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Abstract
This paper presents a comprehensive review of ground agricultural robotic systems and applications with special focus on
harvesting that span research and commercial products and results, as well as their enabling technologies. The majority
of literature concerns the development of crop detection, field navigation via vision and their related challenges. Health
monitoring, yield estimation, water status inspection, seed planting and weed removal are frequently encountered tasks.
Regarding robotic harvesting, apples, strawberries, tomatoes and sweet peppers are mainly the crops considered in publications,
research projects and commercial products. The reported harvesting agricultural robotic solutions, typically consist of a
mobile platform, a single robotic arm/manipulator and various navigation/vision systems. This paper reviews reported
development of specific functionalities and hardware, typically required by an operating agricultural robot harvester; they
include (a) vision systems, (b) motion planning/navigation methodologies (for the robotic platform and/or arm), (c) Human-
Robot-Interaction (HRI) strategies with 3D visualization, (d) system operation planning & grasping strategies and (e) robotic
end-effector/gripper design. Clearly, automated agriculture and specifically autonomous harvesting via robotic systems is a
research area that remains wide open, offering several challenges where new contributions can be made.
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1 Introduction

The growing demand for food supply that derives from
the continuously increasing population1 has made agri-
cultural productivity growth an important priority. Labor
availability pressure driven by demographics of an aging
population, increasing urbanization, climate change and
land degradation, as well as certain limitations regarding
the arable land availability push forward slowly but steadily,
the use of advanced agricultural technologies. Incorporat-
ing such technologies into agricultural production benefits
the overall productivity and in turn supports the economic
development and growth [1]. Additionally, automation in
agriculture is bound to help improve the difficult work

1https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900 -
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conditions of farmers and agricultural workers that are gen-
erally linked to various musculoskeletal disorders [2–4].
Application of robotic solutions regarding crop monitoring
and harvesting is considered to have significant beneficial
effects on production profits [5], enabling faster and eas-
ier automated harvest and increasing crop quality and yield.
Thus, the development of robotic technologies and their
application in agriculture is becoming a growing topic of
interest and consideration [6], with an increasing amount of
research work being noticed in the last decades. This falls
under the general umbrella of a growing trend in agricul-
ture, which is termed precision agriculture or agriculture
with reduced carbon footprint.

Several reviews may be found in the literature, focusing
on agricultural robots [7–10]. Standardisation of terms
and characteristics and system performance measures are
utilized to evaluate these robotic systems for various
field tasks and operations, e.g. transplanting/seeding,
pruning/thinning, weed control and disease monitoring
[11–13]. Focused research reviews have been conducted
regarding technologies, dealing with specific issues in
automated agriculture, such as the management and analysis
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of the large data sets that most robotic systems require
during their operation [14] or the optimized sensing and
detection required for visual-based guidance of the applied
robotic agricultural systems [15]. Robotic applications that
target specific crops have also been a research goal,
including cotton [16], strawberries [17] or the general
arable farming, e.g. wheat and rice [18]. A brief review
concerning various apple harvesting platforms is presented
in [5] that additionally develops a software tool for their
economic evaluation, while several literature studies on
agricultural robotic systems are investigated including the
AgROS emulation tool [19], classifying them with regard to
their analysis approach and farming operations.

In addition to UGVs i.e. Unmanned Ground Vehicles
(robots), drones/Unmanned Aerial Vehicles (UAVs) have
also been increasingly considered in agriculture during
the last years [20]. Given their ability to easily cover
large distances over the fields, aerial robots are widely
utilized with respect to several agricultural tasks such as
crop monitoring/mapping, pesticide/fertilizer spraying, seed
sowing and growth assessment [21–23]. Combining the
survey capabilities of UAVs with the targeted intervention
ability of UGVs, multi-robot systems are gaining great
attention as well [24–26]. Various works can be found in
literature regarding the coordination of cooperative ground
and aerial robots towards e.g. selective spraying [27], soil
and biota sampling [28] and monitoring/inspection tasks
[29].

Given the great amount of works corresponding to
automated/precision agriculture, in this work we focus
our investigation on ground agricultural robotic systems
and applications. The presented review covers not only
publications found in literature, but research projects and
commercial products in the market as well, considering
robotic solutions and their enabling technologies with a
special focus on harvesting. Section 2 presents an overview
of complete harvesting robotic systems for various types
of crops. Section 3 investigates a variety of technologies
typically required by an operating robot harvester including
vision systems, navigation methodologies, HRI strategies
and more. Sections 4 and 5 present past and existing
research projects and commercial products respectively,
followed by the Conclusion Section.

2 Complete Harvesting Robotic Systems

Robotic automated crop harvesting e.g. of fruits or
vegetables has a high impact on agricultural productivity
with the task being investigated and considered even
from early 1960’s [30]. There are two basic concepts
regarding automated harvesting by robots: bulk and
selective. Bulk concept involves the harvesting of all fruits

without exceptions, usually considering methodologies such
as tree trunk or limb shaking [31–33]. However, bulk
methods entail the danger of harming the crops. With the
development of new technologies and the possibilities they
enable, the selective concept is mostly adopted in the last
few years. In the selective harvesting of crops, the robotic
system firstly decides which are the harvest targets (e.g.
ripe fruits identified via a sensory/vision system) and then
harvests them. This task may typically involve scanning
the whole crop in an orchard or a greenhouse or a part
of it, acknowledging and locating targets, cutting/picking
them and placing them in a storage unit (e.g. a crate).
In the existing literature, there is a variety of integrated
robotic solutions that have been proposed towards this end.
Representative robotic systems usually consist of: (a) a
moving platform/vehicle upon which a robotic manipulator
resides, responsible for approaching target fruits/vegetables,
grasping and cutting them and subsequently placing them
on a crate; (b) a vision system for crop scanning, target
identification, detection and localization; (c) a specifically
designed robot end-effector to best facilitate target grasping
and collection.

Several harvesting robotic systems for apples may be
found in the literature. Since apples have a fairly standard
circular shape and a hard nature, they are generally easy
to be harvested without significant damage to the fruit.
Some of the fastest developed robotic systems report harvest
times of 6 seconds [34]-(Fig. 1(a)) or 8-10 seconds [35]-
(Fig. 1(b)) per fruit with a success rate of 80% or higher.
Similar performance may be found in [36] where harvest
is achieved in an average time of 7 seconds with a success
rate of 90%. A slower behavior regarding harvesting time of
15 or 16 seconds may be found in other harvesters, like the
fruit harvester in [37]-(Fig. 1(c)) that was tested on apples or
the apple harvester in [38]-(Fig. 1(d)) where the importance
of real-time obstacle avoidance that the harvesting robots
should possess is underlined, due to the obvious complexity
and unknown nature of their working environment.

Furthermore, an approach to potentially reduce the
overall cycle time (average time per fruit) of robotic tree
fruit harvesting is demonstrated for apple collection by a
system employing a pick-and-catch method [39]-(Fig. 1(e)).
A kinematically redundant picking manipulator with 8
Degrees of Freedom (DoF) performs apple harvesting
dropping the apple into the catching end-effector of another
2 DoF robot near the point of fruit detachment [39].
Harvesting tests in a simulated environment with an
artificial apple tree located in a laboratory setting showed
that the pick-and-catch harvesting method resulted in an
over 50% reduction of average cycle time compared to the
pick-and-place method. The system was then briefly tested
in a commercial red apple orchard at the end of the 2016
apple harvesting season. Oranges have also been considered
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Fig. 1 Robotic harvesting systems; Apple: (a)-[34], (b)-[35], (c)-
[37], (d)-[38], (e)-[39]. Strawberry: (f)-[42], (g)-[45]. Cherry: (h)-[46].
Watermelon: (i)-[49]. Tomato: (j)-[52], (k)-[53], (l)-[54], (m)-[56].

Cucumber: (n)-[57]. Eggplant: (o)-[60]. Radicchio: (p)-[61]. Fruit
harvester: (q)-[63]. Sweet pepper: (r)-[65]
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as a fruit suitable for automated harvest due to their shape
and color and have been a research interest from as early as
1990’s [40].

Various robotic solutions may be found in the last decade
for the case of strawberries, reporting good performance
[41, 42]-(Fig. 1(f)), [43] and a success rate greater than
75% for isolated strawberries with an average harvest time
ranging from 6 to 10 seconds per fruit; additional to
harvesting operations, such as the packing of the harvested
fruits, have also been considered [44, 45]-(Fig. 1(g)).
The difference of color between the target fruit and its
environment is also exploited in the case of cherries
making them relatively easy for detection [46]-(Fig. 1(h)).
In particular, a cherry-harvesting robot was constructed
with a 4 DoF arm, integrated with a 3-D vision sensor
and a special end-effector that harvested the fruit with its
peduncle, to locate the fruits and plan the trajectory of
the end-effector avoiding obstacles [46]. Researchers have
also considered the harvest of heavier fruits like melons
[47, 48] or watermelons in the case of “STORK” robot
[49]-(Fig. 1(i)).

In order to speed up the robot’s harvesting cycle time,
multi-arm harvesting operating simultaneously has been
explored in [50] and in [51]. The work in [50] concerns the
melon field case, where the arm-melon allocation problem
is addressed. A similar approach may be found in the
fruit-harvesting robot Agribot [51], where two robotic arms
work in parallel, harvesting the targets that are selected and
marked by a human via a point laser range-finder.

Tomatoes are very common and cultivated in a world-
wide level, thus one may find several relative works in liter-
ature [52]-(Fig. 1(j)), [53]-(Fig. 1(k)), [54]-(Fig. 1(l)). The
dual-arm (bi-manual) robot harvester [55, 56]-(Fig. 1(m))
stands out in which one manipulator cuts the fruit and the
other picks it up, contrary to most other agricultural robotic
systems that utilize only one arm (uni-manual).

The importance of developing and adapting new high
productivity cultivation systems is discussed in the litera-
ture, modifying the crop and its envelopment to better fit
for robotic harvesting. In particular, the high-wire system
is considered for the cucumber case [57]. This issue is also
raised and investigated in [58] in the SWEEPER2 project.
Such specifically designed cultivation systems can facili-
tate even further the automation in the agriculture, making
robotic harvesting easier and faster [59], e.g. the V-trellis
fruiting wall architecture for apples [34], enhancing target
fruit access and presenting fewer interfering obstacles.

In addition to fruits, vegetables have also been considered
as harvest targets by automated harvesting machines. An
autonomous robot for cucumber harvesting is proposed in

2https://cordis.europa.eu/project/id/644313 & http://www.sweeper-
robot.eu/ - Last accessed: 22-11-2022

[57]-(Fig. 1(n)), reporting a success harvesting rate of 80%
and a cycle time of 45 seconds for each harvest target.
In the eggplant case [60]-(Fig. 1(o)), 62.5% success rate
and an average harvest time of 64.1 seconds are reported.
Works regarding radicchio [61]-(Fig. 1(p)) and asparagus
[62] may also been found in the literature. Relatively low
success rates in crops detachment are reported in [63]-
(Fig. 1(q)), where the presented autonomous harvester
for crops with peduncles (either vegetables or fruits) is
tested on both plastic and real crop cases, exhibiting a
67% and a 52% success rate respectively. A research
interest has been shown for sweet peppers as well, in
[64, 65]-(Fig. 1(r)) with the ”Harvey” robot and in [66].
Specifically, [66] is part of the EU project SWEEPER that
targeted towards the development and testing of a practical
robotic harvesting solution for sweet peppers in real-world
conditions, reporting an average harvest time of 24 seconds
per pepper.

Summarizing, as can be seen in Table 1, it becomes clear
that the majority of harvesting robotic systems involve crops
with shape, size, rigidity and color that facilitates automated
harvesting. The lack of any reported harvesting solutions
for grapes which is a high-value crop indicate the existence
of specific challenges in this case. Nevertheless, various
research works may be found for the case of grapevines.

As part of the PIC4SeR3 mission for intelligent vineyard
healthcare, the Agri.q UGV is developed in [67–69], with
its operation extended in other types of orchards as well.
Overcoming terrain irregularities or slopes and providing
various services such as crop health monitoring, collection
of soil and/or plant samples or application of fertilizers,
this robotic solution investigates the innovative possibility
of multiple robotic systems working collaboratively for
coordinated field monitoring and servicing, including a
UGV and a UAV (drone). An early attempt for developing
a multipurpose agricultural robot working in vineyards
can be found in [70], considering various tasks such
as berry thinning, spraying, bagging and harvesting. The
robotic manipulator developed in [70] was also utilized
in [71], where the explicit task of spraying chemicals
under grapevine trellis for crop health/disease removal
purposes is addressed. Disease detection and selective
spraying for production quality enhancement is the research
target of [72] as well, part of the EU-project CROPS4

whose main goal was to develop, optimize and demonstrate
a multipurpose agricultural robotic system [73]. Project
CROPS attempted to achieve grape harvesting as well,
however with no reported success. A similar application,

3Politecnico Interdepartmental Centre for Service Robotics - Politec-
nico di Torino, https://pic4ser.polito.it/ – Last accessed: 22-11-2022
4https://cordis.europa.eu/project/id/246252 & http://www.crops-
robots.eu/ - Last accessed: 22-11-2022
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Table 1 Summary of harvesting and other agricultural systems

Crop Citation Characteristics

Harvesting

Apple [34–39] Harvest times / success rates: 6-16 sec / 80-90%. Methods
for faster/easier harvest: e.g. pick-and-catch harvesting
[39]. V-trellis farming architecture [34].

Orange [40] Early interest shown (1990’s). Harvest-friendly crop shape
and color.

Strawberry [41–45] Success rates > 75%. Harvest times: 6 to 10 sec. Packing
operation [44, 45].

Cherry [46] Different fruit/environment color exploited to facilitate
detection.

Melon [47, 48, 50] Simultaneous multi-arm harvesting [50] to speed up
harvest.

Watermelon [49] Reported success rate: 66.7%; robot weighting < 300 kg
picking fruits of 13 kg.

Tomato [52–56] Dual-arm harvester [55, 56] contrary to common uni-
manual systems.

Cucumber [57] Success rate: 80%; cycle time: 45 sec. High-wire
cultivation system for easier robotic harvesting.

Eggplant [60] 62.5% success rate; 64.1 sec average harvest time.

Radicchio [61] Average cycle time below 7 sec.

Asparagus [62] Average harvesting time: 12 sec.

Sweet pepper [64–66] [66] part of SWEEPER project; average harvest time: 24
sec.

Monitoring/Vineyard Management

Grape [67–77] Health monitoring (e.g. [74] of GRAPE project), yield
estimation, soil/plant sampling, fertilizer application,
selective spraying (e.g. [72] of CROPS project), thinning,
weeding, pruning, vineyard mapping.

i.e. vineyard protection, was also targeted by the GRAPE5

project. In GRAPE, an autonomous ground robot [74]
with a robotic arm was developed for health monitoring
and automatic pheromone dispenser distribution for plague
control. Other works in literature involve tasks like weeding
i.e. removal of weeds in areas of a vineyard [75],
monitoring i.e. localization and mapping of vineyard for
crop monitoring [76] and pruning i.e. cutting off some of
the grapevine older canes/branches while leaving others that
are healthier [77]. Through utilization of two independent
robots working cooperatively (harvesting and inspection
robots), ongoing EU funded project BACCHUS6 aims
at contributing in the limited field of automated grape
harvesting. Introducing a human-like harvesting approach
via a bi-manual setup (harvesting robot) contrary to most
existing solutions, while combining it with crop inspection,
mapping, as well as vital data collection e.g. concerning
grape health/maturity (inspection robot), BACCHUS targets

5https://echord.eu/grape/ & https://www.grape-project.eu - Last
accessed: 22-11-2022
6https://cordis.europa.eu/project/id/871704 & https://bacchus-project.
eu/ - Last accessed: 22-11-2022

on pushing forward the application of precision agriculture
in a particularly challenging environment such as a vineyard
(BACCHUS as well as the previously mentioned GRAPE,
CROPS and SWEEPER will be described further in
Section 4, where the research projects are presented in
details).

3 Robotic Functionalities and Hardware
for Automated Harvesting

Apart from the development of a complete robotic system
for the automated harvesting of fruits or vegetables, one
may find a significant amount of works in the literature
that deal with solutions over specific challenges related
to the overall harvesting task. Vision-related challenges
regarding harvest targets detection and their maturity and
health evaluation, navigation of robotic systems in fields
and orchards, motion and grasp planning of the robotic
system’s manipulator for successful harvesting, design of
end-effectors with specific requirements depending on the
harvest crops as well as operation planning and human robot
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interaction (HRI) systems for the agricultural domain are
some of the problems addressed in the literature. Figure 2
depicts how the referenced publications are distributed with
respect to their targeted functionality, indicating that the
majority of them address crop detection and evaluation.

3.1 Sensor-based Detection and Evaluation of
Harvest Targets

The detection of the harvest targets as well as the crops’
health and maturity evaluation are of high importance
for the farmers concerning both estimating the yield
quantity and quality, with evident impacts on the financial
earnings and managerial issues (e.g. arrangements for
crop shipment or storage), and the actual application of
robotic harvesting methods. To this end, robotic systems
with various visual sensors/cameras (e.g. binocular vision,
laser vision, kinect camera, multispectral camera etc.)
placed on the robotic platforms themselves and/or mounted
on the robotic manipulator’s end-effector (eye-in-hand)
are proposed, while image processing methodologies are
employed to transform the raw imagery data to valuable
knowledge [78]. The main tasks addressed in the crop-
detection literature refer to the fruit recognition, which is the
key issue in the vision-guided autonomous fruit harvesting
and yield estimation systems, the crop’s maturity/health
evaluation, which is critical on the crop’s suitability for
harvesting decision-making, and the environment modelling
and surveying, which provides useful input for the
autonomous agricultural applications.

3.1.1 Vision-based Crop Detection

Over the last years, a great variety of research work has
been conducted regarding vision-based detection methods
for utilization in various automated agriculture applications
[79]. Adaptive thresholding algorithms [80], methods based
on texture, color and shape cues [81–83], combination of
RGB and depth information [84], reinforcement-learning
approaches [85] and deep convolutional neural networks
[86, 87] are used for image segmentation into background
and foreground in order to detect target fruits. Additionally,
to properly position the robot with respect to the target,
localization of the harvest targets may also include
estimation of their orientation [88–90] leading to the robotic
end-effector approaching its target in a way that is better
suited for grasping/cutting the peduncle.

Harvest targeted fruit detection is a task that faces
multiple challenges due the dynamic and unstructured
nature of both the crops and the outdoors environment.
Therefore, to cope with color and texture-based sensitivities
to the variety of illumination conditions, deep learning
approaches [91] and RGB-D data methods are proposed [92,
93]. Moreover, occlusions that often occur due to leaves of
branches affect directly the harvest-target detection success.
To address this problem image analysis including per-pixel
segmentation and region detection is used in [94], while a
multi-class approach that splits citrus samples into different
cases (normal, branch occlusion, leaf occlusion, slight
occlusion, overlapping and main brunch) is applied in [95].
Furthermore, the authors of [96] propose an active vision

Fig. 2 Distribution of
functionality-related works in
literature
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approach that utilizes 9 eye-in-hand RGB cameras to solve
the ”next best view problem” for sweet peppers occluded by
leaves, while [43] combines vision with specific movements
that the robotic manipulator’s end-effector performs in order
to push away any surrounding obstacles that occlude the
harvest target. Apart from the difficulties occurring from
the environment, there are challenges created by the fruit’s
nature. In this scope, the challenging color of certain fruits,
such as green grapes, is handled using different color
spaces depending on the kind of crops and considering
additional features during the image process analysis for
the detection/localization task ([97, 98], parts of SWEEPER
and CROPS projects respectively). Moreover, vision issues
such as the lack of contrasting features on smooth round-
surfaced fruits that otherwise could help in their detection is
dealt by utilization of the gradual variation of intensity and
the gradient orientation upon the fruit’s surface [99].

A group of works on agricultural object detection utilizes
deep neural architectures for semantically segmenting the
scene in conjunction with methods for clustering the
resulting segmentation map. The authors of [100] compute
the semantic segmentation of apple orchard RGB images
using multi-scale Multi-Layered Perceptrons (MLPs) and
Convolutional Neural Networks (CNNs) that are extended
by incorporating metadata, such as sun position, while on
top of the segmentation the Watershed and the Circular
Hough Transform algorithms are utilized to perform fruit
detection. The authors of [101] detect guava using a
Fully Convolutional Network for semantically segmenting
RGB images and then extract clusters that correspond to
individual fruits. In [102], Unet is utilized to semantically
segment RGB images into soil/vegetation classes, then
blob extraction is applied, and finally the results are
classified into weed/crop using a CNN classifier with
VGG16 backbone. Moreover, in [103] a Unet followed by
connected component analysis, a Faster-RCNN with FPN
and a focal loss term, and a Gaussian Mixture Model are
compared for fruit detection in apple orchards in order to
achieve 3D reconstruction of the trees. A fruit-counting
algorithm is presented in [104] that incorporates an object
detection step with FCN based semantic segmentation
and a contour detection step. Furthermore, the authors of
[105] utilize a probabilistic image segmentation method
to segment RGB fruit images in foreground/background,
mask the corresponding depth image with the probabilistic
segmentation output, and then employ a region growing
method to obtain clusters from the depth data and detect
fruits through an SVM classifier. Some works focus solely
on the problem of semantically segmenting the captured
agricultural scene. In [106], the authors employ a sliding-
window Inception-v3 classifier to segment RGB images in
three classes: crop, weed, and background.

Many authors utilize well-known one-stage or two-stage
deep CNN detectors, using the algorithms either off-the-
shelf or with custom modifications, to directly detect
fruits and/or plants in their input data. In this scope, the
authors of [107] compare YOLOv2, YOLOv3 and Mask-
RCNN in order to implement a fruit counting graph-based
application, while various applications of YOLOv2 and
YOLOv3 are also used in [108, 109] for mango and
apple detection. The authors of [110] use Mask-RCNN
for blueberry detection and quantification, investigating
different feature extractors/backbones for the task, while
in [111], a Mask-RCNN with RGB & HSV 6-channel
input is utilized to detect oranges. Moreover, Faster-RCNN
is used in [112–114] for the detection of multiple types
of fruits based on RGB and Near-Infrared images, the
identification of Fuji apples on RGB-D images and the
detection of 4 different wheat growth stages respectively.
In [115], an automatic label generation module named
Clustering-RCNN, along with the one-stage deep learning
object detector LedNet are developed for the detection
of apples in RGB images of orchards, while the same
authors propose in [116] a DaSNet, which utilizes a Gated
Feature Pyramid Network for multi-level feature fusion,
ASPP for multi-scale information fusion, and a lightweight
designed backbone. A strawberry detector is employed in
[117] based on a modified RetinaNet network that utilizes
ResNet-18 as its backbone, FPN for multi-level feature
fusion and takes as input a concatenated 6-channel RGB +
CIELab representation of the image, while in [118] a novel
object detector for flowers is proposed, based on regions
generated by the SLIC algorithm that are used from a CNN
architecture to extract features that are fed into a SVM in
order to detect apple flowers.

3.1.2 Field/Orchard Modelling and Surveying

Besides the aforementioned work that focuses on the
crops, some researchers investigated issues related to
the whole agricultural environment, i.e. the fields and
orchards. The authors aim at modelling or surveying the
environment using various visual sensors (e.g. spectral
cameras, RGB, RGB-D, LiDAR and thermal imaging
sensors) while it can be observed that phenotyping has
attracted the interest of many authors. Phenotyping refers
to the quantitative description of a plant’s properties
and aims at the holistic evaluation and characterization
of its performance. To this end, a mobile platform for
monitoring Canola plants is presented in [119]. The
platform carries different sensors, cameras and other
measurement equipment while it geo-tags the acquired
data using GPS for future retrieval. Moreover, a fully
automated robotic platform moving on rails and mounted
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with various sensors (chlorophyll fluorescence and thermal
infrared cameras, two hyperspectral imagers and dual
3D laser scanners) is established in [120] in order
to facilitate continuous and high-throughput monitoring
of crop performance. An autonomous ground vehicle
named “Vinobot” and a mobile observation tower named
“Vinoculer” are introduced in [121] for the inspection of
large field areas during day and night in order to provide
high-throughput plant phenotyping. The ground vehicle
collects data from individual plants, while the observation
tower oversees an entire field, identifying specific plants
for further inspection by the Vinobot. Furthermore, the
authors of [122] address the grapevine varietal classification
while avoiding the destructive techniques of classic
ampelography. Particularly, an on-the-go hyperspectral
imaging system is proposed that, by means of SVM
and MLPs, successfully classifies leaves from different
grapevine varieties.

To achieve field and orchard monitoring and analysis,
image processing methods are commonly used. Therefore,
semi-supervised weed classification based on CNNs is
proposed in [123], while an anomaly detection system is
presented in [124] that uses the features derived from a
CNN classifier to detect anomalies in agricultural fields.
Moreover, the authors of [125] utilize multi-view images
and a probabilistic setting to infer the existence of branch
structures hidden under leaves and to reconstruct them using
particle flow simulation, whereas in [77], the 3D model
of the whole orchard is reconstructed by means of stereo
cameras. A system able to recognize the canopy volume
is proposed in [126] using two LiDAR sensors aligned
vertically for scanning the same targets so as to provide
information for the pruning task. Furthermore, in [127], an
automated method performed on hyperspectral images is
developed in order to segment raspberry plants from the
background using a selected spectral ratio combined with
edge detection while graph theory is used to detect the
continuous boundary between uninteresting plants and the
area of interest.

3.1.3 Crop Evaluation

A vital issue during the harvesting season is the evaluation
of the fruits mainly in terms of maturity estimation.
In this scope, several works have explored the use of
hyperspectral cameras so as to achieve non-destructive
evaluation approaches. Therefore, VIS-NIR spectroscopy
has been mainly used to examine point spectroscopy
in laboratory environments. In [128–131], high-resolution
spectrometers capture single spectral signatures from grape
berries and bunches under specific illumination conditions
to achieve maturity evaluation. On the other hand, there are
also efforts to use hyperspectral cameras in orchards while

applying methods that handle the shadows. In particular,
the authors of [132] use a ground vehicle called ”Shrimp”
equipped with a hyperspectral camera to estimate the dry
matter content (DM) of mangos while LiDAR data are used
for tree segmentation so that DM predictions are projected
to individual trees. The authors extend their work in
[133, 134] with pre-processing techniques for illumination
compensation while they explore different optical filters for
mango DM estimation.

Apart from the fruit maturity, authors have explored
the evaluation of fruits regarding other criteria, such
as checking for damages. In this scope, a modified
version of YOLOv3 is used in [112] that incorporates
DenseNet layers to detect apple lesions in a dataset that
has been augmented by synthetic images created from
CycleGAN, while in [135] YOLOv4 CSPDarknet53 method
is proposed for detecting damages in sugar beet. Using
VIS/NIR transmission coupled with diameter correction
and a deep 1D-CNN, the early detection of freezing
damage in oranges is achieved in [136]. The authors
of [137] implement a per-pixel classification/semantic
segmentation of hyperspectral healthy and diseased wheat
data, experimenting with two different input configurations
in a Deep Convolutional Recurrent Neural Network.
Furthermore, the authors of [138] provide a complete and
detailed crop 3D reconstruction through image data analysis
to be used for phenotyping in order to further explore
the crop’s features such as disease resistance, breeding
efficiency etc.

3.1.4 Detection and Evaluation of Harvest Targets Using
Drones

Crop detection and evaluation functionalities by drones
have shown a wide potential in precision farming [139]
which, supplementary to ground robots could further boost
automation in the farming domain. Mainly focusing on
crop monitoring and weed/disease detection, the drone
applications mostly use three types of sensors: 1) RGB,
2) multispectral and 3) hyperspectral sensors [140]. Based
on RGB input, the authors of [141] monitor fields for
yellow rust using U-Net deep learning networks while
CNNs are used in [142] for detection of plant diseases that
affect their leaves. Moreover, weed detection takes place
using a Bag –of Visual –Words framework in [143] and
various segmentation methods (CGNet, ENet, ERFNet) are
compared in [144] towards dandelion identification. Using
multispectral sensors, weed detection and crop monitoring
is also explored in [145] and [146] while, due to the
availability of the high number of radiometric bands,
[147] extends to the extraction of non-visible field features
such as early stage plant disease and soil water content.
Furthermore, hyperspectral data is used in [148] to identify
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the most significant spectral bands and perform weed
classification based on discriminant analysis as well as in
[149] to evaluate maize and weed response to herbicide
applications.

3.2 Motion Planning and Control for Grasping
and Picking a Harvest Target

Motion planning and control of a harvesting robotic system
has been addressed by various works in literature regarding
either guiding the system’s vehicle/platform inside the
orchard (between plants) or planning of the system’s
robotic manipulator motion in order to approach and pick
a harvest target. When guiding a robotic vehicle/platform
in such a difficult environment as an orchard with
many obstacles (e.g. plants, trees, branches), utilization of
feedback provided by various sensors is essential. Global
Positioning System (GPS), accelerometers and gyroscopes
(Inertial Navigation System – INS), vision i.e. cameras,
visual odometry (VO), as well as a fusion of the above
feedback data [150] are often considered.

Several works address the problem of robot’s navigation
within fields or orchards. The development of a navigation
system that can guide a field robot to travel from a farm
station to a citrus grove and visit each tree autonomously
with obstacle avoidance ability is the subject of [151]. GPS,
IMU and the wheel encoders are integrated by an extended
Kalman filter to provide accurate odometry information.
Then, the SLAM algorithm combines the odometry data
with the LiDAR data, enabling the robot to do path planning
and navigating based on laser scans. To facilitate navigation,
the robotic platform “BoniRob” [152] for crop scouting,
developed by AMAZONE7, utilizes the FX6 laser to detect
the ground from a 3D point cloud recorded by FX6.
Furthermore, convolutional neural networks in combination
with visual-based feedback from a camera are also proposed
for crop identification, driving path planning and fitting
between plant rows [153].

Concerning map generation, there are many works for
indoor environments which give satisfactory results [154].
Nevertheless, there are still few proposals concerning the
mapping in agricultural environments. Their goal is to
decrease navigation errors [155] as well as to enable
the vehicle to return to specific locations and perform
tasks, such as spraying, in a suitable and precise manner,
thus saving valuable resources [156]. Such example is
described in [157] where a mapping strategy based on
maize plants detection using a stereo camera is presented.
In recent years, many works have been made to solve
the problem of simultaneous localization and mapping
(SLAM), providing an appealing alternative to user-built

7http://www.amazone.de - Last accessed: 22-11-2022

maps and showing that robot operation is possible in the
absence of an ad hoc localization infrastructure [158].
Cheein et al. [159] developed a precision SLAM algorithm
based on extended information filter (EIF-SLAM) for
agricultural environments, in their case olive groves. The
most significant features in the agricultural environment
are used for the optimization and pose estimation process.
Moreover, the use of a SLAM algorithm, called graph-
SLAM, is proposed in [160] as a means to generate cost-
effective local maps of forests. In particular, the 3D map is
generated from laser scans mounted on a mobile platform,
first by relying on laser odometry and then by improving it
with robust graph optimisation after loop closures.

Handling the manipulator’s motion towards the harvest
target is considered a rather challenging task taking
into consideration the highly unstructured environment
of orchards. CROPS project [161] is a representative
work that deals with most of the typical issues arising
during the manipulator’s motion towards the harvest target
by approaching it dynamically taking into consideration
possible obstacles. Collision maps are typically generated
and can be also updated in real-time as the robot moves,
often including 3D point cloud data [162] provided by
feedback from the vision system and other sensors the
overall robotic system may be equipped with. These maps
are utilized so that a collision free trajectory is planned
for each of the robotic manipulator’s joints. Guiding the
robot end-effector utilizing information provided by eye-
in-hand sensing as in the cases of [163] and [164, 165]
(parts of CROPS and SWEEPER projects respectively) is
indeed a very common approach for visual servoing. In
such approaches, information concerning the best approach
direction to maximize target’s detection rate may be highly
valuable [166]. It is evident that visual servoing can be
sensitive in camera calibration parameter uncertainties,
as illustrated in [167] where the combined utilization of
image-based visual servoing (IBVS) for the harvest target
approach phase and position-based visual servoing (PBVS)
for making fine adjustments in the robot’s movement is
proposed to cope with such uncertainties.

After the harvest target is reached and grasped by the
robot’s end-effector, its picking may be achieved via a
detaching motion that the robot performs in order for the
target fruit to be released from the tree’s branch. This motion
may vary with the obvious goal to detach the harvest target
as easily as possible without causing any damage to it. Four
basic picking patterns including horizontal pull, vertical
tension, bending and twisting are performed in [168] in
order to analyze the effects of different picking patterns
on fruit detachment. The tension parameter, which includes
the horizontal pull and vertical tension, is found to be the
dominant factor during the detachment process, with the
vertical pull possibly leading to the pull-out of the stem.
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Optimized results indicate the horizontal pull with a bending
and twisting motion as the potential optimum combination.
Picking patterns for successful crop detachment are directly
connected to the physical properties of harvest targets.
To this end, works may be found in literature that focus
their research to target crops themselves, investigating their
rheological characteristics (deformation) [169] and physical
properties regarding e.g. how much force may be exerted
upon them without damaging or bruising them. In [169],
apples are considered with the ultimate purpose of designing
an impedance controller for the robotic system of [38]
to compliantly pick them, while in [170] pumpkins are
investigated in order to find an appropriate harvesting
procedure that will not damage them. A major challenge in
robot motion planning that one may easily consider is the
possible harvest target motion (e.g. a fruit may move due to
gusts of wind that may shake the tree’s branches). In [171],
such a problem is addressed by proposing a robust, image-
based, non-linear visual servo controller (along with its
Lyapunov stability analysis) that regulates the end-effector
to the target fruit’s location, compensating for unknown
disturbances like the fruit’s motion.

3.3 HRI in Agriculture

Agricultural processes are mostly performed by human-
operated machines while few are handled by autonomous
robots. However, there are applications that are difficult
to be fully automated while the efforts in this direction
appear to be on a long-term path. In this scope, HRI
strategies in agriculture have attracted the scientific interest
in order to address such complex problems, providing
secure, faster and more productive solutions than the
traditional approaches [172].

Several works in agricultural HRI literature focus on
activities such as facilitating farming robots’ navigation
in fields and orchards, detection of fruits and vegetables,
spraying [173]. In particular, different user interface modes
for target recognition and spraying are explored in [174].
The robot navigation along vineyards can be handled by the
user when needed, views from the on board camera sensors
are visualized while teleoperation is achieved through three
different interface configurations which use a mouse, a
Wii remote8 and a digital pen. Moreover, a web based UI
for controlling autonomous vehicles for apple harvesting
is proposed in [175]. The user can select the field area
of interest, the vehicle’s speed, and decide whether certain
orchard’s rows should be skipped or traversed multiple
times. The benefits of the use of HRI strategies aided

8https://www.nintendo.co.uk/Support/Wii/Usage/Wii-Remote/
Basic-Operations/Basic-Operations-243993.html - Last accessed:
22-11-2022

with visualization technologies for melon detection are
analysed in [48]. Specifically, detection increased by 4% in
comparison to manual detection and by 14% compared with
a fully autonomous approach, reaching average detection
rates between 94% and 100%. Moreover, the detection times
were 20% shorter than the ones achieved manually.

Designing complex applications for HRI in agriculture
requires deep understanding of the users’ cognitive factors
and the task demands. In this scope, using a knowledge
engineering approach, the authors of [176] proposed a
work model based on information obtained from operators
to evaluate the mowing task in a citrus grove. Moreover,
a method to estimate the operator’s mental workload
in multiple information presentation environment for
agricultural vehicles is presented in [177]. The aim of the
method is to facilitate the design and optimize the human-
machine interface resources to ensure highly-efficient and
safe operations in the fields. Alternately, other works use
sensors to estimate the human operator’s cognitive status.
Such example is provided in [178] where non-invasive
sensors, such as EMG (electromyography), are used to
study and analyse the tractor handling performance in
agricultural fields while in [179] the tractor operator’s
driving characteristics are modeled through simulation so
as to achieve better adaptation of the vehicle’s dynamic
properties to the driver.

3.4 Operation Planning for Crop Inspection
and Harvesting

Production scheduling is a critical part of production
management that has preoccupied the scientific community
over the last decades leading to prolific literature. The
researchers have investigated both static and dynamic
scheduling scenarios [180] while the studied cases involve
job-shops, multi-agent systems, robot-human cooperation,
single robots operating multiple tasks [181] etc. Over the
years, various approaches [182] have been used to deal with
the optimization of task planning including particle swarm
operations [183], artificial bee colonies [184], variable
neighborhood search [185], Tabu search [186], ant colony
optimization [187], evolutionary algorithms [188, 189] and
other heuristic approaches [190, 191].

In the robotic agricultural domain, the operations plan-
ning applications include planning of harvesting actions,
team coordination of autonomous vehicles, optimization of
field area coverage and route planning. Moreover, human-
robot cooperation is also investigated, nevertheless, robots
act, in these cases, as crop transporting vehicles scheduled
to provide optimal support to human harvesters [192]. In
particular, a stochastic simulation based on a finite state
machine is used to evaluate human robot collaboration and
provide to the strawberry-harvesting workers the optimal
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support with automated transport of the collected fruits.
Regarding the optimal route/area covering planning, a gen-
eral approach for fleets of autonomous vehicles is suggested
in [193]. Taking into account different criteria, such as vehi-
cles with different characteristics, field variabilities and the
refilling possibility, the authors deal with this combinatorial
optimization problem using the metaheuristic search of sim-
ulated annealing. Furthermore, in [194] multiple machines
are scheduled to work on various operations in multiple
areas based on the fields’ readiness using Tabu and modi-
fied Tabu search technique. In [195], a mobile seed refilling
system that feeds multiple planters during large-scale field
operations optimizes its route using a stochastic solution
based on a genetic algorithm. Moreover, the travelling sales-
man problem methodology is applied on [196, 197] and
[198] for the optimization of coverage planning for capaci-
tated fields operations and route planning for sugarcane and
avocado harvesting respectively. In [199], the field area cov-
erage is handled by the users themselves through a UI that
allows them to schedule the robots’ routes taking also into
account refilling stations to replenish their resources (e.g.
pesticide and energy).

Apart from the applications focusing on the optimization
of area/route coverage according to the fields’ properties
and the available means, several researchers explored the
optimization of the actual harvesting actions. In this case,
the robot is parked in front of the plant of interest and has
to collect the available fruits with one or multiple arms.
In [200], a multi-arm robotic melon harvester optimized
its performance utilizing an extension of graph coloring.
In particular, the robot scheduled the fruit collection and
decreased the harvest time by selecting the most efficient
actuators, number of manipulators and robot’s velocity.
Similarly, in [201], multiple arms of a kiwi robot collector
are assigned with tasks based on a cluster approach.
In [202], one manipulator is utilized to perform sensing
and harvesting tasks simultaneously. The sequence of
these actions is scheduled through the travelling salesman
paradigm taking into account the actions’ costs and the
traveling time.

3.5 End-Effectors Development, Automated Gripper
Design and Grasp Planning for Harvesting

In harvesting processes, the grasp quality is one of the most
important factors for production quality [203]. In this scope,
placed upon the harvesting robotic system’s manipulator,
end-effectors have been in the researchers’ interest [204].
Being directly involved in the crop harvesting task, the
design of these tools may require specific characteristics
depending on the target crops type (e.g. shape, size). The
required motion that an end-effector must perform in order
to detach and harvest a fruit or a vegetable is usually

considered within its design process, mostly attempting to
mimic a human hand’s motion when grasping and picking
a fruit from a tree while other end-effectors include a
cutting device for crop detaching, simplifying the harvesting
procedure. Various sensors may be integrated in the end-
effectors, giving feedback that helps the overall robotic
system acknowledge whether the harvesting target is picked
up or not.

In this scope, a two bionic finger end-effector equipped
with fiber sensors detecting the best position for grasping
kiwifruits as well as pressure sensors to avoid damaging the
fruits during grasping is proposed in [205]. A multi-sensory
configuration comprising distance, proximity, force and
pressure sensors is considered in [206] for a universal end-
effector for spherical fruits (e.g. apples, tomatoes, citrus).
In particular, a two-fingered gripper singulates the fruit
with a sunction pad while a laser device is responsible for
cutting the fruit’s stem. Inspired by the operating principle
of wire-stripping pliers, the end-effector’s upper and lower
jaws cut and simultaneously hold the fruit by its peduncle
in [207]. A novel six-fingered end-effector equipped with
three infrared (IR) sensors for active cutting position control
is proposed in [42] for autonomous strawberries harvesting.
Strawberry harvesting is also considered in [208], where
a robotic gripper with three fingers and pressure profile
sensors is developed in addition to a hierarchical control
scheme, based on a fuzzy controller for the gripper’s force
regulation and proper grasping criteria.

Besides the specifically pre-designed (non-configurable)
end-effectors, gripper design automation is a new field of
research that enables the existing equipment to be flexible
and handle a larger range of tasks through reconfigurable
grippers. A theoretical analysis taking into account the
reconfigurability of the gripper is presented in [209],
where a balance between customization and simplicity is
suggested. Most of the studies in the literature do not
facilitate completely autonomous finger generation, rather
following one of the three main approaches: modular
design, re-configurable design and customized design. In
modular design approaches [210], there is a finger library
where multiple types of finger geometries are stored. Then,
based on a simplified geometry of the object to be grasped,
the suitable pair of fingers is selected [211]. A different
technique has been introduced in [212] where a grasping
device adapts itself to the geometry of the object using a one
DoF mechanism. These solutions while providing general
and flexible solutions regardless the shape complexity, are
computationally expensive because they iterate through
each finger design for verification. In re-configurable
designs [213], a gripper is designed with the possibility
of re-configuring the fingers’ positions. The approach in
[214] employs a three-finger parallel jaw gripper where
two of the fingers can change configuration while the third

Page 11 of 29    21J Intell Robot Syst (2023) 107:21



one is fixed. Such approaches while offering quick and
simple solutions, require experts for the technical inputs
of the algorithms. Finally, customized designs with custom
fingers can be specifically generated for each object [210,
215–217].

Grasp planning is defined as a search process of
the possible locations for grasping an object, aimed at
identifying closured grasps. The research area for this
matter is wide and unstructured, mainly due to the fact
that none of the proposed approaches has been widely
implemented and considered the reference for comparison.
In [218] a clear overview of the methods and algorithms
for grasp planning is presented and the authors divide the
research done in this field into analytical approaches and
data-driven (or knowledge-based) approaches.

Analytical approaches consist of methods that use
geometric, kinematic and dynamic formulations in order
to verify a grasp [219]. The most basic approaches for
grasp planning consider the minimum number of required
contact points for force-closure of objects with polyhedral
geometry [220–223]. The downside of the proposed multi-
contact methods is the exhaustive search procedure. In
heuristic methods, a large number of grasp positions are
generated randomly [224] by defining a set of rules
that have been tested on the object’s model [225, 226].
Then, unfeasible grasp candidates that do not fulfill the
force-closure condition are filtered out. Although these
approaches require low computational effort, they are
usually limited to determining the local optima and don’t
take every possible grasp position into account. Another
limitation of multi-contact grasp methods that have been
presented is that they are computationally efficient for very
simple objects. Furthermore, methods for general object
shape, model the object as a cloud of 3D points [227–229]
or triangular mesh [230] and can be employed even for
online grasp planning. Such methods [229] are employed in
[231] for a robot harvesting sweet peppers using cameras on
the end-effector and a 9 DoF manipulator. Although such
algorithms can be applied to many different object shapes
with multiple facets and reduced computational effort, they
still suffer from local optima problems like the heuristic
methods.

In data-driven approaches the grasp candidates are
ranked based on a specific metric after being sampled
for a particular object. Such methodologies are generally
based on existing grasp experience, generated by simulation
or on a real robot [218]. A review of such approaches
in [232] concludes that for each method the type and
level of prior knowledge and the assumptions made about
the objects being manipulated are the determining factor
for their reliability. Grasping itself is highly dependent
on the employed sensing and manipulation hardware, so
the approaches cannot be compared with each other and

benchmarked. In [233], automatic generation of possible
grasp sets through a simulation-based method is described.
This approach is different from most other studies as
it focuses on the grasp process instead of the final
grasp configuration. Furthermore, a date-driven method
for industrial parallel-jaw grippers is proposed in [234].
The algorithm starts with generating a grasp database by
sampling on nearly parallel surfaces, and a dynamics based
grasp simulator is used for evaluating the grasps. Finally,
the suitable grasps are measured by three defined quality
metrics. Such approaches, although computationally cheap,
require a great deal of manual input and are not applicable
for automated or online grasp planning.

4 Related Research Projects

Several projects have been running during the last decade,
regarding automated robotic agricultural applications, with
Fig. 3 presenting an overview of them. Mostly funded
by the European Union (Seventh Framework Programme,
Horizon20209), they involve the development of robotic
systems whose primary goal is to facilitate and/or execute
various agricultural tasks, such as harvesting, spraying,
monitoring/phenotyping.

CROPS10 (Fig.3 - CROPS, subfigure taken from [73])
goal was to develop scientific know-how for a configurable,
modular robotic system, including various modular tools
(e.g. manipulators, sensors, sprayers, grippers) and adapting
to several tasks. The robotic system developed within this
project was capable of site-specific spraying and selective
harvesting of sweet peppers and apples. Specifically, a
9 DoF manipulator was designed and tested for sweet-
pepper and apple harvesting, as well as close range spraying
in vineyards [73]. Different end-effectors and a prototype
canopy sprayer were manufactured for each different
application. Sensory system included color cameras, a
multispectral system for fruit detection and discrimination
between different elements of plants and a Time-Of-Flight
(TOF) camera providing fast acquisition of distances, thus
enabling localization of harvest targets [235]. CROPS
system was evaluated with regard to sweet pepper and apple
harvesting in a commercial greenhouse and close range
precision spraying in a vineyard [73]. Regarding sweet
pepper harvesting, the developed system reported a 56-86%
detection rate and a relatively low harvest rate of 33% with a
high average harvest time of 94 seconds per fruit; however,
the manipulator was intentionally moving with a low speed

9https://cordis.europa.eu/programme/id/H2020-EC - Last accessed:
22-11-2022
10https://cordis.europa.eu/project/id/246252 & http://www.crops-
robots.eu/ - Last accessed: 22-11-2022
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Fig. 3 Research projects regarding various types of crops; subfigures source can be found in-text in each project’s description
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for safety reasons. Results for apple harvesting task, with
special pruning firstly taking place on the crops, showed
a 100% detection rate and a 72% harvest rate, requiring
15 to 30 seconds per apple. The system was successfully
tested for close range target spraying in a greenhouse
experiment with grapevines, reporting an 84% attained
pesticide reduction rate. An early performance evaluation
concerning specifically the sweet pepper harvesting task
under field conditions was also presented in [236], reporting
a difficulty in the successful picking of the harvest targets
(6% rate) and a clear improvement (from 6% to 26%) after
simplifying the crop, that is removing fruit clusters, leaves
and other obstacles. Lastly, grape harvesting was attempted
during the project as well, however with no success since
grape grasping was not successful most of the time with
the gripper prototype being unable to cut the thick stalks of
grape bunches even at maximum pressure.

SWEEPER11 - Sweet Pepper Harvesting Robot
(Fig. 3 - SWEEPER, subfigure taken from http://www.
sweeper-robot.eu/) was a H2020 project that built upon
technologies, initially developed during the CROPS project.
Its technical goal was to develop, test and validate a prac-
tical robotic harvesting solution for sweet peppers in real
world condition. The developed robotic system involved
a robotic vehicle with a single arm with a task-specific
harvesting tool for the sweet pepper harvesting. For the
identification of the fruits’ location and the assessing of
their maturity and quality, an RGB-D camera with custom
made LED lightning fixtures was utilized, reporting simul-
taneously both color and depth information. The developed
vision system included a Flash-No-Flash (FNF) controlled
illumination acquisition protocol, facilitating target detec-
tion that is robust to ambient illumination effects [91]. The
maturity and quality of the pepper was assessed based on
color and shape features (perimeter/area ratio) measure-
ments of the fruit. Before harvesting the fruits, a manual
leaf-picking procedure was proposed, as in cases of image
disturbances (e.g. leaves creating occlusions) the proposed
system would not be able to identify the fruits. The idea of
modifying target crops and their environment in order to
make them ”best fit” for robotic harvesting was considered
during the overall project and methodologies to influence
crop features were investigated and presented [58] such as
cultivation practices, pruning, climate control and artificial
illumination. The developed robotic system was evaluated
[66] through the harvesting of 262 fruits along a 4 weeks
period, where 104 fruits were part of a modified crop (low
occlusion/cluster interference) and 159 of an unmodified
one. The average achieved harvest time per fruit was 24
seconds, with logistics taking approximately half of that

11https://cordis.europa.eu/project/id/644313 & http://www.sweeper-
robot.eu/ - Last accessed: 22-11-2022

time. Harvest success rates were reported to be 61% for
best fit (modified) crop conditions and 18% otherwise.

VINEyardROBOT12 or VINEROBOT (Fig.3 - VINE-
yardROBOT, subfigure taken from [237]) was an FP7
project, whose goal was the design and development
of an agricultural robot for vineyard monitoring. Focus-
ing on optimizing a vineyard’s management, VINER-
OBOT project’s basis consisted of building a ground
robot/vehicle, endowed with artificial intelligence and sev-
eral non-invasive sensing technologies. These technologies
included fluorescence-based sensors, RGB machine vision,
thermography, Visible (Vis) and Near-Infrared (NIR) spec-
troscopy and were combined with canopy images and data
acquisition processes, executed in real time via customized
algorithms. Monitoring the vineyard’s status and grapes
composition e.g. amino acid concentration [238], the pro-
posed robotic system provided key information that would
help the farmers in crop yield estimation [239], vegetative
growth and water status inspection [240].

Focusing on helping the winegrowers to accurately assess
their grapevines yield, VINBOT13 - VINyard roBOT project
(Fig. 3 - VINBOT, subfigure taken from [241]) aimed
at developing an automatic robotic system that would
monitor vineyards and provide useful relevant information
and phyto-data in order to facilitate yield estimation
and overall vineyard management. The developed robotic
system involved an all-terrain autonomous mobile robotic
platform with open source software. It was equipped
with a set of sensors (e.g. color cameras, 2D laser
rangefinders) capable of navigating through the field, while
capturing and analyzing images and 3D data via cloud-
based computing applications. The system’s objectives
included the estimation of the amount of leaves and
grapes (leaf-to-fruit ratio), canopy features like height,
volume, and exposed leaf area, other phyto-data throughout
the entire vineyard as well as the generation of online
yield maps, that would greatly help winegrowers optimize
their management strategies. Promising an autonomous
monitoring of 168 hectares three times a year, an ability of
climbing slopes up to 45o and an electrical power autonomy
of 8 hours per day, VINBOT aimed at representing a
powerful precision viticulture cloud-computing agricultural
tool, helping winegrowers produce higher quality wines.
The evaluation of the developed system [241, 242] reported
good estimation results with acceptable accuracy regarding
canopy features, with the overall grape yield however being
underestimated due to various existing occlusions (bunch-
on-bunch/leaf occlusions).

12https://cordis.europa.eu/project/id/610953 - Last accessed: 22-11-
2022
13https://cordis.europa.eu/project/id/605630 - Last accessed: 22-11-
2022
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Part of ECHORD++14 FP7 project that funded various
application-oriented research projects called “experiments”,
GRAPE15 - Ground Robot for vineyArd monitoring and
ProtEction (Fig. 3 - GRAPE, subfigure taken from [243])
aimed at creating a robotic system that would help with
the vineyard monitoring and its overall protection. The
project’s partners included VITIROVER16, a French com-
pany involved with vegetation robotic management and
manufacturing of herds of mower-robots for soil grassing
management. GRAPE’s main objective included the cre-
ation of enabling technologies that will allow precision
agricultural practices, significantly reducing the negative
environment impact of traditional farming (e.g. mechani-
cal instead of chemical thinning, biological control instead
of chemical pesticides). The developed robotic platform –
UGV would detect plants, manipulate small objects and
help with the vineyard’s health monitoring. A considered
application of the system involved the automatic pheromone
dispenser distribution for mating disruption (pest manage-
ment) in vineyards [74]. Specifically, the robot would mon-
itor plants and their health through utilization of vision
systems (multispectral camera, 2D laser sensor) and 3D
real-time reconstruction; subsequently a biocontrol mecha-
nism consisting of pheromone dispensers would be applied
wherever needed for plague control. Additionally, a sig-
nificant amount of research was conducted regarding the
autonomous navigation of the robotic platform [243]. With
the vineyard environment presenting lots of challenges (e.g.
weather conditions, soil and general terrain morphology,
vegetation), GRAPE investigated utilization of various sen-
sors and methodologies to facilitate the robot autonomous
navigation through the field, including wheel encoders,
GPS, LiDAR sensor, inertial measurement unit (IMU),
Gmapping, Google’s Cartographer and others.

Aiming at facilitating asparagus harvesting and lowering
its overall costs, GARotics17 (Fig. 3 - GARotics, subfigure
taken from [244]), also part of ECHORD++ FP7, developed
a prototype robotic system for selective green asparagus
harvesting. The proposed system was able to (a) drive along
an asparagus dam in the field, (b) detect asparagus stalks,
identifying the ones ready for harvesting (involving three-
dimensional-point cloud processing from RGBD image
acquisition) and (c) perform harvesting without damaging
the stalks, proposing a harvesting mechanism that utilizes
a multi-tools solution for increased productivity. Initial
field tests showed the harvester’s applicability, reporting an

14https://cordis.europa.eu/project/id/601116 - Last accessed: 22-11-
2022
15https://echord.eu/grape/ & https://www.grape-project.eu - Last
accessed: 22-11-2022
16https://www.vitirover.fr/ - Last accessed: 22-11-2022
17https://echord.eu/garotics/index.php.html - Last accessed: 22-11-
2022

average harvester’s velocity of 0.2 m/s with a mechanical
harvesting cycle of approximately 2 seconds, an average of
5 harvested asparagus plants per meter with a two harvesting
tools setup and about 90% success rate in the harvesting
process [244].

MARS18 - Mobile Agricultural Robot Swarms project,
an ECHORD++ FP7 “experiment” as well, has developed
a robot system for high-precision planting, which has also
been tested in the field. It uses small robots operating in
swarms (6-12 units covering approximately 1 ha/h) and
a cloud-based solution to plan, monitor and accurately
document precise planting of corn. Satellite navigation
and data management in the cloud allows operations to
be conducted round the clock, with permanent access to
all data. The position and planting time of each seed is
accurately recorded, while planning for the required field,
for seeds, seed patterns and density is carried out via an
app. The intelligent OptiVisor algorithm plans the robot’s
deployment based on the entered parameters, calculating the
optimal paths for the units involved and the time required
for completion of the job. Software updates for the system
can be loaded “over the air”, just as a remote diagnostic
can be run conveniently and in any location via the smart
device. The latest version of the MARS robots was unveiled
to the public for the first time at Agritechnica 2017, with the
entire system, including small robots operating in swarms
and a cloud-based system control now being operated under
the product name “XAVER”19 (Fig. 3 - MARS(XAVER),
subfigure taken from https://www.fendt.com/int/xaver).

VineScout20 (Fig. 3 - VineScout, subfigure taken
from https://cordis.europa.eu/project/id/737669) was the
continuation of the completed project VineRobot. The
project’s main goal was to industrialize, demonstrate,
and take to market a field monitoring system (decision
support system), embedded in a small-size and cost-efficient
robot, regarding vineyards. Project’s objectives included
optimization of the robotic system’s external design and
internal electronics as well as the development of top
performance navigation software and systems for protection
and user friendliness. Conducted research within the project
involved on-the-go utilization of Visible-Short Wave Near-
Infrared spectroscopy [245] and hyperspectral imaging
[246] as monitoring tools for grape composition (e.g.
soluble solids, anthocyanins, polyphenols), thermal imaging
for the assessment of vineyard’s water status [247] as well
as an investigation over the growing data-driven agriculture
and the status of current advanced farm management
systems [14].

18https://echord.eu/mars/index.php.html - Last accessed: 22-11-2022
19https://www.fendt.com/int/xaver - Last accessed: 22-11-2022
20https://cordis.europa.eu/project/id/737669 & http://vinescout.eu/
web/ - Last accessed: 22-11-2022
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Project ROMI21 - RObotics for MIcrofarms (Fig. 3
- ROMI, subfigures taken from https://cordis.europa.
eu/project/id/773875 - Results) develops an open and
lightweight robotics platform for microfarms, found both in
rural, peri-urban and urban areas, growing a large variety
of crops (up to 100 different varieties of vegetables per
year) on small surfaces (0.01 to 5 ha). ROMI’s goal is to
assist these farms in weed reduction and crop monitoring,
reducing manual labor and increasing the productivity.
Thanks to ROMI’s weeding land robot, farmers will save
25% of their time, also acquiring detailed information
on sample plants. This robot is coupled with a drone
that acquires more global information at crop level, thus
producing an integrated, multi-scale picture of the crop
development that will help the farmer monitor the crops
and increase efficiently harvesting. For this, ROMI aims
to adapt and extend state-of-the-art land-based and air-
borne monitoring tools to handle small fields with complex
layouts and mixed crops. In addition to the ground and aerial
robots, ROMI also introduces a 3D scanner for phenotyping
in indoor and outdoor environments, combining an RGB
camera with a powerful image processing pipeline for 3D
plant representation and analysis.

With grape harvesting remaining an open and challeng-
ing task, new contributions can be significantly helpful,
further advancing the use of automated agricultural tech-
nologies in this particular high-value field, i.e. vineyards. To
this end, ongoing EU funded project BACCHUS22 (Fig. 3 -
BACCHUS, subfigures taken from https://bacchus-project.
eu/) is developing an intelligent, mobile robotic system
involving two independent and cooperative robots: (a) the
inspection robot will navigate through a vineyard, inspect-
ing and mapping crops, collecting various useful data,
e.g. regarding their health and maturity, via an embed-
ded sensorial system; (b) the harvesting platform will
perform human-like harvesting with the needed finesse,
introducing a bi-manual concept in contrast to most exist-
ing one-armed/uni-manual robotic solutions, thus offering
additional manipulability, facilitating further the overall
procedure. The envisioned solution aims at precision farm-
ing, applicable not only in vineyards but in other crops as
well, incorporating smart use of robotics for advanced con-
trol, navigation/motion, adaptation and learning, towards
increased farm productivity and reduced manual labor.

An overview of the above projects and their target func-
tionalities is summarized in Table 2, with some additional,
technical information regarding their hardware/software
characteristics as well.

21https://cordis.europa.eu/project/id/773875 & https://romi-project.
eu/ - Last accessed: 22-11-2022
22https://cordis.europa.eu/project/id/871704 & https://bacchus-project.eu/
- Last accessed: 22-11-2022

5 Related Commercial Products

In addition to research works and projects regarding
automated harvesting and agriculture, several commercial
products have been developed by various companies in the
last decades, illustrated in Fig. 4 (all subfigures taken from
products’ websites that can be found in their respective
citations/references).

Harvest CROO Robotics [249] was established in 2013,
introducing an automated harvester for strawberries. Other
strawberry robotic harvesters have been developed by
Dogtooth [250] in the UK, Agrobot E-Series [251] in
Spain and OCTINION [252] with their “Rubion” robot. In
addition to their harvest robot, OCTINION has developed
other robots for various agricultural activities besides
harvesting (e.g. “Curion” for crop scouting, “Lumion” for
fighting powdery mildew on strawberries, ”Fluxion” for
the logistic handling of storage crates). An autonomous
strawberry harvester mounted on their robotic platform
“Thorvald” is tested by SAGA Robotics [253] as well.
The Thorvald robot, in particular Thorvald I [248] and
the further developed Thorvald II [254], is an innovative
module-based robot that allows for different robots to be
build utilizing the same basic modules, hence addressing a
variety of agricultural applications (e.g. crate transportation,
UV-treatment, soil sampling, weeding).

The EU funded MetoMotion [255] developed the
Greenhouse Robotic Worker - “GRoW” robot for selective
robotic harvesting of greenhouse tomatoes, identifying
and locating ripe fruits and performing robust damage
free harvesting. Initially designed for greenhouse tomatoes
as well, “Virgo” is a robotic universal harvester from
Root-AI [256], now acquired by AppHarvest, that can
be configured to identify and harvest multiple crops
of varying sizes including tomatoes, peppers, cucumbers
and strawberries; AppHarvest [257] focuses on controlled
environment agriculture, involving smarter in-door farming
as well as precise and eco-friendly growing (e.g. recycled
rainwater, chemical pesticide-free fruits and vegetables).
ENERGID [258] has developed a robotic harvesting system
for citrus reporting a 2 to 3 seconds harvest time per orange
and a picking rate of 50%, while Abundant Robotics was
in the process of launching their commercial robotic apple
harvester as well; however, it was unable to develop the
market traction necessary to support its business during the
COVID 19 pandemic, resulting in its shut down23.

An interest has also been shown for grapevines, with
VISION ROBOTICS Corporation’s intelligent autonomous
grapevine pruner [259] and naio Technologies “TED” [260].
Utilizing GPS-RTK navigation and with an autonomy of

23https://www.therobotreport.com/abundant-robotics-shuts-down-fruit-
harvesting-business/ - Last accessed: 22-11-2022
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Table 2 Overview of projects and their technical specifications

Projects Hardware/Software Specs Target functionalities

CROPS [73, 235, 236] 9 DoF manipulator, modular end-
effectors & a prototype canopy sprayer,
color cameras, multispectral system,
time-of-flight camera, ROS software

Sweet peppers & apples harvesting,
grapevine spraying, ripeness assessing

SWEEPER [58, 66, 91] Robotic vehicle & a 6 DoF arm & task-
specific harvesting tool, RGB-D camera
& custom made LED lightning fixtures,
Flash-No-Flash controlled illumination
protocol, ROS software

Sweet peppers harvesting with assessed
maturity, crop/environment modification
explored

VINEyardROBOT [237–240] Ground vehicle, fluorescence-based sen-
sors, RGB machine vision, thermography,
Visible and Near-Infrared spectroscopy

Vineyard monitoring, amino acid concen-
tration & vegetative growth & water status
inspection, yield estimation

VINBOT [241, 242] Mobile platform, Kinect v2 camera, 2D
laser rangefinders, RTK-DGPS localiza-
tion unit, ROS software

Vineyard monitoring, yield estimation
(leaf-to-fruit ratio), canopy information
collection

GRAPE [74, 243] Robotic platform & 1 Kinova Jaco2*
arm, multispectral camera, 2D laser sen-
sor, GPS, LiDAR, inertial measurement
unit, Gmapping, ROS software

Vineyard monitoring, pheromone dis-
penser distribution, health inspection

GARotics [244] Wheeled platform, Microsoft Kinect v2
RGBD camera, 2 harvesting tools

Selective green asparagus harvesting

MARS/XAVER Small swarm robots, satellite navigation
& cloud-based data management, GPS-
Real Time Kinematic technology

High-precision planting of corn seeds

VineScout [14, 245–247] Mobile platform, stereo camera, LiDAR
& ultrasound sensors, Visible-Short Wave
Near-Infrared spectroscopy, hyperspectral
imaging tools

Vineyard monitoring, grape composition
inspection (e.g. soluble solids, antho-
cyanins)

ROMI Mobile platform & drone, 3D scanner
with RGB camera for 3D plant represen-
tation/analysis, C++ software

Weed reduction, crop monitoring, pheno-
typing

BACCHUS Inspection robot: Thorvald [248], hyper-
spectral & ZED2 RGB cameras, RTK
GNSS Antennas, LiDAR. Harvesting
robot: Rb-Vogui** , 2 UR10e arms,
LiDAR, 4 ZED2 RGBD cameras, GPS,
ROS software

Vineyards/grapes focus, crop monitoring
& mapping, assesed health & maturity,
bi-manual selective harvesting

*http://www.kinovarobotics.com/assistive-robotics/products/robot-arms - Last accessed: 22-11-2022
**https://robotnik.eu/products/mobile-robots/rb-vogui-en/ - Last accessed: 22-11-2022

up to 8 hours, “TED” is an autonomous weeding robot
for vineyard maintenance. ViTiBOT [261] is an industrial
company located in France with a main objective of
designing robotic platforms that facilitate eco-efficient work
and vineyard surveillance. Their robot “Bakus” is equipped
with a 360o infrared vision system, capable of analyzing
its environment thus avoiding obstacles. Reporting a 10-
hour working autonomy during day or night and coping
with slopes up to 45%, it can provide several functionalities
for vineyard maintenance, such as confined spraying, vine
treatment and soil work. However, commercial selective
robotic harvesters for grapes cannot be found. This is
expected as the technologies to harvest such a delicate and

geometrically complex fruit have apparently not reached a
high technology readiness level.

6 Conclusions

A great amount of papers, projects and products may be
found regarding the on-going research field of automated
agriculture, focusing on autonomous harvesting but also on
other tasks such as weeding, health monitoring, pruning,
yield estimation and phenotyping. Apples, strawberries,
tomatoes and sweet peppers occupy the majority of research
interest, with grapes being targeted as well with respect
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Fig. 4 Commercial products regarding a variety of crops types and agricultural tasks; all subfigures taken from the products related websites,
found in their respective citations/references

21   Page 18 of 29 J Intell Robot Syst (2023) 107:21



to tasks other than harvesting, e.g. health monitoring,
pheromone dispenser distribution, yield estimation and
water status inspection. A uni-manual setup is adapted
by most existing harvesting robotic solutions, with one
arm both grasping and detaching the crop. BACCHUS
is the only project addressing the challenging nature
of the human-like, bi-manual approach (where one arm
grasps the crop and the other cuts its stem). The
additional manipulability of a bimanual solution facilitates
the harvesting process, clearly indicating an opportunity
for new contributions by exploring further this approach.
Development of specific functionalities typically required
by an operating agricultural robot, has also been the focus
of several works. Crop detection and navigation via vision
have been shown to be demanding research areas, with
various reported issues open for addressing (e.g. crop
occlusions by leaves/branches, crop’s color blending with
its background, varying lighting conditions).

With precision/automated agriculture being an open
research field offering several challenges, further develop-
ment of existing solutions as well as proposing new ones
will be essential, towards making automated agriculture
more efficient, precise and less time consuming.
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