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Abstract

Background: Malignant pleural mesothelioma (MPM) is a rare understudied cancer associated with exposure to asbestos. So far, MPM
patients have benefited marginally from the genomics medicine revolution due to the limited size or breadth of existing molecular
studies. In the context of the MESOMICS project, we have performed the most comprehensive molecular characterization of MPM
to date, with the underlying dataset made of the largest whole-genome sequencing series yet reported, together with transcriptome
sequencing and methylation arrays for 120 MPM patients.

Results: We first provide comprehensive quality controls for all samples, of both raw and processed data. Due to the difficulty in
collecting specimens from such rare tumors, a part of the cohort does not include matched normal material. We provide a detailed
analysis of data processing of these tumor-only samples, showing that all somatic alteration calls match very stringent criteria of
precision and recall. Finally, integrating our data with previously published multiomic MPM datasets (n = 374 in total), we provide an
extensive molecular phenotype map of MPM based on the multitask theory. The generated map can be interactively explored and
interrogated on the UCSC TumorMap portal (https://tumormap.ucsc.edu/?p=RCG_MESOMICS/MPM_Archetypes ).

Conclusions: This new high-quality MPM multiomics dataset, together with the state-of-art bioinformatics and interactive visualiza-
tion tools we provide, will support the development of precision medicine in MPM that is particularly challenging to implement in
rare cancers due to limited molecular studies.
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Context
Malignant pleural mesothelioma (MPM) is a deadly pleural can-
cer with currently limited therapeutic opportunities that trans-
late into poor outcomes for patients. The latest World Health Or-
ganization classification [1] recognizes 3 different histopathologic
types: epithelioid (median overall survival of 14.4 months), bipha-
sic (9.5 months), and sarcomatoid (5.3 months). Multiomic se-
quencing data [2, 3] have been key in the identification of driver
genes, developing and refining the characterization of molecular
profiles from initial discrete clusters to a continuum [4–6], and
uncovering rare genotypes such as near-haploid genomes. Such
advances have revealed the rich molecular heterogeneity in MPM
and have fueled the implementation of drug trials for more tai-
lored MPM treatments. Despite their important findings, these
multiomic studies have profiled only a reduced representation of
the MPM genome (primarily exomes) and have mainly focused on
describing simple mutational processes (i.e., copy number alter-
ations and point mutations). Therefore, there is still a need for
comprehensive multiomic datasets including whole MPM genome
sequences to allow the study of complex mutational processes
(e.g., whole-genome doubling, chromothripsis, extrachromosomal

DNA) that have been described in other cancer types [7–9] but not
in MPM. Furthermore, understanding how genomic events impact
tumor phenotypes remains poorly studied in MPM. Finally, given
that MPM is a rare disease, the integration of different multiomic
studies is essential for reaching the statistical power needed to
derive insightful biological conclusions from complex multiomic
datasets.

Data Description
Here we describe the dataset generated by the MESOMICS project
that collected more than 100 MPM tumors with extensive clinical,
epidemiologic, and morphologic annotations and profiled their
genome, transcriptome, and epigenome. Notably, MESOMICS pri-
oritized the sequencing of whole MPM genomes rather than ex-
omes, resulting in the largest set of MPM genome sequences avail-
able to date. In total, we sequenced 120 MPM tumors, among
which a vast majority (105) have the 3 omics data available, and
the remaining 15 samples have 1 or 2 omics data types (Sup-
plementary Table S2). This dataset has been deposited at the
EMBL-EBI European Genome-Phenome Archive (EGA accession
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No. EGAS00001004812) and has been used to propose a new mor-
phomolecular classification of MPM [10]. Here, we provide a com-
prehensive description of data quality control and links to all
bioinformatic pipelines used in the project, including state-of-the-
art methodology for mutational calling in tumor-only specimens.
Finally, in order to maximize the reuse potential of our MESOMICS
data, we integrate our cohort with the previous multiomic stud-
ies from Bueno et al. [2] and Hmeljak et al. [3] to generate the
first multicohort molecular phenotypic map for MPM based on
the multitask Pareto optimum theory [11]. This interactive map
provides a user-friendly way to explore the molecular data and to
generate new hypotheses through custom statistical tests, based
on the UCSC TumorMap portal [12]. The integrated and harmo-
nized dataset resulting from these studies is available on GitHub
[13].

Primary tumor specimens were collected from surgically re-
sected MPM. As described in Mangiante et al. [10], among them,
13 had 2 tumor specimens collected to study intratumoral hetero-
geneity; we report quality controls for all samples including these
13 additional samples, but only the piece with the highest tumor
content as estimated by pathological review was selected for sub-
sequent analyses, except for analyses that specifically focused on
intratumor heterogeneity. The samples used in this study belong
to the French MESOBANK. Our pathologist (F.G.S., see [10]) clas-
sified all tumors following the latest World Health Organization
guidance, and DNA and RNA extraction methods are described in
the methods section of our recent study [10].

We provide basic clinical data (age, sex, survival) as well as ex-
posure (asbestos, smoking) and treatment data (usage and type
of chemotherapy, surgery, radiotherapy, and precision treatment)
(see detailed data dictionary in Supplementary Table S2). Comor-
bidity data were not available, but we provide where available
symptoms reported at diagnosis that are informative of the state
of the patient at diagnosis (pain, pleural effusion, dyspnea, pneu-
mothorax, coughing). Note that because of the retrospective na-
ture of the samples from the French MESOBANK, patients were
diagnosed (year of diagnosis [1998–2017], median of 2011) and
treated (year of death or end of follow-up [2000–2020], median of
2013) before the results of recent promising clinical trials (MAPS
[14] and Checkmate 743 [15]) and before the authorization of
nivolumab and ipilimumab by the European Medicines Agency in
2022 (note that despite the MAPS trial, bevacizumab is not a stan-
dard first-line treatment in France); future studies will thus prob-
ably include more patients who underwent precision treatments
and hopefully report longer survival [15].

Quality control of omic data
Whole-genome sequencing
Whole-genome sequencing (WGS) was performed by the Centre
National de Recherche en Génomique Humaine (CNRGH, Institut
de Biologie François Jacob, CEA, Evry, France) on 130 fresh-frozen
MPMs, plus 54 matched-normal tissue or blood samples (matched
nonneoplastic tissue was not available for the other specimens).
The Illumina (San Diego, CA, USA) TruSeq DNA PCR-Free Li-
brary Preparation Kit was used for library preparation and the
HiSeqX5 platform from Illumina for the sequencing as described
in [10]. The raw WGS reads were scanned by the FastQC soft-
ware (v.0.11.5; RRID:SCR_014583; using our nextflow [16] pipeline
IARCbioinfo/fastqc-nf [17]) to determine the reads base quality,
adapter content, and duplication levels. The software MultiQC

(v0.9; RRID:SCR_014982) was then used to aggregate all the FastQC
reports across samples.

The target read output for matched-normal tissue or blood
(hereinafter called “matched-normal”) and for tumor tissues
without matched-normal sample (hereinafter called “tumor-
only”) was 900 million reads (∼30× genome coverage, Fig. 1A). In
total, 1,800 million (∼60× genome coverage, Fig. 1A) were expected
for tumor tissues with matched-normal samples (2 sequencing
lanes, hereinafter called “tumor-matched”). Overall, the median
number of reads obtained approached or exceeded the target read
output, with median and standard deviation by sample type equal
to the following: matched-normal, 889 ± 50; matched-tumor,
1,786 ± 163; and tumor-only, 853 ± 51 million reads (Fig. 1A).

All samples displayed the expected mean quality score (30Q
>85% of bases) across all base positions of the read (Fig. 1B). One
exception is the MESO_050_N (a matched-normal sample) that on
average had a good sequence quality score (Fig. 1B) but displayed
a low mean quality score for the first nucleotide of the read (24.08
Phred), which FastQC reported as a warning in the mean quality
score module (Fig. 1B). In fact, the FastQC report for this sample in-
dicated that 25.17% of bases were not called at the first nucleotide
of the read, suggesting that the base-calling process struggled in
interpreting the DNA bases at this position and put an N instead.
However, the reverse pair-end file of this sample had the expected
sequence quality score over all the read positions (Fig. 1B), and we
decided then to include this sample in the subsequent analyses.
The adapter content was lower than 1% for all sequenced samples
(maximum 0.87% of total reads). The relative level of duplication
found for every sequence per sample was on average 10.3% (min:
0% and max: 18.2%); this low level of duplication indicates that
the prepared genomic libraries were diverse and likely covered a
high proportion of the human genome.

Paired-end read mapping was performed with our nextflow
pipeline IARCbioinfo/alignment-nf v1.0 [18]. This pipeline in-
cludes the software qualimap (v2.2.2b; RRID:SCR_001209) and
MultiQC to generate comprehensive quality control (QC) statis-
tics reports from the WGS alignment files. The mean percent-
age of aligned reads was 98.93% ± 0.81% (Fig. 1C). The matched-
normal and tumor-only samples displayed a mean genome cov-
erage higher than 30× (Fig. 1D). The matched-tumor displayed a
mean genome coverage of 60× (Fig. 1D). Finally, 90% of the ref-
erence genome was covered by at least 22, 20, and 43 reads for
matched-normal, tumor-only, and matched-tumor samples, re-
spectively (Fig. 1D).

RNA sequencing data
RNA sequencing (RNA-seq) was performed on 126 fresh-frozen
MPM in the Cologne Center for Genomics. Libraries were prepared
using the Illumina TruSeq RNA sample preparation Kit, the Illu-
mina TruSeq PE Cluster Kit v3, and an Illumina TruSeq SBS Kit v3-
HS; subsequent sequencing was carried out in an Illumina HiSeq
2000 sequencer, as described in [10].

The resulting raw reads files were processed using our nextflow
RNA-seq processing pipeline IARCbioinfo/RNAseq-nf v2.3 [19],
as described previously [10, 20], that performs reads trimming
(Trim Galore v0.6.5; RRID:SCR_011847), and mapping to refer-
ence genome GRCh38 (gencode version 33) with STAR (v2.7.3a;
RRID:SCR_004463) [21]. We also improve the alignments as de-
scribed previously by performing assembly-based realignment
(nextflow pipeline IARCbioinfo/abra-nf v3.0 [22]), using software
ABRA2 [23] (RRID:SCR_003277) and base quality score recali-
bration (nextflow pipeline IARCbioinfo/BQSR-nf v1.1 [24]), us-
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Figure 1: Quality control of whole-genome sequencing (WGS) data. (A) Number of reads per WGS type. (B) Mean sequence quality score as a function
of the position in the read in base pairs. Green lines correspond to files that passed the most stringent quality control filters of software FastQC; orange
lines correspond to files that passed a less stringent filter and red to files that did not pass the filters. (C) Percentage of aligned reads to the reference
human genome. (D) Cumulative genome fraction computed directly from the BAM files.

ing GATK v4.1.7.0 [25] (RRID:SCR_001876). Gene-level quantifica-
tion was performed using software StringTie (v2.1.2; RRID:SCR_0
16323) (nextflow pipeline IARCbioinfo/RNAseq-transcript-nf v2.2
[26]). Quality control of the samples was performed using FastQC
(v0.11.9; RRID:SCR_014583) to determine the quality of the raw
reads, followed by RSeQC (v3.0.1; RRID:SCR_005275) [27] that was
used to determine the alignment quality and distribution of reads
over the reference genome (number of mapped reads, proportion
of uniquely mapped reads). Finally, the software MultiQC (v0.9;
RRID:SCR_014982) [28] was used to aggregate all QC results across
samples.

A total of 126 samples were sequenced using 2 × 75-bp or 2
× 100-bp paired-end reads (Fig. 2A). On average, a total of 64 ±
7.4 paired-end million reads were generated with a per sequence
mean quality score higher than 35 (Fig. 2A). Given the high cov-
erage and the lower length expected for a human transcriptome,

the percentage of duplicated reads was high, reaching 69% ± 5.5%,
but the proportion of overrepresented sequences was low (<2%),
indicating that all RNA sequenced libraries were diverse. The re-
port of STAR alignments showed that on average, 96.8% ± 1.2%
of the reads mapped to the reference genome with 91% ± 2.3%
mapping to unique loci (Fig. 2B). The 3.15% ± 1.26% of unmapped
reads correspond mainly to reads with a short alignment length
(3.05% ± 1.24%) that might result from the trimming process (trim
of adaptor or low-quality bases, Fig. 2B). Finally, as expected, most
of the MESOMICS reads mapped to messenger RNA structures, in-
cluding CDS and UTR regions (86.2% ± 3.1%, Fig. 2C).

DNA methylation data
DNA methylation analyses were performed in-house for 135 MPM
samples from 122 patients, and an additional 2 technical repli-
cates and 3 adjacent normal tissues, with Infinium EPIC DNA
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Figure 2: Quality control of RNA-seq data. (A) Distribution of sequence quality scores in Phred scale for 2 × 75-bp and 2 × 100-bp read pairs. (B) STAR
alignment scores. (C) Distribution of reads mapped to different genomic regions.

methylation beadchip platform (Illumina), which interrogates
over 850,000 CpG sites, as described in [10]. Resulting raw IDAT
files were processed using our in-house workflow [29] (commit
SHA bcfe876) in the R statistical programing environment using
R packages minfi (v1.34.0; RRID:SCR_012830) and ENmix (v1.25.1),
and consisted of the following 4 steps: preprocessing quality con-
trol, functional normalization, probe filtering, and finally β- and
M-value computation.

During quality control checks on the raw data, one poor-quality
sample was identified when comparing per sample log2 methy-
lated and unmethylated chip-wise median signal intensity (func-
tion getQC, minfi, Fig. 3A), which was subsequently removed, and
all samples displayed an overall P-detection value < 0.01 (func-
tion detectionP, minfi). Functional normalization, probe filtering,
and β- and M-value computation were performed as described in
[10]. The resulting dataset consisted of β- and M-values for 139
samples across 781,245 probes, with the M-value table containing
9 -∞ values, which were replaced by the next-lowest M-value for
statistical analysis. The effect of normalization and probe removal
on DNA methylation profile is shown as β density plots (prenor-
malization in Fig. 3B and postnormalization and probe removal
in Fig. 3C). Principal components analysis (PCA) was performed to
detect batch effects and to examine the effect of normalization;
this was performed on a reduced number of samples (n = 122,
1 tumor per patient, excluding technical replicates and normal
tissues). Two datasets were used: (i) prenormalized, unfiltered M-
values (obtained from the GenomicRatioSet, function getM, minfi)
and (ii) normalized and filtered M-values. Dataset (i) contained
2,478 CpGs with at least 1 NA (Not Available) value, which were
omitted before PCA, and 21,969 -∞ values were replaced with the
next lowest M-value in the dataset, leaving an M-value matrix of
863,381 probes.

R package ade4 (v1.7–15) was used to calculate the first 10 prin-
cipal components (function dudi.pca) across each dataset individ-
ually. We checked the association of the first 10 principal compe-
nents (PCs) with technical (chip, position on the chip, batch, sam-
ple well, sample provider, macrodissection), clinical (sex, age class,
and smoking status), morphologic (histopathologic type, subtype,
tumor percentage, necrosis, and vessel level), and epidemiologic
variables (asbestos exposure, exposure probability, exposure fre-
quency, and exposure intensity) using PC regression analysis, fit-
ting separate linear models to each principal component with
each of the 18 covariables of interest and adjusted the P values for
multiple testing (Fig. 3D and E). The first 10 principal components
in the normalized, filtered methylation data were significantly as-
sociated with type (PCs 1, 2, and 5) and sentrix chip position (PC
5, PC 8). The contribution of variance in the data from technical
features before normalization was more pronounced, with sentrix
chip and plate also being significant (PC 7), indicating functional
normalization reduced technical batch effects on DNA methyla-
tion profile while retaining biological effects such as histologic
type. Before normalization, sex was significantly associated with
PCs 2, 3, and 5 but not associated with any PCs in the normalized,
filtered dataset. As probes on the sex chromosomes were removed
after normalization, it was expected that this would reduce the ef-
fect of sex on variance in the dataset.

WGS Variant Calling in Tumor-Only
Samples
Copy number variants
Somatic copy number alterations were called using our nextflow
workflow IARCbioinfo/purple-nf v1.0 [30] that implements the

https://scicrunch.org/resolver/RRID:SCR_012830


Malignant pleural mesothelioma phenotypic map | 5

A

B

D E

C

Figure 3: Quality control of EPIC array sequencing data. (A) Signal intensity plot. Log2 methylated and unmethylated median signal intensity plot of
140 samples. One sample (colored red) fell below the cutoff of 10.5 and was subsequently removed from analysis. (B) Prenormalization β density plot.
The β density plot of 140 samples across 865,859 probes, colored by tumor/normal type, prior to functional normalization. (C) Postnormalization and
filtering β density plot. The β density plot of 139 samples across 781,245 probes, colored by tumor/normal type, following functional normalization
and removal of cross-reactive probes, sex chromosome probes, single-nucleotide polymorphism probes, and failed (P-detection > 0.01) probes. (D)
Association of technical and clinical variables with prenormalization principal components. Association of technical and clinical variables with
principal components 1 to 10, for 122 samples. Principal components calculated from M-values of 863,381 prenormalized probes. (E) Association of
technical and clinical variables with postnormalization principal components. Principal components calculated from M-values of 781,245 probes
following functional normalization and probe removal.
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Figure 4: Performance of somatic copy number variant calling from tumor-only samples. (A) Schematic of the benchmarking procedure. Comparison
of tumor/normal and tumor-only calling for (B) purity, (C) ploidy, (D) number of copy number segments, (E) diploid proportion, (F) percentage of deleted
genome, (G) major allele copy number, and (H) minor allele copy number.

PURPLE [31, 32] (RRID:SCR_022999) software for matched and
tumor-only WGS samples. To assess the quality of tumor-only
PURPLE calls, a total of 57 matched pairs were used as an eval-
uation set. Briefly, we ran PURPLE twice for each matched sample
(Fig. 4A): first using as input the matched pairs and second us-
ing only the tumor WGS as input. Subsequently, we performed a
direct comparison of the PURPLE tumor-only calls with their cor-
responding matched-pair calls for the following features: tumor
purity; ploidy; number of segments; percentage of diploid, am-
plified, and deleted genome regions; and major and minor copy
number states at the gene level (Fig. 4).

This benchmarking revealed a high concordance across all
the evaluated metrics between tumor-only and matched PURPLE
calls. Indeed, the agreement for purity (Fig. 4B, R = 0.988), ploidy
(Fig. 4C, R = 1), number of copy number segments per tumor
(Fig. 4D, R = 0.981), and percentage of genome changed (diploid,
amplified, and deleted) exceeded a 0.98 correlation (Fig. 4E and
F). Moreover, a high concordance was also observed at the gene
level with major and minor copy number alleles reaching R >

0.94 (Fig. 4G and H). Finally, the only detected issue of tumor-only
calls was observed near telomeric and centromeric regions, where
artifactual focal peaks were detected (Supplementary Figure S1).
These problematic regions were manually curated, and the copy
number segments overlapping such regions were removed from

the tumor-only calls (see list of excluded segments in Supplemen-
tary Table S1). In addition, because PURPLE does not round copy
number values to 0 but rather penalizes negative values in the
model fit, for all samples (both matched and tumor-only), follow-
ing similar discussions with the PURPLE developers on the han-
dling of negative values [33], we rounded slightly negative copy
number estimates (in]−0.5,0[) to 0 and excluded largely negative
copy number estimates (<−0.5) from subsequent analyses, be-
cause they suggest high noise in the read depth and are thus un-
reliable calls. Note that in total (including segments with largely
negative values), we excluded only 0.26% of the total segment
length.

Calling somatic point mutations and structural
variants
Unlike copy number variants, whereby the software (PURPLE) di-
rectly generated highly accurate results in tumor-only mode with-
out any postprocessing, for point mutations and structural vari-
ants (SVs), direct outputs from calling pipelines and typical filters
(i.e., removing variants matching germline databases) did not re-
move at high accuracy the germline variants present in tumor-
only MPM WGS. Therefore, we trained and evaluated the perfor-
mance of a supervised machine learning model based on a ran-

https://scicrunch.org/resolver/RRID:SCR_022999
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Figure 5: Performance of somatic point mutation and structural variant calling from tumor-only samples. (A) Schematic of the benchmarking
procedure. (B) Random forest (RF) model features and their ranking for predicting somatic single-nucleotide variant (SNV) and indels. (C) Performance
metrics (precision, recall, accuracy) for classifying somatic point mutations with the best-performing RF models. (D) Structural variant (SV) random
forest model features and their ranking for predicting somatic SVs. (E) Performance metrics for classifying somatic SVs. (F) Number of SVs as function
of WGS type. Mean comparison between WGS types was performed using a t-test with no significant (ns) result found. (G) Number of SVs as a function
of tumor purity. A linear model (number_sv ∼Purity∗WGS_type∗SubType) was built to predict the number of SVs, and no significant coefficients (P <

0.05) were found. (H) Venn diagram of the final consensus MESOMIC SV set.

dom forest (RF [34]) for distinguishing germline from somatic vari-
ants in tumor-only WGS (Fig. 5A, Supplementary Note 1).

Point mutations were called using Mutect2 (RRID:SCR_000559)
using our nextflow pipeline IARCbioinfo/mutect-nf v2.2b [35]. The
matched samples were used as input for training and evaluat-
ing the performance of the RF model (Fig. 5A) for classifying
germline and somatic mutations. The RF model for point muta-
tions includes a total of 20 features divided into 3 main classes:
associated with external databases (gnomAD r3.0[36] RRID:SC
R_014964 and COSMIC v90 [36] RRID:SCR_002260), genomic loca-
tion/impact/signatures [37], and features obtained directly from
the point mutation variant caller—Mutect2 (Fig. 5B, Supplemen-
tary Note 1). The matching of variants against reference databases

was performed using bcftools (v1.10.2, annotate function RRID:
SCR_005227) [38]. For training the RF model, a total of 46 tu-
mors with matched normal MPM whole-genome sequences called
with both the tumor-only and matched modes of Mutect2 [23]
(RRID:SCR_000559) were used (Fig. 5A). The matched somatic calls
(ground truth) were used to annotate the variants of the tumor-
only WGS into germline and somatic classes.

The training and evaluation of models were performed us-
ing 75% and the remaining 25% of the dataset, respectively. A
grid search revealed that the optimum parameters were mtry =
8, ntree = 1000, and nodesize = 5, reaching a model accuracy
of 0.9276 in the testing set. A random forest model for single-
nucleotide variants (SNVs) (rfvs01) was trained with the optimum

https://scicrunch.org/resolver/RRID:SCR_000559
https://scicrunch.org/resolver/RRID:SCR_014964
https://scicrunch.org/resolver/RRID:SCR_002260
https://scicrunch.org/resolver/RRID:SCR_005227
https://scicrunch.org/resolver/RRID:SCR_000559
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parameters using a total of 326,388 (80%) variants (1:1 ratio). Anal-
ysis of the feature importance revealed that the allele frequency
is the most discriminative feature included in the model (Fig. 5B).
For indels, a random forest model (rfvi01) was built with the same
optimal parameters using a total of 337,442 variants (1:1 ratio, in-
cluding 305,988 SNVs and 31,454 indels) and removing the SNV
feature. The performance of the optimal RF models for SNVs
and indels reached an accuracy of 0.926 and 0.924, respectively
(Fig. 5C). The trained RF models (rfvs01 and rfvi01) were used to
classify a total of 1,454,942 variants (SNVs = 1,317,200 and indels
= 137,742), of which 217,436 variants (including SNVs and indels)
were classified as somatic.

Large genomic rearrangements were detected using a consen-
sus variant calling approach including SvABA (v1.1.0) [39] (RRID:
SCR_022998), Manta (v1.6.0) [40] (RRID:SCR_022997), and Delly
(v0.8.3, RRID:SCR_004603) [41], followed by subsequent integra-
tion with SURVIVOR (v1.0.7) [42] (RRID:SCR_022995). Our nextflow
pipeline implementing the consensus variant calling approach
for matched WGS is available in our IARCbioinfo/sv_somatic_cns
GitHub repository [43].

Like for point mutations, we implemented custom random for-
est models to distinguish at high accuracy somatic from germline
SVs in tumor-only MPM samples (Fig. 5A, Supplementary Note 1).
The RF models were composed of a total of 19 features based on
external databases (gnomAD [36] RRID:SCR_014964 and PCAWG
[44]); a custom panel of normal (PON), genomic regions (Cos-
mic v90 RRID:SCR_002260, Gencode v33 RRID:SCR_014966, and
PhastCons [45] RRID:SCR_003204); and SV features obtained di-
rectly from each SV caller (Fig. 5D). The training (75%) and eval-
uation (25%) of the random forest model for each SV caller were
performed using a total of 12,454, 16,720, and 12,264 SVs at 1:1
somatic: germline proportions for Delly [39] (RRID:SCR_004603),
Manta [40], and SvABA [41], respectively. All 3 SV random forest
models were trained using the default random forest parameters
(mtry = 4, ntree = 400, and nodesize = 1). The precision, recall,
and accuracy achieved by each model were 0.905 ± 0.009, 0.87 ±
0.016, and 0.889 ± 0.010, respectively (Fig. 5E). The most impor-
tant features of the models were the number of PON SVs around
both breakpoints, SV alternative allele frequency, SV read depth,
and SV length (Fig. 5D). We performed additional comparisons by
SV type, SV length, and number of SVs as a function of the purity
of samples, WGS type (matched tumor-normal, tumor-only), and
MPM subtype and did not observe any significant difference be-
tween SVs called in the tumor-only or matched WGS MESOMICS
series (Fig. 5F and G). The SV calls for the MESOMICS tumor-only
samples include a total of n = 8,229 SVs, which combined with the
SVs called in the matched series gave a total of n = 12,914 (Fig. 5H).

Our results demonstrate that our methodology is highly accu-
rate and robust to call point mutations and structural variants in
tumor-only WGS datasets for which a series of matched tumor-
normal samples are available. The source code and the random
forest models implemented for MPM are available in our GitHub
repositories IARCbioinfo/RF-mut-f [46] and IARCbioinfo/ssvht [47]
for point mutations and structural variants, respectively.

Data validation
Multiomic sample matching
The software NGSCheckMate [48] (RRID:SCR_022994) was used
to check the match between sequencing modalities of a
given MESOMICS patient. NGSCheckMate was run using our
nextflow implementation IARCbioinfo/NGSCheckMate-nf v1.1a

[49]. NGSCheckMate, using WGS and RNA-seq, confirmed that the
majority of MESOMICS samples were correctly paired (Fig. 6A,
black segments). However, NGSCheckMate discovered that the
WGS of MESO_094_T and MESO_096_T matched (Fig. 6A, red seg-
ments). Further examination of these samples confirmed that
both WGS had come from the same patient but were annotated
differently during sample collection. In addition, the RNA-seq
replicate named MESO_054_TR1 matched with the group of sam-
ples coming from patient MESO_051. After sequencing a second
RNA-seq aliquot from MESO_054_T, named MESO_054_TR2, and
reperforming the NGSCheckMate analysis, we confirmed a mis-
annotation of these RNA-seq samples and proceeded to rename
them as MESO_051_TR1 and MESO_051_TR2, respectively. After
the aforementioned corrections, all the sequencing modalities at
the sample and patient level were correctly paired for the com-
plete MESOMICS cohort.

Sex validation
We registered the sex (M for male or F for female) data for all the
124 patients of the MESOMICS cohort. We validated the sex an-
notation based on the concordance of whole-genome, transcrip-
tome, and methylome data (Fig. 6B–D). First, the concordance be-
tween sex reported in the clinical data and WGS data was as-
sessed by computing the total coverage on X and Y chromosomes
(Fig. 6B). Interestingly, some tumors from male individuals dis-
played an intermediate coverage on chromosome Y between other
male and female cases, compatible with the large copy losses
identified in our study (e.g., the tumor from MESO_071). Second,
the concordance between sex reported in the clinical data and sex
chromosome gene expression patterns (transcriptome) was per-
formed by comparing the sum of variance-stabilized read counts
(vst function from R package DESeq2, v.1.14.1 RRID:SCR_015687)
of each sample on the X and Y chromosomes (Fig. 6C). Third, the
concordance between the sex reported in the clinical data and
the methylation data was assessed using a predictor based on the
median total intensity on sex chromosomes, with a cutoff of −2
log2 estimated copy number (function getSex from minfi, v.1.34.0
RRID:SCR_012830, Fig. 6D). The only sex discordance was observed
in MESO_071 tumor sample due to somatic copy number losses
in the Y chromosome, but the whole-genome sequencing from
matched blood confirmed that this patient was male (Fig. 6B). In
summary, the sex data of the MESOMICS cohort were validated
using a multiomic approach that confirmed the sex of all the ME-
SOMICS samples.

Purity
Tumor purity has been estimated from 3 independent data
sources: from genomic data using PURPLE, from transcriptomic
data using quanTIseq [50] (RRID:SCR_022993), and through patho-
logic review. We performed pairwise comparisons between these
3 estimates and found significant correlations between patho-
logic and each molecular estimate (q = 8.40 × 10−3 and 2.49
× 10−4 with transcriptomic and genomic purity, respectively).
The transcriptomic and genomic estimates are significantly cor-
related as well (q = 4.05 × 10−4, Supplementary Figure S2). Of
note, 4 samples (MESO_050_T, MESO_058_T2, MESO_059_T1, and
MESO_076_T) have been excluded from the analyses of genomic
estimates of purity because no somatic copy number variants
were identified and thus purity could not be estimated by PUR-
PLE. The 4 samples all had low pathologic estimates ([0.1–0.4]) and
moderate transcriptomic estimates of purity ([0.53–0.69]).

https://scicrunch.org/resolver/RRID:SCR_022998
https://scicrunch.org/resolver/RRID:SCR_022997
https://scicrunch.org/resolver/RRID:SCR_004603
https://scicrunch.org/resolver/RRID:SCR_022995
https://scicrunch.org/resolver/RRID:SCR_014964
https://scicrunch.org/resolver/RRID:SCR_002260
https://scicrunch.org/resolver/RRID:SCR_014966
https://scicrunch.org/resolver/RRID:SCR_003204
https://scicrunch.org/resolver/RRID:SCR_004603
https://scicrunch.org/resolver/RRID:SCR_022994
https://scicrunch.org/resolver/RRID:SCR_015687
https://scicrunch.org/resolver/RRID:SCR_012830
https://scicrunch.org/resolver/RRID:SCR_022993
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A

B C D

Figure 6: Applications of data validation using multiomics data. (A) Network of matching WGS and RNA-seq samples, as computed by software
NGSCheckmate. Edge transparency corresponds to the Pearson correlation r between single-nucleotide polymorphism panel allelic fractions; node
color and surrounding color correspond respectively to the techniques (WGS or RNA-seq) and to the tissue type (normal, matched samples, or T-only
samples). (B–D) Sex reclassification and multiomic validation of reported clinical sex. (B) Total exome reads coverage on the X and Y chromosomes for
each sample. (C) Total expression level of each sample on the X and Y chromosomes (in variance-stabilized read counts). (D) Median methylation array
total intensity on the X and Y chromosomes. In panel (B), point colors correspond to the WGS groups: normal samples in light green, tumor samples
with matched normals (Match) in dark green, and tumor samples without matched normal (T-only) in red. In each panel, filled polygons correspond to
the sexes given by the clinical annotations (blue for male, red for female). In panel (D), point colors correspond to the sexes predicted by the DNA
methylation QC. Samples with discordant reported clinical sex and molecular patterns on sex chromosomes are indicated.

An Integrative and Interactive MPM
Phenotypic Map
Task specialization analysis using Pareto
In order to integrate the MESOMICS multiomic data and inves-
tigate the association between the detected genomic events in
this new large genomic cohort and the observed MPM pheno-
types, we first performed a multiomic summary of MPM using
MOFA [51] (RRID:SCR_022992) and, second, performed a task spe-
cialization analysis to identify MPMs with natural selection for
specific cancer tasks (see [10]). We performed task specialization
analyses using the well-established Pareto optimum theory (Pare-
toTI method) [11]. The Pareto front model has been fitted to dif-
ferent sets of samples using the ParetoTI R package v0.1.13 [52]

(RRID:SCR_022991) on MOFA latent factors (LFs), restricted to LF1,
LF2, LF3, and LF4 due to their association with survival and ex-
treme phenotypes (see [10]). In brief, according to the theory, a
molecular map would take a particular shape (polyhedra) if a
trade-off exists between several cancer tasks performed by the
tumors. Using MOFA axes, we found a triangle (polyhedra with 3
vertices) corresponding to k = 3 archetypes in the LF2–LF3 space.
According to the Pareto optimum theory, this pattern results from
natural selection for cancer tasks, with specialized tumors close
to the vertices of the triangle (representing archetypes) and gen-
eralists in the center. We have also replicated the same analyses
(MOFA and ParetoTI) on the previously published multiomic stud-
ies from Bueno et al. [2] (n = 181 fresh-frozen surgically resected
primary tissue) and Hmeljak et al. [3] (n = 73 fresh-frozen surgi-

https://scicrunch.org/resolver/RRID:SCR_022992
https://scicrunch.org/resolver/RRID:SCR_022991
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cally resected or biopsy tissues). R scripts to prepare matrices for
each omic layer, as well as scripts to run MOFA and the Pareto
analysis for the 3 cohorts, are available in the GitHub repository
dedicated for this data note paper [13].

Biological interpretation of the MPM phenotypic
map
We inferred each archetype’s phenotype by performing integrative
gene set enrichment analysis on the expression data and identi-
fied the following cancer tasks and tumor phenotypes: cell divi-
sion, tumor–immune interaction, and acinar phenotype (see [10]).
Tumors specialized in the cell division task displayed upregula-
tion of pathways within the “cell division” task as reported by
Hausser et al. [53] in multiple tumor types. This phenotype was
enriched for nonepithelioid tumors and presented higher levels
of necrosis, higher grade, high expression of hypoxia response
pathways, and greater percentage of infiltrating neutrophils that
are innate immune response cells. Cell division specialization
was supported by the high expression levels of the proliferation
marker MKI67 and increased genomic instability. Tumors special-
ized in the tumor–immune interaction task carried upregulated
immune-related pathways, high expression of immune check-
point genes, and high immune infiltration with an enrichment for
adaptive-response cells: lymphocytes B, T-CD8+, and T-reg. The
last extreme phenotype was characterized by samples with aci-
nar morphology, presenting a very structured tissue organization
with epithelial cells tightly linked into tubular structures, and cor-
related with the presence of monocytes and natural killer cells
(innate immune response cells). This phenotype presented the
lowest epithelial-mesenchymal transition score [54], with overex-
pression of epithelial markers such as cell-adhesion molecules,
corroborating the importance of tissue organization in this phe-
notype, and also low levels of MKI67 expression, indicating slow
growth. Altogether, these data provide a biological understanding
for the molecular and phenotypic heterogeneity characteristic of
MPM tumors.

Reuse potential
The MESOMICS project represents the most comprehensive
molecular characterization of MPM to date, made possible by in-
clusion of the largest WGS dataset yet reported, and by the depth
of the analyses undertaken. Multiomics integration and biologi-
cal interpretation through the lens of Pareto theory has allowed
us to uncover 3 specialized MPM tumor profiles [10]. In order to
replicate these findings while minimizing batch effects associ-
ated with bioinformatics data processing, we have accessed and
reprocessed the raw data from previously published MPM multi-
omics studies [2, 3] using the same analytical procedures. A by-
product of this laborious work is the creation of the largest (n =
374 samples in total) existing harmonized dataset of MPM multi-
omics data.

In order to maximize the reuse potential of this dataset, we
have also harmonized the available clinical, epidemiologic, and
morphologic data from these 3 cohorts. In addition to providing
the raw data, the full list of genomic variants, and the entire matri-
ces of expression and methylation levels, we provide a curated and
harmonized list of molecular features (e.g., immune cell composi-
tion, measures of genomic instability, presence of whole-genome
duplication, copy number in recurrently altered regions, driver
gene mutational status, expression level of some relevant genes)
across all samples (Supplementary Table S2).

Figure 7: MPM molecular phenotypic map. Screen capture from the
TumorMap portal, using the hexagonal grid view, each point
representing a MPM sample in the triangular phenotypic space: cell
division (left vertice), tumor–immune interaction (top vertice), and
acinar phenotype (right vertice). Point colors correspond to the histologic
types and can be interactively changed by the users on the web portal.

This MPM phenotypic map has been shared on the TumorMap
web portal [12], offering an interactive visualization of these data
in the tumor phenotypes space (cell division, tumor–immune
interaction, and acinar phenotype), including all the harmo-
nized clinical, morphologic, epidemiologic, and molecular data at-
tributes mentioned above. The TumorMap interface provides an
interactive way to explore and navigate through the map, where
each sample is represented by a dot localized according to its po-
sition in the phenotype space (Fig. 7). The attributes can be used
to change colors, filter samples, and perform statistical tests, and
new attributes can be derived from preexisting ones using set op-
erations. This flexible and user-friendly interface will enable new
hypotheses to be tested without computational expertise and ex-
pands the reuse potential of the dataset [55].

Conclusion
We demonstrated that we provide a high-quality multiomic
dataset of malignant pleural mesothelioma, including the largest
whole-genome sequencing dataset of malignant pleural mesothe-
lioma to date, consisting of both raw and processed data and im-
portant molecular phenotypes. By homogenizing the clinical, epi-
demiologic, morphologic, and molecular data of our new series
with the 2 previously published MPM multiomics data series, we
have created an unprecedented dataset for this rare cancer in
terms of both size and detail. We provide all the resources to re-
produce our analyses, as well as a user-friendly interactive visual-
ization tool, which will contribute to advancing biological knowl-
edge of this deadly disease. As most patients with MPM will sur-
vive to second- or third-line systemic therapy, future studies will
be needed to describe the molecular landscape of MPM at these
time points to develop effective precision medicine strategies.

Availability of Source Code and
Requirements
Project name: MESOMICS data and phenotypic map
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Project homepage: https://github.com/IARCbioinfo/MESOMIC
S_data

Operating system(s): Platform independent
Programming language: R
Other requirements: R packages data.table, openxlsx, DESeq2,

rtracklayer, tibble, IlluminaHumanMethylationEPICanno.ilm10b4.hg19,
walaj/roverlaps, reticulate, MOFA2, ParetoTI.

License: GPL-3.0 license

Data Availability
The data used in this manuscript are available in the European
Genome-Phenome Archive (EGA), which is hosted at the EBI and
the Centre for Genomic Regulation (CRG), under the accession
number EGAS00001004812; download requires approval from the
data access committee EGAC00001001811 (email Dr. Matthieu
Foll at follm@iarc.who.int) and then installing the EGA download
python client and its dependencies (python3 and pip3; see instruc-
tions [56] and a video tutorial [57]). Other data further supporting
this work are openly available in the GigaScience respository, Gi-
gaDB [58].

Additional Files
Supplementary Fig. S1. MPM copy number variant (CNV) cohort
profile aCNViewer plot [59] from tumor-matched called as tumor-
only (top), tumor-only (middle), and tumor-only after filtering (bot-
tom). The circled regions correspond to artifactual peaks when
calling CNVs with the tumor-only mode of PURPLE. The aforemen-
tioned genomic regions were identified and filtered, and they are
provided in Supplementary Table S1.
Supplementary Fig. S2. Correlation between purity estimates
from 3 different omic purity measurements: the proportion of
DNA material from the tumor (genomic estimate of purity), the
complement proportion of infiltrating immune cells (transcrip-
tomic estimate of purity), and the amount of tumor tissue in the
observed slide (pathologic estimate of purity). (A) Between tran-
scriptomic and pathologic estimates, (B) between genomic and
pathologic estimates, and (C) between genomic and transcrip-
tomic estimates. In these 3 panels, q values and coefficient r cor-
respond to Pearson correlation tests.
Supplementary Table S1. List of excluded genomic regions iden-
tified as artifactual when calling CNVs using PURPLE tumor-only
mode.
Supplementary Table S2. Harmonized and curated molecu-
lar, clinical, epidemiologic, and morphologic data from our ME-
SOMICS cohort and the 2 previously published MPM multiomics
data [2, 3]. This table can be explored interactively on the UCSC
TumorMap web portal.
Supplementary Note 1. Additional details of the point mutation
and structural variant calling for tumor-only MPM WGS samples.
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