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Abstract

Motivation: High-resolution mass spectrometry permits simultaneous detection of thousands of

different metabolites in biological samples; however, their automated annotation still presents a

challenge due to the limited number of tailored computational solutions freely available to the sci-

entific community.

Results: Here, we introduce ChemDistiller, a customizable engine that combines automated large-

scale annotation of metabolites using tandem MS data with a compiled database containing tens

of millions of compounds with pre-calculated ‘fingerprints’ and fragmentation patterns. Our tests

using publicly and commercially available tandem MS spectra for reference compounds show re-

trievals rates comparable to or exceeding the ones obtainable by the current state-of-the-art solu-

tions in the field while offering higher throughput, scalability and processing speed.

Availability and implementation: Source code freely available for download at https://bitbucket.

org/iAnalytica/chemdistillerpython.

Contact: kirill.veselkov04@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic, proteomic and metabolomic molecular phenotyping

approaches have significantly enhanced our understanding of the

biological complexities that govern the balance between health and

disease. Metabolomics involves the quantitative analysis of bio-

chemical activity within a living system brought about by gene-

environment interactions. Mass spectrometry (MS) represents one of

the most widely utilized approaches in metabolic phenotyping.

Modern MS analytical platforms are capable of profiling thousands

of metabolites with high mass accuracy. In the case of mass spec-

trometry imaging (MSI), it is also possible to spatially resolve the

distribution of metabolites within a biological sample with up to a

near-cellular or even organelle-level resolution (Duenas et al.,

2017). Comprehensive characterization of the metabolome promises

unique insights into the biological mechanisms regulating the status

(healthy versus diseased, for example) of a living organism, and

these in turn can be expected to lead to significant diagnostic and

therapeutic advancements. A fundamental step in any metabolic

profiling experiment is the identification of detected mass spectral

peaks. Although a variety of tools are currently available to assist

metabolite identification [MetFrag (Ruttkies et al., 2016; Wolf

et al., 2010), CSI:FingerID (Dührkop et al., 2015), CFM-ID (Allen

et al., 2014) etc.], these are generally tailored to efficiently handle

the annotation of small batch or individual MS datasets.

Consequently, there is a critical need for solutions to be de-

veloped with the capacity for high-volume chemical annotation

from MS derived spectra. The ideal solution would operate within a

computational workflow that integrates a modular annotation en-

gine with a dedicated database of candidate compounds. The anno-

tation engine should fulfill the following requirements: (a) provide

modular design incorporating state-of-the-art metabolite annotation

approaches in customizable and easily extendable fashion; (b) be

scalable and permit efficient batch processing of hundreds-to-

thousands of metabolite spectra, cross-referencing these against
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large-scale chemical compound databases; (c) support multiprocess-

ing and permit intuitive deployment, installation, use and modifica-

tion and (d) operate within an open-access platform for enhanced

data transparency.

Here, we introduce the ChemDistiller platform which has been

designed specifically to address the requirements outlined above for

chemical annotation of tandem-MS derived data. ChemDistiller

combines a custom-developed annotation engine for retrieval, filter-

ing and scoring of candidate molecules based on tandem-MS experi-

mental data (Fig. 1) with the use of in-built large-scale chemical

compound repositories (Fig. 1, Supplementary Table S1 and

Supplementary Note S1). ChemDistiller relies on peak-picked data

as the input [which can be generated by XCMS (Smith et al., 2006),

mzMine (Pluskal et al., 2010) etc.], can benefit from additional in-

formation such as suggested formula or element composition [e.g.

from SIRIUS (Bocker et al., 2009) or MetaSpace (Palmer et al.,

2017)] and produces the lists of the best candidate compounds for

the query tandem MS spectra in the hierarchical text format and as

the HTML report.

2 Materials and methods

For large-scale data processing, it is essential to have as many bio-

chemical properties of molecules as possible pre-computed and

stored in a dedicated database in order to minimize compound an-

notation time. Thus, we have collected, pre-processed and compiled

data from publically available chemical databases including: (a)

dedicated metabolome and biological compound databases [ChEBI

(Degtyarenko et al., 2008), LipidMaps (Fahy et al., 2007), HMDB

(Wishart et al., 2013) and YMDB (Jewison et al., 2012)]; (b) in silico

predicted metabolite structures [MINE database series (Jeffryes

et al., 2015)]; (c) pharmacologically relevant compounds [ZINC

(Irwin and Shoichet, 2005)] and (d) general large-scale compound

databases [PubChem (Kim, et al., 2016)]. To our knowledge this

covers all major publicly available and downloadable compound

databases (see Supplementary Note S1 and Supplementary Table S1

for the full list of databases covered) and includes approximately

130 million chemical compounds in total. All databases have been

converted into HDF5-based format for efficient data storage and ac-

cess, with the following fields generated by OpenBabel/Pybel

(O’Boyle et al., 2011) from either SMILES (Weininger, 1988) or

SDF/MDL format: InChI (Heller et al., 2013), InChI key, exact

mass, charge and formula (Supplementary Note S1). For each com-

pound, chemical fingerprint and in silico fragmentation patterns

were calculated and stored in our purpose-built HDF5-based data-

base (Supplementary Note S1).

To perform the tandem MS spectra annotation ChemDistiller

applies a series of filters to the candidate compounds stored in the

compound database; the first filter step generates a list of potential

candidate compounds from the user selected database(s) based on

m/z value (within a specified tolerance window) derived from the

MS1 peak. The user can specify, a priori, whether to use all data-

bases available (by default) or a specific one(s) according to require-

ments. Filtered molecules are then subjected to a set of additional

customizable filters including chemical formula, elemental compos-

ition and metabolite likeness (Fig. 1, Supplementary Note S1).

Filtered candidate compounds are then ranked according to aggre-

gated scores derived through a combination of machine-learning

predicted chemical fingerprints [using an approach inspired by

CSI:FingerID (Dührkop et al., 2015)] and in silico generated com-

pound fragmentation patterns [using MetFrag (Ruttkies et al., 2016;

Wolf et al., 2010) and CFM-ID (Allen et al., 2014; Allen et al.,

2015) -like approaches]. Where necessary, the modular design en-

ables the user to extend the annotation engine with custom-

developed scoring approaches.

In brief, the chemical fingerprinting approach (FingerScorer) cal-

culates a list of chemical features for a given compound (the so-called

‘fingerprint’). This fingerprint is composed of a binary array where

every feature (e.g. aromatic ring or -OH group), is set to ‘1’ if present,

and ‘0’ otherwise. We united Klekota-Roth, MACCS, EState,

Hybridization, PubChem, Substructure, Extended, GraphOnly and

Fingerprinter fingerprint generators provided in CDK (Steinbeck

et al., 2006) to form a 11 416 bit long fingerprint per compound.

Each fingerprint is stored in the generated databases in a compressed

binary form for fast retrieval and analysis. In our application, a sup-

port vector machine-learning approach (SVM) [as implemented in

libSVM software package (Chang and Lin, 2011)] was used first to

train SVM models to predict molecular fingerprints from tandem MS

experimental data using a set of reference ‘training’ spectra. For SVM

class balance, only bits with occupancy between 0.05 and 0.95 from

the entire array of fingerprint bits were considered (�2500 bits out of

11 416 total). The obtained models are used to predict fingerprint bits

for the ‘test’ compounds based on their merged tandem MS/MS spec-

tra. Candidate compounds retrieved from chemical databases are then

ranked according to the similarity of predicted versus actual molecu-

lar fingerprints using Jaccard similarity function. The best candidates

are reported to the user.

The in silico fragmentation approach (FragScorer) directly gener-

ates fragmentation patterns that are later compared with the experi-

mentally observed tandem MS spectra. For each molecule in the

database its fragmentation pattern is calculated by recursively

breaking down its chemical bonds and aggregating the resulting

fragmentation masses. Up to two bonds can be broken simultan-

eously with the default configuration. The molecules are broken in

their neutral state, unless they are inherently charged and the frag-

ments are stored in the database for candidate retrieval. Estimation

of the bond breakage rates is not used in the current implementa-

tion. For candidate molecule retrieval, the experimental tandem MS/

MS spectrum is normalized so that the sum of intensities is equal to

1.0 and then matched against the pre-calculated fragmentation pat-

tern of the candidate compounds from the database. The adduct

form and isotope information are applied at this stage to the pre-

dicted fragmentation pattern to match the experimental settings

(thus the same pattern from the database can be used to predict both

negative and positive mode ion fragments). Fragment intensity

weighted match is used as a scoring function, i.e. the score is the

sum of intensities of the matched peaks. Furthermore, we found that

the retrieval rates are generally improved by addition of –1/þ1

hydrogen mass to the predicted peaks, possibly accounting for tauto-

merism (empirically established correction, 5-fold cross-validated).

When both FingerScorer and FragScorer are used together or

additional scores are available from other methods, the reported

scores are multiplied together by default to produce the TotalScore

which is in turn used to sort candidate molecules and select the best

ones. If only a single method is used, the TotalScore is set to the re-

turn value of this method. Our experimentation with different ways

of combining the scores showed this approach to be the most effect-

ive and robust (data not shown), however, other methods for calcu-

lation of the combined TotalScore are easy to implement if needed.

The maximal value the TotalScore can theoretically reach is 1.0 and

the minimum is 0.0. In practice the values of the TotalScore are

quite varied for correctly identified compounds (Supplementary

Table S2), meaning that there are no absolute ‘good’ or ‘bad’
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TotalScore values. However, if used relative to the maximum

TotalScore value returned for the set of candidate compounds, the

correct value is often close to 80–90% of the maximum value

(Supplementary Table S3) both for small and large compound

databases.

If multiple MS2 spectra with different collision energy are avail-

able per MS1 peak, they are merged into one for analysis and re-

normalized so that the sum of intensities equals to 1.0. This is

roughly equivalent to having a spectrum recorded in the ramp

mode. At the moment of generation of this manuscript both

FingerScorer and FragScorer did not use the collision energy infor-

mation, so for the current method implementation we would recom-

mend using either the ramp mode or several collision energies

covering the range which assures �50% fragmentation of the ori-

ginal MS1 peak as a default setting. This may change in the future,

however, with the new generations of ChemDistiller.

Fig. 1. ChemDistiller. Conceptual scheme of the engine
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To our knowledge, the two approaches implemented (i.e.

FingerScorer and FragScorer) represent the only methods that are

scalable to the processing of millions of candidate compounds, un-

like methods that are reliant on experimental databases limited to a

smaller number of reference MS spectra.

3 Results and discussion

The primary objective in the development of ChemDistiller was to

facilitate the annotation of tens of thousands of experimentally

acquired tandem-MS spectra, and thus computational efficiency was

of paramount importance. We have built upon the methodologies

utilized in the existing solutions such as MetFrag (Ruttkies et al.,

2016; Wolf et al., 2010), CFM-ID (Allen et al., 2015) or

CSI:FingerID (Dührkop et al., 2015) (see Supplementary Figs S1 and

S2 for test results and Supplementary Note S1 for details of the

method implementations. See Supplementary Fig. S3 for the ex-

ample of tandem MS spectrum annotation for test compounds). Our

system benefits from storing calculated molecular properties and re-

using these for subsequent compound annotation tasks without the

need for re-calculation for each run (improvement over processing

speed of MetFrag). Furthermore, our system is tailored for batch

processing and does not rely on the web service availability which

makes it more suitable for large scale high-throughput tandem MS

spectra annotation than CFM-ID and CSI:FingerID platforms.

For fingerprint based approaches, the models were trained using

a combination of commercially (NIST14) and publicly [MassBank

(Horai et al., 2010) and HMDB (Wishart et al., 2013)] available

spectral databases of pure compounds. Only high mass accuracy

spectra (m/z error<20 ppm or<0.005 Da) were used. This is be-

cause our preliminary analysis indicated that retrieval methods

benefit greatly from high mass accuracy data due to the reduced

search space for candidate molecules, especially when used with

large scale chemical databases (e.g. when used with PubChem, the

mass window of 1 Da for the molecular mass of 400 Da yields

250 079 candidate molecules, while the mass window of 20 ppm

yields only 3229 candidate molecules, reducing the search space

�77.5 times). For low mass accuracy spectra (i.e. for the data from

the unit mass resolution spectrometers) one would need to use small

tailored chemical databases (e.g. HMDB) in order to achieve suffi-

ciently high retrieval rates. Redundant compound repetitions across

multiple databases were filtered out based on their InChI identifiers

(Heller et al., 2013), leaving a final set of 6297 compounds with

their corresponding tandem MS spectra. These data were split at

random into training and test batches (80%:20%). Training and op-

timization of modeling parameters was performed on the training

batch (80%) using nested 5-fold cross validation with the remaining

batch (20%) being reserved for testing to minimize bias. The same

training dataset was used to train CFM-ID and CSI:FingerID models

(Supplementary Notes 3 and 4) and the same test dataset was

employed throughout in order to compare our approach to the

current state-of-the-art (MetFrag, CFM-ID and CSI:FingerID,

Supplementary Notes 2–4). Retrieval rates were separately acquired

for small (combination of HMDB, ChEBI, MassBank and NIST14)

and large (combination of PubChem, HMDB, ChEBI, MassBank

and NIST14) databases to estimate the performance of our methods

and their combinations as well as compare them to the methods im-

plemented in MetFrag, CFM-ID and CSI:FingerID under different

conditions. In the case of the small database (HMDB, ChEBI,

MassBank and NIST14; in combination totaling �130 thousand

compounds), 24 candidates were on average retrieved per single

MS1 peak, of which there were 1153 submitted for annotation (862

in positive ion mode and 291 in negative ion mode). For the large

database (PubChem, HMDB, ChEBI, MassBank and NIST14; in

combination totaling �87 million compounds), �10 000 candidates

were on average retrieved per single MS1 peak for the same set of

peaks submitted for annotation. The performance results for all

modeling approaches for the test batch are summarized in Table 1

and Supplementary Figures S1 and S2, where 20 ppm or greater

mass accuracy has been assumed throughout for database com-

pound retrieval.

3.1 ChemDistiller performance
Overall, our methodology achieved up to 37.5%/32.5% (here and

further: positive/negative experimental acquisition mode) correct an-

notations in top 1 (i.e. the correct annotation will be among the first

top n candidates in 37.5%/32.5% of the test cases with n being

equal to 1 in this case) for the small database with FingerScorer and

up to 50%/44% correct annotations using FragScorer. The combin-

ation of both approaches performed slightly less well for the top 1

rank (49%/42.5%) compared to FragScorer on its own. However,

for the correct annotation in top 5 using the small database, the

combination of the two was shown to outperform any one approach

used in isolation (combined 86%/78% versus individual 80%/

71.5% and 82.5%/76.5% for FingerScorer and FragScorer, respect-

ively). For the large database, FingerScorer significantly outper-

formed FragScorer with the retrieval rates for the top 20 being

48.5%/47% versus 26.5%/36.5% for FingerScorer and FragScorer,

respectively. The combination of the two scorers performed slightly

less efficiently compared to the FingerScorer on its own for positive

mode (45% versus 48.5%), however in negative mode the combined

approach was found to be superior (50.5% for the combination,

47.0% for FingerScorer). Overall the combination of the two scorers

either outperforms the individual scorers, or closely follows the best

individual scorer (i.e. FragScorer for the small, metabolite-targeting

database and FingerScorer for the large general database). As such

the combination of the two scorers can be recommended in circum-

stances where overall robustness is more critical than the top pos-

sible performance.

Furthermore, addition of the elemental composition information

or known chemical formula [for example, determined by SIRIUS

(Bocker et al., 2009) or MetaSpace (Palmer et al., 2017) engine] can

increase the retrieval rates further by 1–8.5% for the small and 3.5–

17.2% for the large databases, respectively. Interestingly, the com-

paratively weaker scorers benefit generally more from the elemental

composition and known chemical formula information; this is best

exemplified in the case of FragScorer, where retrieval rates for the

top 20 candidates from the large chemical database was seen to in-

crease from 26.5% to 41.5% (Table 1).

All retrieval rate tests were performed using our standalone

workstation (8 core Intel VR Xeon VR E5-2630 v3 @2.4 GHz, 64 Gb

RAM). The number of available CPU cores was limited to 6 for

worker threadsþ1 for the main thread for these tests. Processing of

1153 test spectra took from 2 min using FragScorer on its own

(30 min with FragScorer and FingerScorer combined) and a small

database (HMDB, MassBank, NIST14, ChEBI; in combination

totaling �130 thousand candidate compounds) to 4–4.5 h using

both FragScorer and FingerScorer and a large database (PubChem,

HMDB, ChEBI, MassBank and NIST14; in combination totaling

�87 million candidate compounds). The memory footprint regis-

tered was of �4 Gb for the main thread and �400 Mb per worker

thread. These results show that tandem MS spectra (each
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corresponding to the individual compound of interest) can be anno-

tated at a rate of at least several thousand spectra per day using an

ordinary desk-top PC (4–6 cores, 16 Gb RAM recommended,

�80 Gb HDD free space for the full set of databases and SVMs)

when employing the combination of both FingerScorer and

FragScorer and the large database of �87 million candidate com-

pounds (FingerScorer was used with the radial kernel SVM for bet-

ter prediction at the expense of the longer running times). If smaller

tailored databases are used, the number of spectra annotated per

day can easily reach 50 000–1 000 000 depending upon the selection

of the scoring methods. Further speed-ups can be achieved by using

SSD disks for the database storage or deployment of ChemDistiller

onto HPC cluster.

3.2 ChemDistiller compared to the state-of-the-art solu-

tions available in the field (i.e. MetFrag, CFM-ID and

CSI:FingerID)
Compared with other state-of-the-art solutions in the field, we have

found that under the same conditions MetFrag can slightly outper-

form our best scorer for the top 1 position in the case of the small

database (51.7%/45% versus 50%/44%) or the combination of our

scorers for the top 5 (86.5%/83.5% versus 86%/78%). However,

when applied to the large database our methods performed notice-

ably better (32.8%/41.2% versus 48.5%/47% versus 45%/50.5%

for MetFrag, FingerScorer and the combination of the FingerScorer

and FragScorer, respectively, see Table 1). Furthermore, thanks to

the stored pre-calculated fragmentation patterns in the database,

our method performs �6–8 times faster than the current implemen-

tation of MetFrag where fragmentation patterns are calculated each

time ‘on the fly’. The noticeable discrepancy between retrieval rates

for positive and negative mode data is likely attributed to the differ-

ences in (a) the size of the test/training data and (b) the molecular

weight and molecular type distribution differences between the data-

sets of the two experimental acquisition modes. Overall, in our ex-

perience, the command line version of MetFrag (Ruttkies et al.,

2016) proved to be the most simple to use and robust among the

available state-of-the-art solutions in the field. MetFrag is very effi-

cient at in silico fragmentation based retrieval. It would be a very

useful addition to the scoring methods presented herein, if the possi-

bility of pre-calculation and storing of the predicted fragmentation

patterns from MetFrag was realized.

When comparing our engine to CFM-ID (Allen et al., 2014;

Allen et al., 2015) we had to focus on the single energy method im-

plemented in CFM-ID (Supplementary Note S3) as the multiple en-

ergy method was found to be too computationally expensive for the

entire training dataset with no significant improvement in the per-

formance relative to the single energy one. To our surprise, in all our

tests our methods managed to provide better annotation scores than

CFM-ID (improvement ranged from �4% to �20% depending

upon the acquisition mode, used method and the database size, see

Table 1).

For CSI:FingerID, we used SIRIUS to generate fragmentation

trees and then train and optimize parameters of the kernels used by

the FingerID python script (Supplementary Note S4). The retrieval

rates obtained for CSI:FingerID were close to the ones observed for

our methods, however our combined methods (FingerScorer and

FragScorer) outperformed CSI:FingerID by a small margin in all the

tests (improvement ranged from �8% to �15% depending upon the

acquisition mode and the database size, see Table 1).

3.3 Results overlap between different methods
Interestingly, for all methods the returned results did not overlap

100% (Supplementary Table S5) with the overlap percentages vary-

ing from 74% to 93% for small molecular databases (HMDB,

Table 1. Retrieval statistics (per cent)

Positive mode Negative mode

Baseline performance þElement filter þKnown formula Baseline

performance

þElement filter þKnown formula

Small database (HMDB, MassBank, ChEBI, NIST14) Correct in TOP 1

FingerScorer 37.5 6 3.5 44.5 6 3.5 (þ7.0) 46.0 6 3.0 (þ8.5) 32.5 6 4.5 37.5 6 4.5 (þ5.0) 38.5 6 4.5 (þ6.0)

FragScorer 50.0 6 2.0 54.0 6 2.0 (þ4.0) 56.0 6 2.0 (þ6.0) 44.0 6 3.0 45.5 6 3.5 (þ1.5) 47.0 6 4.0 (þ3.0)

FingerScorer&FragScorer 49.0 6 2.0 52.0 6 2.0 (þ3.0) 53.0 6 2.0 (þ4.0) 42.5 6 3.5 45.0 6 3.0 (þ2.5) 46.0 6 3.0 (þ3.5)

MetFrag 51.7 6 0.0 51.7 6 0.0 (þ0.0) 51.7 6 0.0 (þ0.0) 45.0 6 0.0 45.0 6 0.0 (þ0.0) 45.0 6 0.0 (þ0.0)

CFM-IDa 41.0 6 4.0 47.5 6 3.5 (þ6.5) 48.5 6 2.5 (þ7.5) 36.5 6 4.5 41.5 6 3.5 (þ5.0) 42.5 6 3.5 (þ6.0)

CSI:FingerID N/A 42.5 6 2.5 45.0 6 3.0 (þ2.5) N/A 38.0 6 5.0 39.0 6 5.0 (þ1.0)

Small database (HMDB, MassBank, ChEBI, NIST) Correct in TOP 5

FingerScorer 80.0 6 3.0 83.0 6 3.0 (þ3.0) 83.5 6 2.5 (þ3.5) 71.5 6 5.5 74.5 6 5.5 (þ3.0) 75.0 6 5.0 (þ3.5)

FragScorer 82.5 6 2.5 84.0 6 2.0 (þ1.5) 84.5 6 2.5 (þ2.0) 76.5 6 4.5 77.5 6 4.5 (þ1.0) 77.5 6 4.5 (þ1.0)

FingerScorer&FragScorer 86.0 6 2.0 87.0 6 2.0 (þ1.0) 87.0 6 2.0 (þ1.0) 78.0 6 4.0 80.0 6 4.0 (þ2.0) 80.0 6 4.0 (þ2.0)

MetFrag 86.5 6 0.0 88.6 6 0.0 (þ2.1) 89.1 6 0.0 (þ2.6) 83.5 6 0.0 85.6 6 0.0 (þ2.1) 85.6 6 0.0 (þ2.1)

CFM-IDa 76.5 6 3.5 80.5 6 3.5 (þ4.0) 82.0 6 2.0 (þ5.5) 68.0 6 7.0 74.0 6 2.0 (þ6.0) 74.0 6 2.0 (þ6.0)

CSI:FingerID N/A 76.0 6 3.0 76.5 6 2.5 (þ0.5) N/A 69.0 6 5.0 69.5 6 4.5 (þ0.5)

Large database (PubChem, HMDB, MassBank, ChEBI) Correct in TOP 20

FingerScorer 48.5 6 4.5 52.0 6 5.0 (þ3.5) 56.5 6 5.5 (þ8.0) 47.0 6 7.0 52.5 6 8.5 (þ5.5) 56.0 6 9.0 (þ9.0)

FragScorer 26.5 6 1.5 34.5 6 1.5 (þ8.0) 41.5 6 1.5 (þ15.0) 36.5 6 2.5 45.0 6 4.0 (þ8.5) 45.5 6 3.5 (þ9.0)

FingerScorer&FragScorer 45.0 6 3.0 49.5 6 3.5 (þ4.5) 52.5 6 3.5 (þ7.5) 50.5 6 7.5 56.0 6 8.0 (þ5.5) 58.5 6 8.5 (þ8.0)

MetFrag 32.8 6 0.0 41.4 6 0.0 (þ8.6) 50.0 6 0.0 (þ17.2) 41.2 6 0.0 48.5 6 0.0 (þ7.3) 50.2 6 0.0 (þ9.0)

CFM-IDa 23.0 6 1.0 31.5 6 1.5 (þ8.5) 37.5 6 1.5 (þ14.6) 30.0 6 0.0 34.5 6 0.5 (þ4.5) 38.0 6 1.0 (þ8.0)

CSI:FingerID N/A 34.5 6 4.5 38.0 6 5.0 (þ3.5) N/A 41.5 6 6.5 43.5 6 6.5 (þ2.0)

aFor CFM-ID the best retrieval rate is reported for all scoring functions used, however the best performing scoring function was not consistent between differ-

ent tests (Supplementary Note S3). Improvement relative to baseline performance is shown in brackets.
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NIST14, MassBank, ChEBI) and from 27% to 78% for large mo-

lecular databases (PubChem, HMDB, MassBank, ChEBI) depending

on the combinations of methods and filters used. This means that

the success of the annotation is both method and query molecule de-

pendent, allowing us to theorize that for different classes of metabol-

ites selective application of the methods could prove to be a more

effective strategy than a direct combination of available methods to

generate a single TotalScore. However, it remains to be seen if it is

possible to determine the best method to use based on the spectrum

of the query compound in a situation when the class of this com-

pound is not known a priori. Though answering this question falls

outside of the scope of this paper, we anticipate it could open up a

new area of research in the field of annotation of the tandem MS

spectra of metabolites.

3.4 Metabolite likeness filter
In an attempt to further improve the retrieval performance of our so-

lution, we implemented machine learning based classification of

candidate molecules into metabolites and non-metabolites according

to their ‘metabolite-likeness’ using an approach similar to that pro-

posed previously by J.E. Peironecely et al. (Peironcely et al., 2011).

This approach is expected to help reduce the search space for large

databases by focusing only on compounds which are likely to origin-

ate from living organisms. HMDB (Wishart et al., 2013), MassBank

(Horai et al., 2010), ChEBI (Degtyarenko et al., 2008), PlantCyc

(Zhang et al., 2010), ECMDB (Guo et al., 2013), YMDB (Jewison

et al., 2012), BMDB (Bovine Metabolome Database) and

LipidMaps (Fahy et al., 2007) were assumed to be the databases of

metabolites, while the selection of compounds from ZINC (Irwin

and Shoichet, 2005) (Supplementary Note S5) were assumed to be

non-metabolites. We used pre-calculated fingerprints to train a two-

class SVM, achieving �95% accuracy with 5-fold cross-validation.

The model was applied to calculate metabolite likeness for all com-

pounds in our collection of databases and the appropriate filter was

added to the annotation pipeline. In general metabolite databases

such as HMDB (Wishart et al., 2013), LipidMaps (Fahy et al.,

2007) and YMDB (Jewison et al., 2012) were predicted to contain

over 90%, while PubChem (Kim et al., 2016) was estimated to have

�35% and ZINC (Irwin and Shoichet, 2005)–�20% metabolite

like entries (see Supplementary Table S4 for the full list of predicted

percentages of metabolite like entries). Approximately 79% of our

NIST/MassBank (Horai et al., 2010) reference compounds were

classified as metabolites and the subsequent analysis was performed

using these metabolite-like compounds only to estimate the im-

provement in retrieval with the addition of this filter. PubChem

(Kim et al., 2016) was selected as a representative large database.

We observed a decrease in the average number of candidates per an-

notation from �10 k down to �4 k with the metabolite likeness fil-

ter applied and further down to 1 k with the known formula

assumed. However, the improvements observed in retrieval rates

were comparatively more modest (Supplementary Fig. S6) adding

3–4% improvement on average, compared to 6–9% gained by the

addition of known formula. This can be explained by the majority

of filtering power being provided by the tandem MS based methods

in this case.

In particular, machine learning based approach of FingerScorer

seem to dominate in terms of performance when applied to large

scale compound databases. This potentially could be explained by

the initial bias of the training set of molecules towards the ‘biologic-

ally relevant’ ones (e.g. metabolites, drugs) as those are generally of

a higher interest to the scientific community and the databases of

the reference compound tandem MS spectra would target those first.

One can see it as ‘metabolite likeness’ filtering being already par-

tially realized as part of the FingerScorer method and when applied

to the large databases, ‘biologically relevant’ molecules are more

likely to be picked first than the ‘biologically irrelevant’ ones. This

also explains why the search against small databases of biologically

relevant compounds does not benefit as much from machine learn-

ing approach–the databases are already focused on biological com-

pounds and thus the benefit of the ‘biological relevance’ bias is

negated. The bias towards ‘biological relevance’ of the FingerScorer

is not possible to overcome without additional training datasets

being available which would focus on non-‘biologically relevant’

compounds. Thus, our recommendation is to use both FingerScorer

and FragScorer together in the situation where the ‘biological rele-

vance’ of the compound in question is not yet determined.

FragScorer is relying on a set of more general rules of fragmentation

and is not biased towards ‘biologically relevant’ compounds.

In the current version of ChemDistiller, the metabolite likeness

filter is not enabled by default in order to avoid exclusion of poten-

tially important non-metabolites (e.g. synthetic drugs) and should be

switched on by the user where needed.

4 Conclusion

In conclusion, ChemDistiller is comparable to the state-of-the-art

tools available for metabolite annotation using tandem MS data

while at the same time offering customizability, speed and high-

throughput batch processing. It supports multi-processing and mul-

tiple operating systems. With its core written in Python, it is easy to

install, use and further develop/expand. It has minimal library

dependencies and modular architecture with standardized interfaces

for filter and scorer classes.

In the near future, we plan to develop an independent web inter-

face and a server-based solution for individual and batch processing

of tandem MS data. Additional filters and scorers will be developed

and deployed as new experimental data becomes available and

downloadable databases and SVM models are updated accordingly,

with particular focus on the collision cross-section energy as an al-

ternative to LC (liquid chromatography) retention time prediction.
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