exp

9055303 methane 2.38(02) 2.36(03) 2.37(04) 2.00

2008055 ethane 2.45(04) 2.48(04) 2.47(04) 1.83

1636752 methanol −2.93(04) −3.00(04) −2.93(05) −5.10

1873346 toluene −0.86(05) −0.89(06) −0.93(07) −0.90

1261349 neopentane 2.69(07) 2.74(06) 2.68(07) 2.51

2099370* ketoprofen −17.35(09) −17.48(15) −13.09(19) −10.78

1527293* flurbiprofen −5.79(14) −6.26(15) −9.67(17) −8.42

2075467* ibuprofen −10.72(29) −11.05(16) −7.52(15) −7.00

7758918* propionic acid −1.95(09) −2.09(12) −5.72(10) −6.46

3034976* acetic acid −9.63(06) −9.96(13) −5.96(10) −6.69

R2 0.78 0.79 0.96

MAE 2.38 2.39 0.89

RMSE 3.13 3.17 1.16

- 2-methylfuran 0.09(04) 0.08(05) 0.12(06) -

- 2-methylindole −6.70(06) −6.62(08) −6.74(11) -

- 2-cyclopentanylindole −6.98(06) −6.99(10) −7.04(12) -

- 7-cyclopentanylindole −7.12(07) −7.04(13) −7.05(10) -

a
Compounds marked with an

*
have anomolously large errors when calculated without ACES enhanced sampling (calculated using a different protocol described in published 

work50,51) with respect to experiment.
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Table 2:

Comparison of relative hydration free energy values (kcal/mol) for selected Free-Solv entries with different 

simulation protocols and different mapping methods, along with the experimental values.

Transformation
ACES

ΔAbs Exp
MCS MCS-E MCS-Enw

ethane → methane −0.03(07) −0.09(02) −0.08(06) −0.10(06) 0.17

methanol → methane 5.51(06) 5.30(03) 5.30(03) 5.30(06) 7.10

methanol → ethane 5.39(04) 5.41(03) 5.36(03) 5.40(06) 6.93

toluene → methane 3.29(08) 3.29(06) 3.30(07) 3.30(08) 2.90

methane → neopentane 0.34(08) 0.31(04) 0.33(04) 0.31(08) 0.51

R2 0.97 0.96 0.96 0.96

MAE 0.97 1.03 1.03 1.03

RMSE 1.01 1.08 1.09 1.08

2-methylfuran → methane 2.32(09) 2.21(05) 2.28(05) 2.25(07) -

2-methylindole → methane 9.10(10) 9.06(08) 9.05(08) 9.11(11) -

7CPI
a
 → 2CPI

b 0.05(12) 0.00(08) 0.00(08) 0.01(16) -

a
7-cyclopentanylindole

b
2-cyclopentanylindole
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Table 3:

Edge RBFEs obtained for the Cdk2 dataset calculated using ProFESSA. The table consists of average RBFEs 

from calculations with MCS, MCS-E, and MCS-Enw mapping algorithms. Median absolute deviations (MAD) 

are listed in parentheses.
a

Edges
ΔΔG Expt

U CCC 1 Expt 1 Expt iso

1h1q-1h1r −0.26 (0.08) −0.33 (0.04) 0.12 (0.05) −0.25 (0.02) 0.51

1h1s-1h1q 1.82 (0.00) 1.86 (0.00) 1.29 (0.01) 1.76 (0.09) 3.07

1h1s-1h1r 1.54 (0.22) 1.53 (0.03) 1.42 (0.07) 1.51 (0.07) 3.58

1h1s-1oiu −0.55 (0.15) −0.70 (0.09) 0.39 (0.01) 0.86 (0.09) 2.17

1oiu-1h1q 2.79 (0.02) 2.55 (0.08) 0.90 (0.00) 0.90 (0.00) 0.90

1oiu-1h1r 2.07 (0.12) 2.23 (0.08) 1.02 (0.05) 0.65 (0.02) 1.41

R2 0.01 0.02 0.50 0.74

MAE 1.56 1.57 1.08 1.03

RMSE 1.74 1.73 1.37 1.28

a
Listed are average relative free energy values using various network-wide analysis procedures: no cycle closure or experimental constraints 

(U); inclusion of cycle closure constraints (CCC); cycle closure constraints plus an additional experimental constraint for the most uncertain 
transformation identified through network Lagrange multiplier analysis (1 Expt); and further isolation of the uncertain ligand by removing all 

but one edge connection to the ligand (1 Expt iso). Summarized at the bottom are the linear correlation (R2), mean absolute error (MAE) and 
root-mean-square error (RMSE) with respect to experiment.
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Table 4:

Edge RBFEs obtained for the Tyk2 dataset calculated using ProFESSA. The table consists of average RBFEs 

from calculations with MCS-Enw mapping algorithms.

Edges
ΔΔG Expt

U CCC

ejm_31-ejm_43 1.42 (0.10) 1.27 (0.07) 1.28

ejm_45-ejm_31 0.89 (0.06) 0.87 (0.06) 0.02

ejm_46-ejm_31 0.76 (0.05) 0.85 (0.03) 1.77

ejm_31-ejm_48 −0.09 (0.10) 0.03 (0.10) 0.54

jmc_28-ejm_31 0.58 (0.09) 0.52 (0.09) 1.44

ejm_42-ejm_48 0.54 (0.12) 0.41 (0.09) 0.78

ejm_54-ejm_42 2.09 (0.08) 1.83 (0.06) 0.75

ejm_42-ejm_55 −0.83 (0.05) −0.69 (0.04) 0.57

ejm_55-ejm_43 2.13 (0.09) 2.34 (0.08) 0.95

ejm_42-ejm_44 2.73 (0.17) 2.30 (0.16) 2.36

ejm_55-ejm_44 2.60 (0.16) 2.98 (0.16) 1.79

ejm_42-ejm_45 −0.50 (0.04) −0.49 (0.02) 0.22

ejm_47-ejm_31 0.24 (0.06) 0.26 (0.05) 0.16

ejm_47-ejm_55 −0.85 (0.06) −0.80 (0.06) 0.49

ejm_31-ejm_49 0.74 (0.07) 0.72 (0.06) 1.79

ejm_50-ejm_49 0.55 (0.10) 0.61 (0.09) 1.23

ejm_42-ejm_50 0.47 (0.08) 0.49 (0.06) 0.80

ejm_54-ejm_55 0.90 (0.07) 1.14 (0.05) 1.32

jmc_23-ejm_46 0.55 (0.06) 0.54 (0.04) 0.39

jmc_23-ejm_55 0.31 (0.09) 0.32 (0.08) 2.49

jmc_23-jmc_27 0.02 (0.07) −0.03 (0.04) 0.42

jmc_23-jmc_30 −0.02 (0.06) 0.00 (0.04) 0.76

jmc_27-jmc_28 0.98 (0.06) 0.90 (0.05) 0.30

jmc_28-jmc_30 −0.84 (0.05) −0.87 (0.03) 0.04

R2 0.24 0.24

MAE 0.77 0.74

RMSE 0.91 0.90

a
Listed are average relative free energy values using various network-wide analysis procedures: no cycle closure or experimental constraints 

(U); inclusion of cycle closure constraints (CCC). Summarized at the bottom are the linear correlation (R2), mean absolute error (MAE) and 
root-mean-square error (RMSE) with respect to experiment.
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Table 5:

Ligand BFEs obtained for the Tyk2 dataset calculated using ProFESSA. The table consists of BFEs from 

calculations with MCS-Enw mapping algorithms.

Ligands
ΔG Expt

U CCC

ejm_31 −9.40 (0.00) −9.35 (0.00) −9.54

ejm_42 −9.58 (0.06) −9.73 (0.06) −9.78

ejm_43 −8.28 (0.07) −8.08 (0.07) −8.26

ejm_44 −7.81 (0.19) −7.43 (0.19) −7.42

ejm_45 −10.29 (0.05) −10.22 (0.06) −9.56

ejm_46 −10.16 (0.03) −10.20 (0.03) −11.31

ejm_47 −9.56 (0.05) −9.61 (0.05) −9.70

ejm_48 −9.50 (0.10) −9.32 (0.10) −9.00

ejm_49 −8.67 (0.06) −8.63 (0.06) −7.75

ejm-50 −9.11 (0.12) −9.23 (0.11) −8.98

ejm_54 −11.30 (0.12) −11.56 (0.11) −10.53

ejm_55 −10.41 (0.10) −10.41 (0.10) −9.21

jmc_23 −10.72 (0.06) −10.74 (0.05) −11.70

jmc_27 −10.70 (0.10) −10.77 (0.10) −11.28

jmc_28 −9.73 (0.09) −9.87 (0.09) −10.98

jmc_30 −10.74 (0.09) −10.74 (0.09) −10.94

R2 0.69 0.70

MAE 0.58 0.55

RMSE 0.71 0.69

a
Listed are average relative free energy values using various network-wide analysis procedures: no cycle closure or experimental constraints 

(U); inclusion of cycle closure constraints (CCC). Summarized at the bottom are the linear correlation (R2), mean absolute error (MAE) and 
root-mean-square error (RMSE) with respect to experiment.
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