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Abstract

We establish a new theory which unifies various aspects of topological approaches for data 

science, by being applicable both to point cloud data and to graph data, including networks beyond 

pairwise interactions. We generalize simplicial complexes and hypergraphs to super-hypergraphs 

and establish super-hypergraph homology as an extension of simplicial homology. Driven by 

applications, we also introduce super-persistent homology.
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1. Introduction.

Topological data analysis (TDA) is a new-born research area mainly stemming from the 

pioneering works on persistent homology carried in [57, 148] and the landmark paper of 

Gunnar Carlsson [36] published in 2009. Under its rapid development, TDA has achieved 

various successful applications in many areas of sciences and technologies such as material 

science [81, 119, 91, 103], 3D shape analysis [126, 129], multivariate time series analysis 

[124], biology [29, 32, 31, 90, 140, 105], sensor networks [48], scientific visualization [128], 
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image analysis [33, 109, 125, 17, 64], dynamics systems [100], etc. A great number of 

TDA softwares have been developed, including JavaPlex [127], Perseus [104], Dionysus [1], 

jHoles [21], GUDHI [97], Ripser [13], PHAT [15], DIPHA [14], and R-TDA package [61]. 

The results from TDA can be visualized by persistent diagram [101] and persistent barcode 

[66], and further transformed into different representations that are suitable for machine 

learning models, such as Betti curve [118], persistent landscape [25, 24], persistent image 

[2], persistent path and signature [43], persistent codebook [147], persistent 2D matrices 

[29], and others [3, 85, 29, 32, 105]. TDA-based machine learning models [40, 111] have 

been used in various areas, including image analysis [9, 79, 112, 95, 108, 67], shape analysis 

[22, 145, 92, 78, 143], time-series data analysis [124, 6, 144, 133, 130], computational 

biology [109, 50, 29, 32], noise data [107], sphere packing [117], language analysis [146], 

etc. Other the traditional persistent homology, other TDA models have been proposed for 

the detailed characterization of the data, such as persistent local homology [18, 62, 16, 

19, 5], persistent cohomology [49], multidimensional persistent homology [35, 34, 45, 37], 

element-specific persistent homology [29, 105], persistent functions [20], persistent spectral 

[132, 98], persistent Ricci curvatures [134, 135], etc. The wide applications of TDA have 

made topology as one of the most commonly used mathematical tools in Data Science [120, 

in Section 1.3]. A summary of TDA and TDA-based learning models can be found in Figure 

1.

In a survey paper [41], Chazal and Michel outlined a pipeline that stresses the role of 

topology and geometry in data science:

i. Input data is given in the form of a finite set of points coming with a notion of 

distance;

ii. A “continuous shape” is built on top of the input data: this results in a structure 

over the data;

iii. Topological and geometric information is extracted from the structure;

iv. The topological and geometric information is the output of the analysis and 

forms the new representation of the data, allowing for an in-depth modeling of 

the original data.

Such an approach can be naturally applied to point cloud data with a drawback that it can 

not be immediately or directly applied to non-Euclidean data such as graphs for abstract 

relationship.

The purpose of this article is to provide a new theory that unifies various aspects of 

topological approaches for data science that is suitable for both point cloud data and graphic 

data. In our setting, we explore topological structures on graph data with scoring schemes. 

The popular persistent homology can be obtained as special cases of our more general 

theory from a natural transformation from point cloud data to graphic data with scoring 

schemes.

We start with a graph, which is the working graph for the data analytic purpose. Our 

approach consists of the following steps:
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A. We introduce a homology theory of a collection of subgraphs of the working 

graph, which is a canonical extension of simplicial homology theory. Briefly, this 

homology theory will canonically obtain “topological invariants” for collections 

of subgraphs associated to sample data or experimental data.

B. We assign a scoring scheme on the working graph G, where a scoring scheme 

is a function from the set of subgraphs of G to the set of real numbers. The 

scoring scheme induces a persistence on homologies in (A), which in this article 

will be called as super persistent homology, as well as its derived topological 
features such as super-persistence diagrams and super-persistence modules for 

data analytics.

C. The current persistent homology on point cloud data can be deduced from (A) 

and (B). Hence our approach is suitable for performing topological data analysis 

on both graphic data and point cloud data.

The pineline of our super persistent homology is as follows:

1. The input is assumed to be a finite (or infinite) graph G with

i. A scoring scheme and

ii. A selection of subgraphs.

The definition of the scoring scheme on the data is usually given as an 

input or guided by applications. It is however important to notice that 

the choice of a scoring scheme may be critical to revealing interesting 

topological and geometric features of the data. The selection of 

subgraphs on the data is also usually given as an input or guided by the 

applications at hand. Again it is important to notice that the selection 

of subgraphs may be critical to revealing interesting topological and 

geometric features of the data.

2. An “abstract geometry-like” shape is built on top of the data in order to highlight 

the underlying topological structure. This is a nested family of super-hypergraphs 
filtered by the scoring scheme that reflects the structure of the data at different 

scales. Super-hypergraphs can be seen as higher dimensional generalizations of 

neighboring graphs that are classically built on top of data in many standard data 

analysis or learning algorithms. The challenge here is to define such structures 

that reflect relevant information about the structure of the data and that can be 

effectively constructed and manipulated in practice.

3. The extracted topological and geometric information provides new families of 

features and descriptors of the data. These can be used to better understand the 

data or they can be combined with other kinds of features for further analysis and 

machine learning tasks. Demonstrating the added-value and the complementarity 

(with respect to other features) of the information provided by super persistent 

homology is an important issue at this step.

4. Adjust the choice of scoring scheme and the selection of subgraphs to get better 

features and descriptors of the data.
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5. One can repeat the procedure on the choices of scoring scheme and selections of 

subgraphs to obtain the best suitable features and descriptors of the data.

For analyzing both point cloud data and graph data in a unified way, we convert a point 

cloud data into a graph data by adding exact one edge to each pair of the points in the 

data to form a fully connected graph. There have been extensive explorations on topological 

and categorical structures on graphs. In Appendix A, we give a brief review of simplicial 

complexes constructed from graphs. In addition to the commonly-used construction of 

a clique complex, here we give a short discussion on a famous construction called 

neighborhood complex introduced by Lovász in his foundational work [94] in the area of 

topological combinastorics. Let G be a graph. Define the neighborhood complex N(G) to 

be an abstract simplicial complex whose vertices are the vertices of G and whose simplices 

are those subsets of the vertex set V (G) which has a common neighbor. Lovász Theorem 

[94, Theorem 2] states that if N(G) is (k − 2)-connected, then G is not k-colorable1. As 

Lovász remarked [94, p.320], in the case k = 2, the converse statement is also true, and 

so N(G) is connected if and only if G is not bipartite. Note that a simplicial complex is 

connected if and only if its 0-th Betti number is 1. If we choose Lovász’ neighborhood 

complex as the construction filtered by a scoring scheme, then the resulting barcodes of the 

0-th super-persistent homology introduced in Section 3 would immediately give the bipartite 

information for the level subgraphs of the filtration.

The geometric realization of neighborhood complex (of a graph) is quite different from 

that of the clique complex, see Appendix A for details. This indicates that one could have 

different topological structures from the same working graph.

It is also possible that simplicial complexes model data from practical problems. According 

to the review article [12] supported by hundreds of references, extensive research has 

been recently taken on the networks beyond pairwise interactions. A simplicial complex 

(hypergraph) can be naturally constructed by taking the nodes having a group-interaction as 

a simplex (hyperedge).

Hypergraph is a preferred model in some practical problems. Although simplicial complexes 

overcome some of the problems encountered by other lower dimensional representations, 

they are still quite limited by the requirement on the existence of all subfaces. In some 

cases, such as group interactions in social systems, this constraint is too restrictive. In 

other cases, such as author collaborations in scientific papers and gene pathways, the 

inclusion constraint can be less easily justified. Hypergraphs provide the most general and 

unconstrained description of higher-order interactions, see [12, paragraphs 2–4, page 7].

For graph data having higher-order interactions, it is natural to take the collections of 

subgraphs that have group-interactions. This arises a mathematical question: Given ℋ a 
collection of subgraphs of a working graph, how to introduce topology on ℋ with as less 
constraints as possible on ℋ?

1As a consequence of this theorem, he solved the Kneser conjecture in combinatorics [94 Theorem 1].
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In this article, we are going to answer this question. Here we give some observations and 

brief ideas. For graph data, it is likely that two different subgraphs share the same nodes. 

This observation implies that the notion of simplicial complexes does not work well for 

the collections of subgraphs due to the fact that any simplex in a simplicial complex must 

be uniquely determined by its vertices (nodes). The notion of Δ-set in algebraic topology, 

which is a generalization of simplicial complex, can solve this problem. Roughly, a Δ-set 

X is a graded (multi-layered) set labeled by X0, X1, X2, ⋯, where Xn can be intuitively 

viewed as the set of n-dimensional simplices. The structure of a Δ-set X is given by face 

operators, that is, we assign n + 1 face operators labeled by d0, d1, …, dn as functions from 

the set of n-dimensional simplicies to the set of (n − 1)-dimensional simplices, satisfying the 

Δ-identity (the matching rule of faces) that didj = djdi+1 for i ≥ j. The geometric realization 

of a Δ-set is Δ-complex, a notion defined in the popular textbook of algebraic topology 

[80]. A Δ-set can be described in terms of feed-forward neural networks, see Subsection 

3.5. Using the notion of Δ-sets, we are allowed to select two or more subgraphs treated as 

n-simplices sharing the same vertices. For addressing as less constraints as possible in the 

question, we introduce the notion of super-hypergraph in Subsection 2.3, which is defined 

as a graded (multi-layered) subset of a Δ-set. If a Δ-set is given by an oriented simplicial 

complex, then our definition of super-hypergraph coincides with a hypergraph. Roughly 

speaking, a super-hypergraph is an extension of a hypergraph that allows hyperedges to form 

a multiset. An important aspect in the present article is that simplicial homology can be 

naturally extended to a homology theory on super-hypergraphs as described in Section 2, 

and so there are topological invariants (in terms of homology) on super-hypergraphs.

To introduce persistence on graph data, we propose to use the notion of a scoring scheme, 

which is a real valued function on finite subgraphs of the working graph. As discussed 

in Subsection 3.2, the classical persistent homology can be converted into super-persistent 

homology under the notion of scoring schemes. Hence super-persistent homology is a novel 

topological approach that can be applied to broader objects in data science.

Mathematically, the main results of the article are Theorems 2.7, 2.20 and 3.7. Theorem 

2.7 states that hypergraph homology does not depend on the choice of orientation, 

which shows that the hypergraph homology provides the invariants on the intrinsic 

structure of hypergraph. The Mayer-Vietoris sequence is one of the fundamental tools 

for computing simplicial homology. Theorem 2.20 gives an analogue of the classical 

Mayer-Vietoris sequence for super-hypergraphs. Theorem 3.7 gives the structure theorem 

on super-persistent homology.

We should point out that it is commonly known (such as the textbook of algebraic topology 

[80]) that the computation of simplicial homology can be largely simplied using the notion 

of Δ-complex, if the geometric shape can be homotopically deformed. Also the complexity 

of computing super-hypergraph homology is essentially the same as that of computing the 

simplicial homology of Δ-sets.

It should be pointed out that even though this article is a theoretic framework, it has deep 

roots in application. One of the main motivations is from the drug design, in particular 

the analysis of binding affinities between proteins and ligands, i.e., how powerful is a 
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drug (ligand) for a certain disease (protein-related). Figure 2 illustrates the topological 

representations for the protein-ligand complex (ID: 3E6Y). Biologically, the interactions 

between the ligand and the protein are key to the drug potency and efficacy. Graph 

models (as in Figure 2(B)) is widely used to characterize the atomic interactions. A 

major drawback for graph models is that they only characterize pair-wise interactions 

and can not be used in many-body interaction characterization. Recently, we have used 

hypergraph models to describe various types of interactions (beyond pair-wise ones) for 

biomolecular interactions (Figure 2(C)). Essentially, many-body interactions can be modeled 

as hyperedges. It has been found that hypergraph models have great advantages over 

graph models in molecular representation. More details can be found in Section 4. A 

further generalization of hypergraphs to super-hypergraphs (Figure 2(D)) provides us more 

flexibility to characterize the complicated topology within each individual hyperedge. We 

believe that the super-hypergraph model provides an upgraded topological approach to data 

science, and can help to foster further interactions between topology and data science. The 

content of the article is organized in the following way.

2. Homology theory on super-hypergraphs.

Recently, homology of hypergaphs has opened new avenues for using topological tools in 

data analysis. Hypergraphs have been used for data analytics in various areas of sciences 

from social networks to molecular bioscience. The notion of hypergraph can be generalized 

as super-hypergraph, see Subsection 2.3. These objects are important for understanding 

the different explorations of topological structures on spaces of subgraphs. This setting 

realizes our aim to establish a unified approach to explore data science using topological 

combinatorics. The purpose of this section is to establish a homology theory of super-

hypergraphs as a natural extension of simplicial homology and homology of hypergraphs.

2.1. Algebraic lemmas.

The following algebraic tools will be needed to define a homology theory of super-

hypergraphs. Although we will only make use of chain complexes of abelian groups, 

we note that using simplicial group models, homotopy groups can be combinatorially 

defined using Moore chain complexes, which are chain complexes of possibly non-abelian 

groups [47, 139]. There are many studies of the homotopy type of topological structures 

of subgraphs as indicated in the references in Appendix A. Therefore, we consider chain 

complexes of possibly non-abelian groups so that the results in this subsection may be 

relevant for future research.

A graded group G∗ = Gn n ∈ ℤ is a sequence of groups Gn indexed by the integers. A graded 

subgroup G∗′ = Gn′ n ∈ ℤ of G∗ = Gn n ∈ ℤ is a sequence of subgroups Gn′  such that Gn′ ≤ Gn
for n ∈ ℤ. A chain complex G∗ of groups is a graded group G∗ with a group homomorphism 

∂n = ∂n
G∗ :Gn Gn − 1 for n ∈ ℤ such that the composite

∂n − 1 ∘ ∂n :Gn Gn − 2
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is the trivial homomorphism. Let us emphasise that in this definition we do not require Gn to 

be abelian. A subcomplex C∗ of G∗ is a graded subgroup C∗ of G∗ such that

∂n
G∗ Cn ⊆ Cn − 1

for each n ∈ ℤ. So C∗ together with the restrictions ∂n
G∗

Cn:Cn Cn − 1 forms a chain 

complex.

Definition 2.1. Let G∗ be a chain complex of groups and let D∗ be a graded subgroup of G∗. 

Define

sup*
G* D∗ = ∩ C∗ ∣ Dn ≤ Cn for n ∈ ℤ, and C∗ is a subcomplex of G∗

inf*
G∗ D∗ = ∏ E∗ ∣ En ≤ Dn for n ∈ ℤ, and E∗ is a subcomplex of G∗ .

For simplicity, if the embedding of D∗ ⊆ G∗ is clear, we denote sup*
G* D∗  by sup∗(D∗) and 

inf*
G* D∗  by inf∗(D∗).

Proposition 2.2. Let G∗ be a chain complex of groups and let D∗ be a graded subgroup of 
G∗. Then

1. sup∗(D∗) is the smallest subcomplex of G∗ containing D∗. Moreover,

supn D∗ = Dn ⋅ ∂n + 1
G∗ Dn + 1

is the product of Dn and ∂n + 1
G∗ Dn + 1 .

2. inf∗(D∗) is the largest subcomplex of G∗ contained in D∗. Moreover,

infn D∗ = Dn ∩ ∂n−1 Dn − 1

is the intersection of Dn and ∂n
−1 Dn − 1 .

Proof. (1) The first part follows from the definition. Let

Dn = Dn ⋅ ∂n + 1
G∗ Dn + 1

for n ∈ ℤ. Let C∗ be any subcomplex of G∗ such that Dn ≤ Cn for each n ∈ ℤ. Then
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∂n + 1
G∗ Dn + 1 ≤ ∂n + 1

G∗ Cn + 1 ≤ Cn

and so

Dn = Dn ⋅ ∂n + 1
G∗ Dn + 1 ≤ Cn .

Thus D* is a graded subgroup of C∗ for any subcomplex C∗ of G∗ with Dn ≤ Cn for n ∈ ℤ, 

and so D* is a graded subgroup of sup∗(D∗). Notice that

∂n
G∗ D* = ∂n

G∗ Dn ⋅ ∂n + 1
G∗ Dn + 1

≤ ∂n
G∗ Dn ⋅ ∂n

G∗ ∂n + 1
G∗ Dn + 1

= ∂n
G∗ Dn

≤ Dn − 1 .

Hence D* is a subcomplex of G∗ containing D∗, and so sup* D∗ = D∗.

(2) The first part follows from the definition. Let

Dn = Dn ∩ ∂n−1 Dn − 1 .

Let x ∈ Dn. Then ∂n(x) ∈ Dn−1 because x ∈ ∂n
−1 Dn − 1 , and

∂n(x) ∈ ∂n − 1
−1 Dn − 2

because ∂n−1(∂n(x)) = 1 ∈ Dn−2. Thus ∂n(x) ∈ Ďn−1. It follows that Ď∗ is a subcomplex of G∗ 
contained in D∗. Hence

D∗ ≤ inf* D∗ .

Let E∗ be any subcomplex of G∗ such that En ≤ Dn for n ∈ ℤ. Then

En ≤ ∂n−1 En − 1 ≤ ∂n−1 Dn − 1 .

Thus En ≤ Ďn for n ∈ ℤ. It follows that inf∗(D∗) ≤ Ď∗. This finishes the proof.□

Let G∗ be a chain complex of groups. The homology of G∗ is defined as the right cosets

Hn G* = Ker ∂n
G* / ∂n + 1

G* Gn + 1 .
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Proposition 2.3. Let G∗ be a chain complex of groups and let D∗ be a graded subgroup of 
G∗.

1. The inclusion

inf* D* sup* D*

induces an injective map on homology.

2. Suppose that ∂n + 1
G* Dn + 1  is contained in the normalizer of Dn in Gn for each n. 

Then the inclusion

inf* D* sup* D*

induces an isomorphism on homology. In particular, if Dn is normal in Gn for 
n ∈ ℤ, then the inclusion inf∗(D∗) → sup∗(D∗) induces an isomorphism on 
homology.

Proof. (1) From Proposition 2.2 (2),

Hn inf* D* = Dn ∩ ∂n−1 Dn − 1 ∩ Ker ∂n
G* / ∂n + 1 Dn + 1 ∩ ∂n + 1

−1 Dn

as right cosets. Since Ker ∂n
G* ≤ ∂n

−1 Dn − 1 , we have

Dn ∩ ∂n−1 Dn − 1 ∩ Ker ∂n
G* = Dn ∩ Ker ∂n

G* .

We also claim that

∂n + 1 Dn + 1 ∩ ∂n + 1
−1 Dn = Dn ∩ ∂n + 1 Dn + 1 .

Clearly, ∂n + 1 Dn + 1 ∩ ∂n + 1
−1 Dn ≤ Dn ∩ ∂n + 1 Dn + 1 .

Let x ∈ Dn ∩ ∂n+1(Dn+1) and let y ∈ Dn+1 such that ∂n+1(y) = x. Then y ∈ Dn + 1 ∩ ∂n + 1
−1 Dn . 

Thus x ∈ ∂n + 1 Dn + 1 ∩ ∂n + 1
−1 Dn . Hence ∂n + 1 Dn + 1 ∩ ∂n + 1

−1 Dn = Dn ∩ ∂n + 1 Dn + 1

and so

Hn inf* D* = Dn ∩ Ker ∂n
G* / Dn ∩ ∂n + 1 Dn + 1 .

From Proposition 2.2 (1),

Hn sup* D* = Dn ⋅ ∂n + 1
G* Dn + 1 ∩ Ker ∂n

G* / ∂n + 1
G* Dn + 1 ⋅ ∂n + 2

G* Dn + 2 .
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Since ∂n + 1
G* ∂n + 2

G* Dn + 2 = 1 , ∂n + 1
G* Dn + 1 ⋅ ∂n + 2

G* Dn + 2 = ∂n + 1
G* Dn + 1 . Thus

Hn sup* D* = Dn ⋅ ∂n + 1
G* Dn + 1 ∩ Ker ∂n

G* / ∂n + 1
G* Dn + 1 .

Let w1, w2 ∈ Dn ∩ Ker ∂n
G*  such that w1 ≡ w2 in Hn(sup∗(D∗)). Then there exists 

y = ∂n + 1
G* Dn + 1  such that w2 = w1y. Note that

y = w1
−1w2 ∈ Dn ∩ Ker ∂n

G* ≤ Dn .

We have y ∈ Dn ∩ ∂n + 1
G∗ Dn + 1  with w2 = w1y. Thus w1 ≡ w2 in Hn(inf∗(D∗)). So

Hn inf* D∗ Hn sup* D∗

is injective. This proves (1).

(2) Let w ∈ Dn ⋅ ∂n + 1
G∗ Dn + 1 ∩ Ker ∂n

G∗ . Then w ∈ Dn ⋅ ∂n + 1
G∗ Dn + 1  and so

w = x1y1x2y2⋯xmym

with xi ∈ Dn and yi ∈ ∂n + 1
G∗ Dn + 1  for 1 ≤ i ≤ m. Since ∂n + 1

G∗ Dn + 1  is contained in the 

normalizer of Dn, the product

w = x1 y1x2y1
−1 y1y2x3y2

−1y1
−1 ⋯ y1⋯ym − 1xmym − 1

−1 ⋯y1
−1 y1⋯ym = xy

with

x = x1 y1x2y1
−1 y1y2x3y2

−1y1
−1 ⋯ y1⋯ym − 1xmym − 1

−1 ⋯y1
−1 ∈ Dn

and

y = y1y2⋯ym ∈ ∂n + 1
G∗ Dn + 1 .

Since y ∈ Ker ∂n
G∗  and w ∈ Ker ∂n

G∗ ,

x = wy−1 ∈ Ker ∂n
G∗ .

It follows that x ∈ Dn ∩ Ker ∂n
G∗ , and so
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Hn inf* D∗ Hn sup* D∗

is surjective. From (1), Hn(inf∗(D∗)) → Hn(sup∗(D∗)) is injective and so it is an 

isomorphism. This finishes the proof.□

2.2. Hypergraphs.

Recall that a hypergraph ℋ is a pair ℋ = V ℋ, ℰℋ , where the vertex set V ℋ is a finite or 

infinite set and the hyperedge set ℰℋ is a collection of finite nonempty subsets of V ℋ. Let 

P V ℋ  be the set of all finite subsets of V ℋ. The hypothesis in the definition of hypergraph 

ℋ = V ℋ, ℰℋ  only requires that ℰℋ ⊆ P V ℋ ∖ ∅. This is different from the notion of an 

abstract simplicial complex as hypergraphs do not require ℰℋ to be closed under taking 

subsets.

The simplicial closure (or the associated simplicial complex as in [110]) of a hypergraph 

ℋ = V ℋ, ℰℋ , denoted by Δℋ, is defined as

Δℋ = A ≠ ∅ ∣ A ⊆ B for some B ∈ ℰℋ .

It is straightforward to check that the simplicial closure of ℋ is the minimal simplicial 

complex containing ℋ. The homology of Δℋ has been studied previously in [110]. 

However, it is desirable for a homology theory of ℋ to be directly derived from ℋ
itself rather than the simplicial closure Δℋ. Using Proposition 2.3, there is an embedded 

homology theory of hypergraphs that is an extension of simplicial homology theory.

Definition 2.4. Let ℋ = V ℋ, ℰℋ  be a hypergraph with a total ordering on V ℋ and let G be 

an abelian group. Let C∗(Δℋ; G) be the chain complex with coeffcients in group G. Consider 

ℤ(ℋ) ⊗ G as a graded subgroup of the chain complex of abelian groups C∗(Δℋ; G). The 

embedded homology H∗
emb(ℋ; G) with coefficients in G is defined by

H∗emb(ℋ; G) = H∗ inf*
C∗(Δℋ; G)(ℤ(ℋ) ⊗ G) ≅ H∗ sup*

C∗(Δℋ; G)(ℤ(ℋ) ⊗ G) .

The crucial point is that by Proposition 2.3 the inclusion

inf*
C∗(Δℋ; G)(ℤ(ℋ) ⊗ G) sup*

C∗(Δℋ; G)(ℤ(ℋ) ⊗ G)

induces an isomorphism on homology. Hence this homology can be considered as a natural 

topological invariant of ℋ. To detect more subtle information about ℋ, one could explore 

the acyclic chain complex
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sup*
C∗(Δℋ; G)(ℤ(ℋ) ⊗ G)/inf*

C∗(Δℋ; G)(ℤ(ℋ) ⊗ G) .

For example, when G is a field, one can investigate the Hilbert-Poincaré series

ξemb(ℋ, t) = ∑
n = 0

∞
dim sup*

C∗(Δℋ; G)(ℤ(ℋ) ⊗ G)/inf*
C∗(Δℋ; G)(ℤ(ℋ) ⊗ G) tn

to detect gaps and get more robust information.

Let δ(ℋ) denote the maximal simplicial complex contained in ℋ. In general, H∗
emb(ℋ; G) is 

different from H∗(δ(ℋ); G) and H∗(Δ(ℋ); G) as shown in the following example.

Example 2.5. Let ℋ be the boundary of a 2-simplex with all vertices removed, 

V ℋ = 0, 1, 2  and ℰℋ = 0, 1 , 0, 2 , 1, 2  as depicted in Figure 4. Then δ(ℋ) is the 

empty set, and Δ(ℋ) is the boundary of the 2-simplex. By definition, H1
emb(ℋ; ℤ) = ℤ and 

H0
emb(ℋ; ℤ) = 0. Thus H∗

emb(ℋ; ℤ) is different from H∗(δ(ℋ); ℤ) and H∗(Δ(ℋ); ℤ).

This example shows that H∗
emb(ℋ; G) may not be the homology of any simplicial complex as 

H0
emb(ℋ; ℤ) = 0, which is not the case for any nonempty simplicial complex. Let us consider 

another example.

Example 2.6. Let ℋ = V ℋ, ℰℋ  with V ℋ = 0, 1, 2  ordered by 0 < 1 < 2, and

ℰℋ = 0, 1, 2 , 0, 1 , 0, 2 , 0 , 1 , 2

see Figure 4. Then Δℋ is the abstract simplicial complex of a 2-simplex with vertices 

labeled by 0, 1, 2. The 1-face {1, 2} is not in ℋ. Let G = ℤ. Then the chain complex C∗(Δℋ)

is given by C0(Δℋ) = ℤ ⊕ 3 = ℤ 0 , 1 , 2 , C1(Δℋ) = ℤ ⊕ 3 = ℤ 0, 1 , 0, 2 , 1, 2 , and 

C2(Δℋ) = ℤ = ℤ 0, 1, 2 .

We have inf0 = C0(Δℋ) = ℤ 0 , 1 , 2 ,

inf1 = ℤ ℰ1 ∩ ∂1
−1 ℤ ℰ0 = ℤ ℰ1 ∩ C1(Δℋ) = ℤ ℰ1 = ℤ 0, 1 , 0, 2

inf2 = ℤ ℰ2 ∩ ∂2
−1 ℤ ℰ1 = 0

with ∂1 inf1 = ℤ 1 − 0 , 2 − 0 . Thus H0
emb (ℋ) = ℤ and Hi

emb(ℋ) = 0 for i ≥ 1.

Let ℋ′ = V ℋ′, ℰℋ′  with V ℋ′ = V ℋ = 0, 1, 2  ordered by 0 < 1 < 2, and
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ℰℋ′ = 0, 1, 2 , 0, 1 , 0 , 1 , 2 .

Then H0
emb ℋ′ = ℤ ⊕ ℤ and Hi

emb(ℋ) = 0 for i ≥ 1. Thus the embedded homology of ℋ′
can not be realized as the homology of a path-connected topological space.

These examples indicate that embedded homology is a new homology theory with unusual 

properties and that poses its own questions and challenges.

The definition of embedded homology of a hypergraph ℋ depends on the orientation of 

its simplicial closure Δℋ. It is well-known that simplicial homology is independent on the 

choice of orientation. The following theorem shows that this is also true for the embedded 

homology of hypergraphs.

Theorem 2.7. The embedded homology H∗
emb(ℋ; G) of a hypergraph ℋ does not depend on 

a choice of orientation on Δℋ.

Proof. Let H∗
emb(ℋ) and G(ℋ) denote H∗

emb(ℋ, G) and ℤ(ℋ) ⊗ G, respectively. We assume 

that V ℋ is a finite set {v1, v2, …, vm}. Take a linear ordering on V ℋ so that v1 < v2 < 

⋯ < vn as a fixed choice of total order and let C∗ = C∗(Δℋ; G) denote the oriented chain 

complex. It suffices to show that the homology stays the same up to isomorphism under the 

transpositions (i, i + 1) of the ordering on V (ℋ) for 1 ≤ i ≤ m − 1.

Let ∂n′ :Cn Cn − 1, n ≥ 1 be the boundary homomorphism defined using the new order on 

V ℋ, that is, v1 < v2 < ⋯ < vi−1 < vi+1 < vi < vi+2 < ⋯ < vn. For n ≥ 1, the abelian group Cn 

admits a direct sum decomposition

Cn = Cn
vivi + 1 ⊕ Cn

vivi + 1 (1)

where Cn
vivi + 1 is the subgroup of Cn given by linear combinations with coefficients in group 

G of the n-simplicies σ ∈ Δℋ whose vertex set contains both vi and vi+1, and Cn
vivi + 1 is the 

subgroup of Cn given by linear combinations with coefficients in group G of the remaining 

n-simplicies in Δℋ. For any chain α ∈ Cn, there is a corresponding unique decomposition

α = αvivi + 1 + αvivi + 1 . (2)

Since vi and vi+1 are neighbored vertices in the order, we have ∂′(σ) = ∂(σ) if σ does not 

contain both vi and vi+1 in its vertex set.

Therefore

∂n′ = ∂n :Cn
vivi + 1 Cn − 1 . (3)
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Let σ = [a1 ⋯ atvivi+1b1 ⋯·bs] be an oriented simplex in Δℋ with a1 < ⋯ < at < vi < vi+1 < 

b1 < ⋯ < bs. By the definition of ∂(σ), we have

∂ σ vivi + 1 = ∑
j = 1

t
−1 j − 1 a1⋯aj⋯atvivj + 1b1⋯bs +

∑
k = 1

s
−1 t + k + 1 a1⋯atvivi + 1b1⋯bk⋯bs

where ⋯x ⋯  means that x is deleted, and

∂(σ)vivi + 1 = ( − 1)t a1⋯atvi + 1b1⋯bs + ( − 1)t + 1 a1⋯atvib1⋯bs .

By switching the order of vi and vi+1, we have

∂′(σ) = (∂(σ))vivi + 1 − (∂(σ))vivi + 1 .

Extending this formula linearly with coefficients in group G, we obtain the formula

∂′(α) = (∂(α))vivi + 1 − (∂(α))vivi + 1 for α ∈ C∗
vivi + 1 . (4)

Define the group homomorphism

ϕn:Cn = Cn
vivi + 1 ⊕ Cn

vivi + 1 Cn = Cn
vivi + 1 ⊕ Cn

vivi + 1

by setting

ϕn zvivi + 1 + zvivi + 1 = zvivi + 1 − zvivi + 1 .

Clearly, ϕn is an isomorphism. Let z = zvivi + 1 + zvivi + 1 ∈ Cn be a chain. Then

∂(z) = ∂ zvivi + 1 + ∂ zvivi + 1

= ∂ zvivi + 1 vivi + 1 + ∂ zvivi + 1 vivi + 1 + ∂ zvivi + 1

so

(∂(z))vivi + 1 = ∂ zvivi + 1 vivi + 1

and
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(∂(z))vivi + 1 = ∂ zvivi + 1 vivi + 1 + ∂ zvivi + 1 .

On the other hand, by direct computation

∂′ ϕn(z) = ∂′ zvivi + 1 − zvivi + 1

= ∂ zvivi + 1 )vivi + 1 − ∂ zvivi + 1 vivi + 1 + ∂ zvivi + 1

= ∂(z) vivi + 1 − ∂(z) vivi + 1 .

This gives a commutative diagram

Note that the decomposition (1) restricted to G ℋn  gives the decomposition

G(ℋ) = G(ℋ)vivi + 1 ⊕ G(ℋ)vivi + 1

with the same rule on simplices. The subgroup G(Hn) is invariant under ϕn. Moreover, there 

is a commutative diagram

The assertion then follows by taking homology of this commutative diagram. □

The embedded homology of hypergraphs was introduced in 2019 in [23]. Previously, 

cohomological aspects on k-uniform hypergraphs have been studied, see [28, 27, 42, 44, 

96, 99, 122, 123, 138, 142], using cohomology introduced in a combinatorial way. Also 
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Emtander [59] studied the homology of the independence complex Δcℋ of a hypergraph 

ℋ = V ℋ, ℰℋ  in 2009, where Δcℋ = F ⊆ V ℋ ∣ E ⊈ F  for any E ∈ ℰℋ . The approach of 

embedded homology is different from the classical research on topological structures related 

to hypergraphs as it is directly define on the hypergraph.

Although the embedded homology of hypergraphs is a new topic with surprising properties, 

it inherits many characteristics of simplicial homology. The following theorem is an example 

of this, the proof of this theorem is similar to that of [102, Theorem 8.2, p.45].

Recall that the cone CK of a simplicial complex K is defined as a join CK = w∗K with 

w a vertex not in K. Analogously, we can define the join of hypergraphs and the cone 

Cℋ = w ∗ ℋ.

Theorem 2.8. Let ℋ be a hypergraph and let G be an abelian group. Then

Hnemb(Cℋ; G) = 0 if n > 0
G if n = 0.

□

2.3. Super-hypergraphs.

Recall [47, 139] that a Δ-set X∗ is a sequence of sets X∗ = (Xn)n≥0 with maps di: Xn → 
Xn−1, for 0 ≤ i ≤ n and n ≥ 1, called face operations, satisfying the following Δ-identity

didj = djdi + 1 for i ≥ j . (5)

Definition 2.9. A super-hypergraph is a pair (ℋ, X), where X is a Δ-set and ℋ is a graded 

subset of X. We call ℋ a super-hypergraph born from X, and X is called a parental Δ-set of 

ℋ. The Δ-closure of ℋ in X is defined by

ΔX(ℋ) = ⋂ Y ∣ ℋ ⊆ Y  as a graded subset and Y ⊆ X as a Δ‐subset . 

A morphism ϕ: (ℋ, X) ℋ′, Y  of super-hypergraphs is a Δ-map ϕ: X → Y such that 

ϕ(ℋ) ⊆ ℋ′.

2.3.1. Homology of super-hypergraphs.—Using Proposition 2.3, there is an 

embedded homology on super-hypergraphs.

Definition 2.10. Let (ℋ, X) be a super-hypergraph and let G be an abelian group. The 

embedded homology H*
emb, X(ℋ; G) with coefficients in G of (ℋ, X) is defined by

H*
emb, X(ℋ; G) = H* inf*

C*(X; G)(ℤ(ℋ) ⊗ G) ≅ H* sup*
C*(X; G)(X; G)(ℤ(ℋ) ⊗ G)
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where ℤ(ℋ) ⊗ G is a graded subgroup of the chain complex of abelian groups C∗(X;G).

We want to show that this definition is an extension of the embedded homology of 

hypergraphs. An oriented hypergraph is a hypergraph ℋ with a partial order on its vertex 

set so that the restriction to the vertices of each hyperedge of ℋ is linear. If the vertices of 

a simplex are totally ordered, then the restricted order on the vertices of any of its faces is 

linear. Thus the simplicial closure Δℋ can be oriented with its orientation induced by the 

order on ℋ. From Definition 2.4,

H*
emb(ℋ; G) = H*

emb, Δℋ(ℋ; G)

by considering the oriented simplicial complex Δℋ as a Δ-set. From Theorem 2.7, this 

definition is independent on the choice of orientation.

We now consider how morphisms of super-hypergraphs, recall Definition 2.9, induce maps 

on the infimum and supremum chain complexes as well as embedded homology of super-

hypergraphs.

Proposition 2.11. Let ϕ: (ℋ, X) ℋ′, Y  be a morphism of super-hypergraphs. Then there 
is a commutative diagram

(6)

which induces a map ϕ*:H*
emb, X(ℋ; G) H*

emb, Y ℋ′; G . Moreover, if ϕ(ℋ) = ℋ′, then 

there is a short exact sequence of chain complexes

sup*
C*(X; G) (ℤ(ℋ) ⊗ G) ∩ Ker ϕ# sup*

C*(X; G)((ℤ(ℋ) ⊗ G

)
ϕ# sup*

C*(Y ; G) ℤ ℋ′ ⊗ G .
(7)

Proof. Since sup*
C*(Y ; G) ℤ ℋ′ ⊗ G  is a subcomplex of C∗(Y;G) containing ℤ ℋ′ ⊗ G, its 

preimage

ϕ#
−1 sup*

C*(Y ; G) ℤ ℋ′ ⊗ G

is a subcomplex of C∗(X;G) containing ℤ(ℋ) ⊗ G because ϕ(ℋ) ⊆ ℋ′. Thus

sup*
C*(X; G) (ℤ(ℋ) ⊗ G) ⊆ ϕ#

−1 sup*
C*(Y ; G) ℤ ℋ′ ⊗ G (8)

as a subcomplex. Similarly
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ϕ# inf*
C*(X; G)(ℤ(ℋ) ⊗ G) ⊆ inf*

C*(Y ; G) ℤ ℋ′ ⊗ G (9)

as a subcomplex. Therefore, there is a commutative diagram 6.

Now, we assume that ϕ(ℋ) = ℋ′. Then

ϕ# sup*
C*(X; G)((ℤ(ℋ) ⊗ G)) ⊇ ϕ#((ℤ(ℋ) ⊗ G)) = ℤ ℋ′ ⊗ G

is a subcomplex of C∗(Y;G) containing ℤ ℋ′ ⊗ G. Hence

ϕ# sup*
C*(X; G)((ℤ(ℋ) ⊗ G)) ⊇ sup*

C*(Y ; G) ℤ ℋ′ ⊗ G .

Together with the containment 8, we have

sup*
C*(Y ; G) ℤ ℋ′ ⊗ G ⊇ ϕ# sup*

C*(X; G)((ℤ(ℋ) ⊗ G))

and hence the short exact sequence 7. □

Corollary 2.12. Let ϕ: (ℋ, X) ℋ′, Y  be a morphism of super-hypergraphs. Suppose that

1. ϕ: X → Y is an injective Δ-map and

2. ϕ(ℋ) = ℋ′.

Then

ϕ#:sup*
C*(X; G) (ℤ(ℋ) ⊗ G) sup*

C*(Y ; G) ℤ ℋ′ ⊗ G

is an isomorphism. In particular, ϕ*:H*
emb, X(ℋ; G) H*

emb, Y ℋ′; G  is an isomorphism.

Proof. By the assumption (1),

sup*
C*(X; G) (ℤ(ℋ) ⊗ G) ∩ Ker ϕ# = 0

and so the assertion follows by Proposition 2.11. □

2.3.2. Variations of parental Δ-sets.—In recent topological applications to data 

analytics and machine learning, one of the most common approaches is to use discrete 

Hodge-Laplacian theory. Mathematically, combinatorial Laplacian operators defined on 

linear transformations on cochains of simplicial complexes have been studied, for example 

in [55, 82]. Therefore, in addition to simplicial homology, research on (co)chains of 

simplicial complexes such as spectral analysis on combinatorial Laplacian operators is 

also important for potential applications in data science. Similarly, the research on chains 
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inf*
C*(X; G)(ℤ(ℋ) ⊗ G) and sup*

C*(X; G)(ℤ(ℋ) ⊗ G) could be useful for the applications of 

super-hypergraphs. Next, we describe some basic properties related to the chain complexes 

arising from super-hypergraphs.

A super-hypergraph ℋ is assumed to have a parental Δ-set X that carries geometric 

structural information about ℋ. The embedded homology H*
emb, X(ℋ; G) is defined using 

the geometric information inherited from X. On level of chains, there are inclusions of 

graded groups

inf*
C*(X; G)(ℤ(ℋ) ⊗ G) ℤ(ℋ) ⊗ G sup*

C*(X; G)(ℤ(ℋ) ⊗ G) C*(X; G)

where the right most inclusion is a chain map. By Proposition 2.3, the inclusion

inf*
C*(X; G)(ℤ(ℋ) ⊗ G) sup*

C*(X; G)(ℤ(ℋ) ⊗ G)

is a chain homotopy equivalence that defines the embedded homology. The gap complex

sup*
C*(X; G)(ℤ(ℋ) ⊗ G)/inf*

C*(X; G)(ℤ(ℋ) ⊗ G) (10)

which is an acyclic chain complex, gives more robust information about the graded set ℋ.

Let ℋ be a fixed graded data set. Our aim is to vary the parental Δ-set X such that 

the corresponding infimum and supremum chain complexes reveal different aspects of the 

topological structure of ℋ. One natural way to vary the parental Δ-set would be to consider 

morphisms ϕ: (ℋ, X) (ℋ, Y ) that fix ℋ and investigate how these affect the embedded 

homology. Another important question is whether one can vary the parental Δ-set so that the 

gap complex (10) is as small as possible. We consider the following example.

Example 2.13. Let n be an odd positive integer. Let X = Δ+[n] be the Δ-set induced by an 

n-simplex with vertices labelled 0, 1, …, n. Let Y be the Δ-set with Yk = {ak}, 0 ≤ k ≤ n, Yk 

= ∅ for k > n and di(ak) = ak−1 for 0 ≤ i ≤ k ≤ n. Let ℋ be the graded set given by ℋn = xn
and ℋk = ∅ for k ≠ n. Consider the super-hypergraphs (ℋ, X), xn = [0, 1, 2, …, n], and (ℋ, 

Y), xn = an. There is a unique morphism ϕ: (ℋ, X) (ℋ, Y ) such that ϕ ℋ = idℋ. Then, we 

have Hk
emb, X(ℋ; ℤ) = 0 for k ≥ 0 and

Hk
emb, Y (ℋ; ℤ) = ℤ  if k = n,

0  otherwise.

This shows the embedded homology or super-hypergraphs depends on the parentl Δ-set. The 

gap complex for (ℋ, X) is the same as the acyclic complex
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supk
C*(X; ℤ)(ℤ(ℋ)) = ℤ  if k = n, n − 1,

0  otherwise 

with ∂:supn
C*(X; ℤ)(ℤ(ℋ)) supn − 1

C*(X; ℤ)(ℤ(ℋ)).an isomorphism, and the gap complex for (ℋ, 

Y) is 0.

Now we consider the effect of morphisms on super-hypergraphs with a fixed hypergraph 

more generally. Let ϕ: (ℋ, X) (ℋ, Y ) be a morphism of super-hypergraphs so that 

ϕ ℋ = idℋ. By 9, we have

inf*
C*(X; G)(ℤ(ℋ) ⊗ G) inf*

C*(Y ; G)(ℤ(ℋ) ⊗ G)

namely the chain complex of Y is closer to the graded group ℤ(ℋ) ⊗ G than the chain 

complex of X. Together with the inclusion 8, it follows that the gap complex for (ℋ, Y) is 

smaller, as shown in the above example. If ϕ is injective, then both

inf*
C*(X; G)(ℤ(ℋ) ⊗ G) = inf*

C*(Y ; G)(ℤ(ℋ) ⊗ G) and

sup*
C*(X; G)(ℤ(ℋ) ⊗ G) = sup*

C*(Y ; G)(ℤ(ℋ) ⊗ G)

which means that we can replace X by any of its Δ-subsets that contain ℋ without changing 

the infimum and supremum chain complexes. In particular, we have

H*
emb, X(ℋ; G) = H*

emb, ΔX(ℋ)(ℋ; G) (11)

where ΔX ℋ  is the Δ-closure of ℋ in X, which is the minimal Δ-subset of X containing ℋ
defined in Definition 2.9.

Definition 2.14. A super-hypergraph (ℋ, X) is called regular if X = ΔX ℋ .

It is straightforward to see that a super-hypergraph (ℋ, X) is regular if and only if all 

elements in X are obtained from the elements in ℋ together with their iterated faces in X. 

The following proposition may be useful for analysing for variations of parental Δ-sets.

Proposition 2.15. Let ℋ = ℋn n ≥ 0 be a graded set such that the cardinality of the set 

∐n ≥ 0Hn is finite. Then there are finitely many regular super-hypergraphs (ℋ, X) up to 

isomorphisms.

Proof. Consider the collection of all possible Δ-sets X such that (ℋ, X) is a regular super-

hypergraph. If (ℋ, X) is regular, then all elements in X are given by the elements in the 
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graded subset ℋ together with their iterated faces in X. Therefore, as a Δ-set X is a finite 

extension of ℋ together with finitely many face operations.□

Definition 2.16. A super-hypergraph (ℋ, X) is complete if it is regular, and for any 

morphism of super-hypergraphs ϕ: (ℋ, X) (ℋ, Y ) with ϕ ℋ = idℋ, the Δ-map ϕ: X → Y is 

injective.

Therefore, for a complete super-hypergragh (ℋ, X), the infimum complex

inf*
C*(X; G)(ℤ(ℋ) ⊗ G)

reaches a maximum and the gap complex (10) reaches a minimum.

By definition, a complete super-hypergraph is regular. However, the converse may not be 

true. For instance, the super-hypergraph (ℋ, X) in Example 2.13 is regular but not complete 

as the morphism to (ℋ, Y) is not an injective Δ-set map. Therefore completeness provides a 

notion of maximality in the set of super-hypergraphs related to a given hypergraph.

Theorem 2.17 (Completeness Criterion). A regular super-hypergraph (ℋ, X) with ℋ ≠ ∅ is 
complete if and only if it has the following properties:

1. (Vertex Property) If ℋ0 ≠ ∅, then X0 = ℋ0. If ℋ0 = ∅, then X0 is a one-point 

set.

2. (Matching Face Property) Let z1, z2 ∈ Xn with n > 0. Suppose that

i. diz1 = diz2, 0 ≤ i ≤ n, and

ii. z1, z2 ⊈ ℋn.

Then z1 = z2.

Proof. Suppose that (ℋ, X) is complete. We first show that properties (1) and (2) hold.

1. Assume that ℋ0 ≠ ∅. Suppose that there exists z ∈ ΔX(ℋ)0\ℋ0. Choose an 

element x ∈ ℋ0. Let Z be the Δ-quotient of X by identifying z and x. Let q: X → 

Z be the quotient map. Then q ℋ is injective, but q: X → Z is not injective, which 

is a contradiction. Hence X0 = ℋ0.

If ℋ0 ≠ ∅, then the same argument shows that X0 must be a one-point set.

2. Suppose z1 ≠ z2. Then, similar to the proof of (1), we can construct the Δ-

quotient Z obtained from X by identifying z1 with z2 in dimension n. Since 

all faces of z1 and z2 match, the equivalence relation z1 ~ z2 does not induce 

nontrivial identifications in Xm for m ≠ n. Since z1, z2 ⊈ ℋn, the equivalence 

relation z1 ~ z2 does not effect elements in ℋ. This proves property (2).

Now let ϕ: (ℋ, X) (ℋ, Y ) be a morphism of super-hypergraphs with ϕ ℋ = idℋ such that 

(ℋ, X) is a regular super-hypergraph satisfying properties (1) and (2).
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We show that the Δ-map ϕ: X → Y is injective. By the vertex property, ϕ: X0 → Y0 is 

injective. Suppose that ϕ: X → Y is not injective. Then there exists n > 0 such that ϕ: Xk → 
Yk is injective for k < n and ϕ: Xn → Yn is not injective. It follows that there exists z1, z2 ∈ 
Xn with z1 ≠ z2 such that ϕ(z1) = ϕ(z2). Then z1, z2 ⊈ ℋn because ϕ ℋ is injective. Since ϕ 
is a Δ-set map, we have

ϕ diz1 = diϕ z1 = diϕ z2 = ϕ diz2

for 0 ≤ i ≤ n and ϕ: Xn−1 → Yn−1 is injective. Therefore diz1 = diz2 for 0 ≤ i ≤ n. However, 

by the matching face property, z1 = z2, which contradicts the assumption that z1 ≠ z2. □

For a given regular super-hypergraph (ℋ, X), the above proof gives a way to construct a 

complete super-hypergraph (ℋ, Y) with Y as a Δ-quotient of X. The following example 

shows that (ℋ, X) may have non-isomorphic complete quotients.

Example 2.18. Let

ℋ = 0, 1, 2 , 0, 1 , 0, 2 , 1, 2 , 1 , 2

be the graded subset of the 2-simplex X = Δ+[2] without the 0 vertex. Let Y be the 

Δ-quotient of X by identifying vertices {1} and {0}, and let Z be the Δ-quotient of X by 

identifying vertices {2} and {0}. Then

1. (ℋ, X), (ℋ, Y) and (ℋ, Z) are regular super-hypergraph.

2. (ℋ, Y) and (ℋ, Z) are complete, but (ℋ, X) is not complete.

3. There are non-injective Δ-quotients X ↠ Y and X ↠ Z with (ℋ, Y ) ≇ (ℋ, Z).

2.3.3. Mayer-Vietoris sequence.—The Mayer-Vietoris sequence (MV sequence) is 

one of the fundamental tools in topology for inductively computing homology. In general, 

the MV sequence fails for embedded homology of super-hypergraphs.

Example 2.19. Let X = {f1, f2, e1, e2, v} be a Δ-set with face operations given by

1. d0fi = d2fi = e1, d1fi = e2 where j = 1, 2, and

2. diej = v for i = 0, 1 and j = 1, 2.

Let

ℋ = X\ e1, e2

be the graded subset of X missing the edges e1, e2. Let A = {f1, e1, e2, v} and B = {f2, e1, e2, 

v} with face operations induced from X. Then

(ℋ, X) = (ℋ ∩ A, A) ∪ (ℋ ∩ B, B)

Grbić et al. Page 22

Found Data Sci. Author manuscript; available in PMC 2023 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with A ∩ B = {e1, e2, v} and ℋ ∩ A ∩ B = v . Then there is no exact sequence

Since ℋ1 = ∅ and ℋ2 = X2,

inf2
C∗(A)(ℤ(ℋ ∩ A)) = ℤ ℋ2 ∩ A ∩ Ker ∂2

A = 0,

inf2
C∗(B)(ℤ(ℋ ∩ B)) = ℤ ℋ2 ∩ B ∩ Ker ∂2

B = 0,

inf2
C∗(X)(ℤ(ℋ)) = ℤ ℋ2 ∩ Ker ∂2

X = ℤ f1 − f2 = ℤ,

inf1
C∗(X)(ℤ(ℋ)) = ℤ ℋ1 ∩ ∂1

X −1
ℤ ℋ0 = 0,

inf1
C∗(A ∩ B)(ℤ(ℋ ∩ A ∩ B)) = 0 .

Then H2
emb, A(ℋ ∩ A) = H2

emb, B(ℋ ∩ B) = H1
emb, A ∩ B(ℋ ∩ A ∩ B) = 0 and H2

emb, X(ℋ) = ℤ. 

Hence the above sequence cannot be exact.

An analogue of the classical Mayer-Vietoris sequence for super-hypergraphs is a multi-exact 

sequence derived from the following theorem.

Theorem 2.20. Let (ℋ, X) be a super-hypergraph and let A and B be Δ-subsets of X such 

that A∪B = X. Let ℋA = ℋ ∩ A, ℋB = ℋ ∩ B and ℋA ∩ B = ℋ ∩ A ∩ B. Let G be an abelian 

group, and denote sup*
C∗(X; G)(ℋ) and inf*

C∗(X; G)(ℋ) by sup*
X(ℋ) and inf*

X(ℋ), respectively.

Then there is a commutative diagram

where the middle two rows are short exact sequences of chain complexes, the maps jA and jB 

are canonical inclusions and the vertical arrows are inclusions.

Example 2.19 shows that the left and right vertical arrows in the above diagram are not chain 

homotopy equivalences. However, the middle vertical arrow is always a chain homotopy 

equivalence.

Proof. We need to show that
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sup*
A ℋA + sup*

B ℋB = sup*
X(ℋ) and 

inf*
A ∩ B ℋA ∩ B = inf*

A ℋA ∩ inf*
B ℋB .

First we prove that sup*
A ℋA + sup*

B ℋB = sup*
X(ℋ). Since sup*

A ℋA + sup*
B ℋB  is a 

sub complex of C∗(X; G) containing ℤ(ℋ) ⊗ G = ℤ ℋA ⊗ G + ℤ ℋB ⊗ G, we have 

sup*
X(ℋ) ⊆ sup*

A ℋA + sup*
B ℋB . On the other hand, sup*

A ℋA , sup*
B ℋB ⊆ sup*

X(ℋ). Thus 

sup*
A ℋA + sup*

B ℋB ⊆ sup*
X(ℋ), and so sup*

X(ℋ) = sup*
A ℋA + sup*

B ℋB

Now we show that inf*
A ∩ B ℋA ∩ B = inf*

A ℋA ∩ inf*
B ℋB . Clearly

inf*
A ∩ B ℋA ∩ B ⊆ inf*

A ℋA ∩ inf*
B ℋB

Conversely, note that

inf*
A ℋA ∩ inf*

B ℋB ⊆ (ℤ(ℋ ∩ A) ⊗ G) ∩ (ℤ(ℋ ∩ B) ⊗ G) = ℤ(ℋ ∩ A ∩ B) ⊗ G

where (ℤ(ℋ ∩ A) ⊗ G) ∩ (ℤ(ℋ ∩ B) ⊗ G) = ℤ(ℋ ∩ A ∩ B) ⊗ G because C∗(X;G) is the direct 

sum of the copies of G with its coordinates labeled by the graded set X. Thus 

inf*
A ℋA ∩ inf*

B ℋB  is a subcomplex of C∗(X;G) contained in ℤ(ℋ ∩ A ∩ B) ⊗ G, and so 

it is contained in inf*
A ∩ B ℋA ∩ B . □

Corollary 2.21. Using the notation as in the theorem above, the inclusion

inf*
A ℋA ∩ inf*

B ℋB sup*
A ℋA ∩ sup*

B ℋB

is a chain homotopy equivalence if and only if so is the inclusion

inf*
A ℋA + inf*

B ℋB sup*
A ℋA + sup*

B ℋB .

Proof. The statement follows by applying the Five Lemma to the long exact sequence 

obtained from Theorem 2.20. □

2.3.4. Gap complexes.—Let (ℋ, X) be a super-hypergraph and define

δX(ℋ) = ⋃ Y ⊆ ℋ ∣ Y isaΔ − subsetof X (12)
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to be the largest Δ-subset of X contained in ℋ. Then δX(ℋ) consists of the elements in ℋ
whose all iterated faces lie in ℋ. The gap between δX(ℋ) ⊆ ΔX(ℋ) measures how far ℋ is 

from being a Δ-set. For a finite hypergraph ℋ, the differences can be expressed as

# ΔX(ℋ) ∖ δX(ℋ) = # ΔX(ℋ) − # δX(ℋ) .

Topological invariants of the geometric gap complex

ΔX(ℋ) / δX(ℋ) (13)

such as homology groups and homotopy groups, provide different means of measuring how 

far ℋ is from being a Δ-set.

Algebraically, at the chain level

C∗ δX(ℋ); G inf*
C∗ ΔX; G

(G(ℋ)) ⊆ G(ℋ) ⊆ sup
*
C∗ ΔX; G (G(ℋ))

C∗ ΔX(ℋ); G
(14)

where G(ℋ) = ℤ(ℋ) ⊗ G. An important consequence of Proposition 2.3 is that the inclusion

inf∗
C∗ ΔX; G

(G(ℋ)) sup∗
C∗ ΔX; G (G(ℋ))

is a chain homotopy equivalence, which implies that the algebraic gap complex (10) is 

acyclic. However, the geometric gap complex (13) is not contractible in general. For 

example, let X be any Δ-set and let ℋ be the graded subset of X by removing the vertex set 

X0. Then δX(ℋ) = ∅ and so its geometric gap complex is |X|+, the space |X| disjoint union 

with a one-point set. The homology of the chain complexes

inf∗
C∗ ΔX; G

(G(ℋ))/C∗ δX(ℋ); G ,

C∗ ΔX(ℋ); G /sup∗C ∗ ΔX; G (G(ℋ))

could give extra information in addition to the topology of the geometric gap complex (13).

The proof of the following proposition is immediate.

Proposition 2.22. Let (ℋ, X) be a super-hypergraph. Then

inf∗
C∗ ΔX(ℋ); G

(G(ℋ))/C∗ δX(ℋ); G = inf∗
C∗ ΔX(ℋ); G /C∗ δX(ℋ); G

G(ℋ)/C∗ δX(ℋ); G ,

sup∗
C∗ ΔX(ℋ); G (G(ℋ))/C∗ δX(ℋ); G = sup∗

C∗ ΔX(ℋ); G /C∗ δX(ℋ); G G(ℋ)/C∗ δX(ℋ); G .
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□

2.3.5. Computations.—With the potential applications in mind, it is important to 

consider the computability of these topological constructions. There have been various 

algorithms developed for computing simplicial homology that have led to the applications 

of topology in data analytics. The computations of embedded homology are quite similar 

to those of simplicial homology. Below we detail a procedure for computing embedded 

homology.

For a super-hypergraph (ℋ, X), let us consider the computations for H*
emb, X(ℋ, F ) using the 

chain complex inf∗
C∗(X; F)(ℋ; F) with coefficients in a field F .

By definition,

Hnemb, X(ℋ, F ) = Zn inf∗
C∗(X; F)(ℋ; F) /Bn inf∗

C∗(X; F)(ℋ; F)

where

Zn inf∗
C∗(X; F)(ℋ; F) = F ℋn ∩ Ker ∂n :Cn(X; F) Cn − 1(X; F) ,

Bn inf∗
C∗(X; F)(ℋ; F) = F ℋn ∩ ∂n + 1 Cn + 1(X; F) .

The Betti number bn(ℋ, X) is defined as

bn(ℋ, X) = dimHn
emb, X(ℋ; F)

= dim Zn inf∗
C∗(X; F)(ℋ; F) − dim Bn inf∗

C∗(X; F)(ℋ; F) .
(15)

To compute Zn inf∗
C∗(X; F)(ℋ; F) , we can consider the restriction of the linear transformation 

∂n :Cn(X; F) Cn − 1(X; F) to F ℋn . Namely, consider F ℋn  as a vector spaces over F  with a 

basis given by the elements in ℋn. For each element x in ℋn, express ∂n(x) as an element in 

Cn − 1(X; F) = F Xn − 1 . This defines a linear transformation

∂n ∣ :F ℋn F Xn − 1

whose kernel is Zn inf∗
C∗(X; F)(ℋ; F) .

For computing Bn inf∗
C∗(X; F)(ℋ; F) , we can first consider ∂n + 1 Cn + 1(X; F)  as a subspace 

of the vector space Cn(X; F) = F Xn , which is spanned by linear combinations of ∂n+1(σ) for 

σ ∈ Xn+1. Then consider the decomposition
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F Xn = F ℋn ⊕ F Xn\ℋn .

Let

p:F Xn F Xn\ℋn

be the projection. Then Bn inf∗
C∗(X; F)(ℋ; F)  is the kernel of the restriction

p ∣ : ∂n + 1 Cn + 1(X; F) F Xn\ℋn .

If the data (ℋ, X) is large, the complexity of direct computation of H*
emb, X(ℋ, F ) increases. 

The existing computational methods for chain complexes aim at reducing this complexity.

3. Super-persistent homology.

The general idea of super-persistent homology is to use the geometry of Δ-sets and super-

hypergraphs as tools to investigate collections of subgraphs in a given graph and to get 

topological features from for example graphic data and various networks. We will see that a 

Δ-set model performs much better than models using simplicial complexes, particularly for 

exploring topological features arising from the structures related to clustering.

3.1. General theory.

Let G be a directed/undirected (multi)-graph. Let ℱP(G) denote the set of all finite 

subgraphs of G.

Definition 3.1. A Δ-set X is said to be dominated by G if there exists an injective map 

ϕ:X ℱP(G) such that ϕ(di(σ)) is a subgraph of ϕ(σ) for any 0 ≤ i ≤ n and any element σ ∈ 
Xn.

A super-hypergraph (ℋ, X) is said to be dominated by G if its parental Δ-set X is dominated 

by G.

For a Δ-set X dominated by G, we identify the elements σ in X with its image ϕ(σ), a 

finite subgraph of G, and so we consider X as a collection of finite subgraphs of G. A 

super-hypergraph (ℋ, X) dominated by G can be described as a multi-layered collection of 

families of finite subgraphs X = {X0, X1, …}, where each Xi is a family of finite subgraphs, 

with face operations di: Xn → Xn−1, 0 ≤ i ≤ n, satisfying the Δ-identity, and a marked graded 

subset ℋ of X.

To introduce persistence we need a scoring scheme on G. For graphs P and Q, denote by P ⪯ 
Q if P is a subgraph of Q.

Definition 3.2. A scoring scheme on a directed/undirected (multi-)graph G is a function
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M:ℱP(G) ℝ

from the set of finite subgraphs of G to the real numbers.

A scoring scheme M on G is called regular if for every P, Q ∈ ℱP(G) such that P ⪯ Q,

M(P ) ≤ M(Q) .

Definition 3.3. A persistent Δ-filtration of a Δ-set X over ℝ is a family of Δ-subsets X(t) of 

X, indexed by t ∈ ℝ, such that

1. X(s) is a Δ-subset of X(t) for s ≤ t, and

2. X = ⋃t ∈ ℝX(t).

A persistent super-hypergraph filtration of a super-hypergraph (ℋ, X) over ℝ is a family of 

super-hypergraphs (ℋ(t), X(t)), indexed by t ∈ ℝ, such that

1. The indexed family X(t), t ∈ ℝ, is a persistent Δ-filtration of X over ℝ,

2. ℋ(t) = ℋ ∩ X(t).

Proposition 3.4. Let G be a directed/undirected (multi-)graph with a regular scoring scheme 
M:ℱP(G) ℝ. Let (ℋ, X) be a super-hypergraph dominated by G. Then

X(t) = M−1(( − ∞, t]) ∩ X, t ∈ ℝ

is a persistent Δ-filtration of X, and the pair

(ℋ(t), X(t)) = M−1(( − ∞, t]) ∩ ℋ,M−1(( − ∞, t]) ∩ X , a ∈ ℝ

is a persistent super-hypergraph filtration of (ℋ, X).

Proof. The proof follows from the definitions. □

Let F  be a fixed choice of a ground field. A (graded/ungraded) persistence module over F , 

denoted by V , is defined to be an indexed family of (graded/ungraded) F  vector spaces

V = (V (t) ∣ t ∈ ℝ)

and a bi-indexed family of (graded/ungraded) linear maps

vst :V (s) V (t) ∣ s ≤ t

which satisfy the composition law
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vst ∘ vrs = vrt

whenever r ≤ s ≤ t, where vtt is the identity map on V (t). For graded vector spaces V and 

W, a graded linear map of degree q is a collection of linear maps ϕ = ϕn n ∈ ℤ with ϕn: Vn 

→ Wn+q. A persistence morphism Φ of dregree q between two graded persistence modules 

V  and W is a collection of graded linear maps of degree q, ϕt:V (t) W (t) ∣ t ∈ ℝ , such that 

the diagram

commutes for s ≤ t. If q = 0, then Φ is called a persistence morphism. A persistence 

morphism between ungraded persistence modules is defined in the same way.

Definition 3.5. Let (ℋ, X) be a super-hypergraph. Let A be an abelian group. The relative 

embedded homology H*
emb, X(X, ℋ; A) with coefficients in A of (ℋ, X) is defined by

H*
emb, X(X, ℋ; A) = H* C*(X; A)/inf*

C∗(X; A)(ℤ(ℋ) ⊗ A)

≅ H* C*(X; A)/sup*
C∗(X; A)(ℤ(ℋ) ⊗ A) .

Now we assume that all homology is taken with coefficients in a ground field F . Therefore, 

we can simplify our notation of homology groups H*( − ; F) to H*( − ). Let (ℋ, X) be a 

super-hypergraph dominated by a directed/undirected (multi-)graph G with a scoring scheme 

M. Let X(t) = M−1(( − ∞, t]) ∩ X and ℋ(t) = M−1(( − ∞, t]) ∩ ℋ. Then

ℍ*(X) = H*(X(t)) ∣ t ∈ ℝ
ℍ*

emb, X(ℋ) = H*
emb, X(ℋ(t)) ∣ t ∈ ℝ and

ℍ*
emb, X(X, ℋ) = H*

emb, X(X, ℋ(t)) ∣ t ∈ ℝ
(16)

are graded persistence modules. The short exact sequence of chain complexes
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inf∗
C∗ X t F ℋ t

jt
C∗ X t pt

C∗ X t /inf∗
C∗ X t F ℋ t

induces a long exact sequence on homology, which can be written as an exact triangle of 

graded persistence modules

(17)

where J and ℙ are persistence morphisms and the boundary homomorphism ∂ is persistence 

morphism of degree −1.

Definition 3.6. Let (ℋ, X) be a super-hypergraph dominated by a directed/undirected 

(multi-)graph G with a scoring scheme. Then the three graded persistence modules listed 

in (16) together with the exact triangle (17) give a super-persistent homology of (ℋ, X) with 

coefficients in a field F .

Equally, we could call ℍ*
emb, X(ℋ) super-persistent homology. However, the definition given 

above can carry more information than the embedded homology of the super-hypergraph, as 

we will now illustrate.

Let J ⊆ ℝ be an interval. The interval persistence module FJ = (J(t) ∣ t ∈ ℝ) is defined by

J(t) = F  if t ∈ J ,
0  otherwise 

with double indexed linear maps

jst =  id   if s, t ∈ J ,
0  otherwise.

For an ungraded persistence module V , the q-th suspension ΣqV  is a graded persistence 

module with

ΣqVn = V  if n = q
0  otherwise.

A graded interval persistence module is a q-th suspension of the ungraded interval 

persistence module for some q.

Recall that a Δ-set X is called of finite type if Xn is finite for each n.
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Theorem 3.7 (Structure Theorem). Let (ℋ, X) be a super-hypergraph dominated by a 
directed/undirected (multi-)graph G with a scoring scheme. Suppose that X is of finite type. 

Then the graded persistence modules ℍ*(X), ℍ*
emb, X(ℋ) and ℍ*

emb, X(X, ℋ) admit direct sum 

decompositions in terms of graded interval persistence modules and these decompositions 
are unique up to the order of factors in the category of graded persistence modules.

Proof. For any graded persistence module V , there is a canonical decomposition

V ≅ ⊕
n ∈ ℤ

ΣnVn

in the category of graded persistence modules, where Vn is considered as an ungraded 

persistence module. It suffices to show that ℍn(X), ℍn
emb, X(ℋ) and ℍn

emb, X(X, ℋ) admit 

unique factorization as ungraded persistence modules for each n.

Since X is of finite type, the chain complex C∗(X) is of finite type and so is any subcomplex 

or quotient complex. The assertion follows from the structure theorem on persistence 

modules [46, Theorem 1.1] derived from the classical Gabriel Theorem in representation 

theory [65]. □

We now briefly summarise persistence diagrams/persistent barcodes; for which this structure 

theorem is prominent in the calculations, for more details see [39].

Let V  be an ungraded persistence module with a unique decomposition (up to the order of 

factors)

V = ⊕
α ∈ I

FJα

in terms of interval persistence modules, where I is the index set. Then the multiset given by 

inf Jα , sup Jα ⊂ ℝ2, α ∈ I, is the persistence diagram (or barcode) of V , denoted by dgm V . 

In our case, under the hypothesis that X is of finite type, we have three persistence diagrams.

Corollary 3.8. Let (ℋ, X) be a super-hypergraph dominated by a directed/undirected 
(multi-)graph G with a scoring scheme and let X be of finite type. Then there are three 

multi-layer persistence diagrams dgm ℍn(X) , dgm ℍn
emb, X(ℋ)  and dgm ℍn

emb, X(X, ℋ)  for n 

≥ 0. □

The exact triangle (17) yields matrix data on the correlations of the multi-layer persistence 

diagrams as follows. Let

Φ:V W
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be a persistence morphism between ungraded persistence modules. Suppose that both V
and W satisfy the unique factorization property with respect to decompositions in terms of 

interval persistence modules and let

V = ⊕
α ∈ IV

FJα and W = ⊕
β ∈ IW

FJβ .

Let Φα,β be the composite

Φα, β:FJα Φ F
Jα

W  proj  FJβ .

According to [26, Proposition 16, Lemma 22], the set of persistence morphisms between 

two interval persistence modules is either a 1-dimensional vector space or 0. Thus 

Φα, β:FJα FJβ is either a generator for Hom FJα, FJβ , or zero. Let the index sets IV and IW 

be totally ordered and define the correlation matrix

M(Φ) = mα, β α ∈ IV , β ∈ IW

of Φ by setting

mα, β =
1  if Φα, β ≠ 0
0  otherwise.

The correlation matrix is an analogue of adjacency matrix of graphs, which gives 

correlations between dgm(V) and dgm(W) by adding directed edges. In summary, we have 

the following information data from super-persistent homology.

Proposition 3.9. Let (ℋ, X) be a super-hypergraph dominated by a directed/undirected 
(multi-)graph G with a scoring scheme. Suppose that X is of finite type. Then there are 

three multi-layer persistence diagrams dgm ℍ*(X) , dgm ℍ*
emb, X(ℋ)  and dgm ℍ*

emb, X(X, ℋ)

together with three correlation matrices M(J), M(ℙ) and M(∂) between them. □

An important point is that we allow ℋ to be an arbitrary graded subset of X. If we fix X 
to be a Δ-set dominated by a graph G with a scoring scheme and allow ℋ to be random, 

then dgm ℍ*(X)  is a deterministic barcode, while dgm ℍ*
emb, X(ℋ)  and dgm ℍ*

emb, X(X, ℋ)

are random. The correlation matrices may help further analyse the data.

Let X be a fixed Δ-set dominated by a directed/undirected (multi-)graph. It would be 

also interesting to consider the set ℙ X  of the isomorphic classes of persistence modules 

(16) for all graded subsets ℋ of X. The inclusions ℋ′ ⊆ ℋ ⊆ X induce a morphism of 

super-hypergraphs ℋ′, X (ℋ, X). By taking super-persistent homology, one would get 

a quiver structure on the set ℙ X . Moreover, there is an interleaving distance between 

persistence modules introduced in [38] corresponding to bottleneck distance [39], which 
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gives the structure of a metric space on the quiver ℙ X . The following example illustrates 

that ℙ X  may give more robust information.

Example 3.10. Let X be a Δ-set. Let ℋ be a graded subset of X consisting of non-face 
elements σ ∈ X. Here a non-face element σ means that there does not exist any element τ ∈ 
X such that diτ = σ for some i. In other words, ℋ is given by removing all face elements in 

X. It is straightforward to see that

H*
emb, X(ℋ) = F(ℋ) ∩ ℤ C*(X) .

Therefore, the embedded homology can detect the cycles contributed from non-face 

elements. From the exact triangle (17), a part of the boundaries in C∗(X) can also be 

detected. These detected elements would contribute to bar-codes through persistence. Hence, 

in addition to the persistence on the homology H∗(X), ℙ X  can decode more topological 

features.

3.2. The ordinary persistent homology.

The classical persistent homology refers to the persistent homology of point cloud data using 

the Vietoris-Rips complex, the Čech complex or the witness complex. Persistent homology 

has been used as an important topological tool in data science. In this subsection, we rewrite 

on the classical persistent homology from the viewpoint of graphs with scoring schemes, and 

then give a natural generalization to persistent homology for graphs with reference maps to 

metric spaces.

3.2.1. The classical persistent homology.—A point cloud dataset is a finite set ℒ
with a reference map that embeds ℒ into a finite dimensional Euclidean space ℝm, thus 

we can consider ℒ as a finite subset in ℝm. We now use a graph with a scoring scheme 

to describe the (persistent) Vietoris-Rips complex, Čech complex and witness complex in a 

unified way. The graph G ℒ  is the complete graph having ℒ as its vertex set. Intuitively, 

we assign one and only one edge to any two distinct points in ℒ. The main point is to show 

that different scoring schemes on G ℒ  can obtain different persistent complexes that are 

currently widely used in TDA [36]. Below we give the scoring schemes for the Vietoris-Rips 

complex, the Čech complex, the strong witness complex and the weak witness complex. Let 

Λ = l0, l1, …, ln ⊆ ℒ be a subset of ℒ.

For x ∈ ℝm, denote by B(x, r) the closed ball of radius r centered at x. Define the following 

scoreing schemes on Λ:

1. The Vietoris-Rips scoring is given by

MVR(Λ) = 1
2sup d li, lj ∣ li, lj ∈ Λ ⊆ ℝm . (18)

The balls B(l0, r), …, B(ln, r) pairwise intersect if and only if the score 

MVR(Λ) ≤ r.
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2. The Čech scoring is defined by

MČ(Λ) = infx ∈ ℝmmax d(x, l) ∣ l ∈ Λ ⊆ ℝm . (19)

Note that

∩
i = 0

n
B li, r ≠ ∅

if and only if the score mČ(Λ) < r.

3. The Strong witness scoring is defined by

MW s
(Λ) = infx ∈ ℝm supy ∈ Λd(x, y) − infz ∈ ℒd(x, z) . (20)

4. The Vietoris-Rips Strong witness scoring is given by

MWVR
s

(Λ) = sup0 ≤ i < j ≤ n infx ∈ ℝm max d x, li , d x, lj − infz ∈ ℒd(x, z)
.

(21)

5. The Weak witness scoring is given by

MWw
(Λ) = infx ∈ ℝm supy ∈ Λd(x, y) − infz ∈ ℒ\Λd(x, z) . (22)

6. The Vietoris-Rips weak witness scoring is given by

MWVR
w

(Λ) = sup0 ≤ i < j ≤ n infx ∈ ℝm max d x, li , d x, lj − infz ∈ ℒ\Λd(x, z
) .

(23)

Let X be the clique complex of G ℒ  considered as a Δ-set. In other words, because G 
is complete, X is the set of all nonempty full subgraphs of G ℒ . Here a full subgraph 
H of G is a subgraph H such that the edge set between any two vertices v and w in H 
is equal to the edge set between v and w in G. Choose a linear order on the vertex set 

V G ℒ . Then (X, X) is a super-hypergraph. It is straightforward to check that the persistent 

super-hypergraph filtrations on (X, X) induced by the above scoring schemes coincide with 

the classical persistent filtrations in [36]. Here the witness scoring schemes defined in (3)–

(6) are reformulations from [36, Definition 2.7, Definition 2.8].

3.2.2. Clique persistent homology of graphs with reference maps.—Next, we 

will consider a canonical extension of ordinary persistent homology to the case of graphs 

with reference maps on vertices. Let G be a finite undirected (multi-)graph with a reference 

map that embeds the vertex set V (G) into a finite dimensional Euclidean space ℝm and let H 
be any subgraph. Then, any one of the six scoring schemes in (18)–(23) induces a persistent 

filtration on the clique complex clique(G). This gives the clique persistent homology on G.
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The clique persistent homology on G could, in general, be quite different from the ordinary 

persistent homology of the vertex set of G under the reference map. For instance, if the 

clique complex clique(G) has non-trivial reduced homology, the resulting clique persistent 

homology converges to H∗(clique(G)) as t → ∞, but the ordinary persistent homology 

converges to trivial homology as t → ∞. The ordinary persistent homology of V (G) under 

the reference map is obtained by rebuilding a new graph given by the complete graph on V 
(G), that is, all edges in G are forgotten and the new edges are added in depending on the 

scoring schemes that are obtained through the reference map. On the other hand, when we 

consider the clique complex of G itself, the edges in G are accounted for.

The following example illustrates how clique persistent homology can describe shapes and 

therefore could be useful for data analysis on protein structures or image processing on 3D 

objects with complicated internal structures such as the heart.

Example 3.11. Let X be a polyhedron in ℝm. Let K be a simplicial complex that is 

a triangulation of X and let G be the graph given by the 1-skeleton of the barycentric 

subdivision of K. Let the reference map on G be given by the inclusion of G in ℝm. Then 

the geometric realization of the clique complex clique(G) is homeomorphic to X, and the 

persistent homology of clique(G) converges to H∗(X). In particular, the number of infinite 

persistence modules in the nth persistent homology of clique(G) is equal to the nth Betti 

number of X. Thus the clique persistent homology detects the topological shape of X.

More generally we can remove the embedding hypothesis of reference maps. Let G be a 

finite undirected (multi-)graph and let

f :V (G) ℝm

be a function (without assuming injectivity). We can use pull-back scoring in the following 

sense. Let H be any subgraph of G. Then the image f(V (H)) is a finite subset located in 

ℝm. Let M be a scoring scheme on point cloud data such as one of the six aforementioned 

scoring schemes. Define

Mf(H) = M(f(V (H))) Pull‐back Scoring (24)

which induces a persistent filtration on the clique complex clique(G) depending on the 

reference map f. Different choices of f would result in different persistence diagrams. 

For instance, a constant function does induce a trivial persistence on H∗(clique(G)). The 

flexibility of f could be useful. For example, if f is randomly given, it induces corresponding 

random persistence diagram.

The following example illustrates that a pull-back scoring on clique persistent homology 

may be useful for detecting higher dimensional geometric shapes.

Example 3.12. Let p: E → B be a continuous map between polyhedra E and B. Assume that 

B is a subspace of ℝm. By triangulating B, we pull it back along p do define KE and there is 

a simplicial map p′ : KE → KB such that
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1. KE and KB are simplicial complexes of triangulations of E and B, respectively.

2. Let G(KE) and G(KB) be the graphs given by the 1-skeleton of KE and KB, 

respectively. Then clique(G(KE)) = KE and clique(G(KB)) = KB.

3. p′ is a simplicial approximation to p.

Let the reference map R on V (G(KB)) be given by the inclusion V G KB ⊆ B ⊆ ℝm. Let 

us take the pull-back scoring M on G(KE)). Then the persistent filtration on clique(G(KE)) 

induced by M is the pull-back of the persistent filtration on Clique(G(KB)) induced by R. In 

particular, if p : E → B is a fibre bundle or, more generally, a fibration with fibre F, then 

we have a persistent Leray-Serre spectral sequence convergent to H∗(E). It is well-known in 

algebraic topology that Leray-Serre spectral sequences are an important tool for computing 

H∗(E) starting with H∗(B) and H∗(F).

3.3. Partition homology and persistent partition homology.

The methods of data science are typically aimed at finding structures and patterns within 

large datasets. Being able to glean information about the internal structures of graphical data 

would be useful in solving the typical problems given to machine learning algorithms. For 

example, classification problems, prediction and, in particular, partitioning data into clusters 

[114, Section 1.1.3].

If a collection of subgraphs forms a Δ-set structure, then we can calculate homology. A 

natural question is how to introduce a Δ-set structure on a collection of subgraphs in 

some natural way. More precisely, how to define face operations on subgraphs. We are 

going to show that any clustering on the vertex set can induce canonical face operations 

on subgraphs. For a dataset given by a graph, the topological features on collections 

of subgraphs under the face operations induced by a clustering may help for detecting 

correlations between the clusters.

Let G be a directed/undirected (multi-)graph. Assume that there is a disjoint clustering p on 

the vertex set V (G). In other words, there is a disjoint union

V (G) = ∐
i = 0

m
V i(G)

under the clustering p, where each Vi(G) is a cluster. Let H be a subgraph of G. Then there 

exists a unique sequence (k0, k1, …, kn) with 0 ≤ k0 < k1 < … < kn ≤ m such that V (H) 

∩ Vi(G) ≠ ∅ for i ∈ {k0, k1, …, kn} and V (H) ∩ Vi(G) = ∅ if i ∉ {k0, k1, …, kn}. 

We call H a subgraph of G linked to (n + 1) clusters. Viewing H as an abstract n-simplex, 

we define the jth-face map, dj
p(H), as the full subgraph of H formed after removing all 

of those vertices v ∈ V (H) ∩ V kj(G) together with the edges incident to (or from) such v. 

The resulting subgraph dj
p(H) is linked to n clusters with V dj

p(H) ∩ V kj(G) = ∅. It is 

straightforward to show that the Δ-identity
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di
pdj
p = dj

pdi + 1
p

for i ≥ j holds. The face operation dj
p is induced by the disjoint clustering p.

Now let ℋ be any collection of subgraphs of G. Define ℋn to be the subset of ℋ consisting 

of those subgraphs in ℋ linked to (n + 1) clusters. This gives a graded structure on 

ℋ = ℋn n ≥ 0. Let X(ℋ) be the collection of subgraphs of G given by all of the elements 

in ℋ together with all iterated faces. Then X(ℋ) is a Δ-set and (ℋ, X(ℋ)) is a super-

hypergraph. The resulting homology groups

H*(X), H*
emb, X(ℋ), H*

emb, X(X, ℋ)

are called the partition homology.

In general, X(ℋ) may not be a simplicial complex. In simplicial complexes, the assumption 

that simplices are determined by their vertices is too strict with applications in mind. For 

exploring topological structures arising from disjoint clusterings, a Δ-set is a more suitable 

notion.

In practice, for studying possible correlations between clusters, one could start with a 

collection of one or more subgraphs, ℋ, linked with some or all clusters, and then produce 

the Δ-set X(ℋ). Due to the nature of simplicial homology, higher dimensional homology of 

X, and higher dimensional embedded homology of (ℋ, X) would give topological features 

measuring the group correlations between more clusters. In particular, we have set up the 

Δ-set X(ℋ) such that the homological dimension of a given subgraph H in X is n − 1, where 

n is the number of clusters linked with H.

In theory, we can start with any collection of subgraphs as the initial data ℋ. For instance, 

we can start with ℋ given by all or some of the k-regular subgraphs of G, Eulerian 

subgraphs, traceable subgraphs or Hamitonian subgraphs as initial data for constructing the 

Δ-set X(ℋ). This would give different topological approaches to understanding the internal 

structures of ℋ in addition to what we will survey in Appendix A.

If there is a scoring scheme on G, then we can calculate the super-persistent homology of 

(ℋ, X) called persistent partition homology. A scoring scheme on G can be deterministically 

or randomly given. If a scoring scheme is randomly given, it may not be regular. This means 

that in the induced persistent filtration on X, the graded subset X(t) may not be a Δ-subset 

of X for all t. In this case, the persistence system can be modified replacing chains related to 

the terms X(t) by infimum or supremum chains on X(t). The resulting persistence modules 

and persistence diagrams can be modified accordingly.

From the perspective of data processing, a clustering may be compared against certain 

optimization properties. Currently, we use discrete Morse theory which works well on 
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simplicial complexes and cell complexes [63], and chain complexes [88] with applications 

in data analysis [115]. Moreover, the combinatorial Laplacian operator works well on 

simplicial complexes and chain complexes, where cohomology with coefficients in real 

numbers can be expressed as the null space of the Laplacian operator on cochains [82].

3.4. Other face operations.

We have shown how disjoint clusterings can induce face operations on subgraphs. This 

construction works well as a theory which unifies many constructions such as the clique 

complex and the neighborhood complex. However, if we are interested in subgraphs having 

some special properties, this construction has some disadvantages. For instance, if we are 

interested in collections of finite connected subgraphs H, then the subgraph of H given by 

removing some of its vertices may not be connected. In the following subsection, we will 

discuss some alternative ways of getting natural constructions of face operations.

3.4.1. Link-blowup face operations.—The idea of link-blowup face operations 

comes from geometric constructions on tubular neighborhoods of submanifolds or regular 

neighborhoods of subcomplexes. Let H be a subgraph of some graph G and let S be a subset 

of the vertex set V (H). If we remove S from H, then we could add some edges from the 

working graph G to make a blowup for the subgraph H \ S. A natural way to add these 

edges is to consider the neighbors of vertices of S in H and to add the edges between these 

neighbors from the working graph G.

Let G be a directed/undirected (multi-)graph and let EG(v, w) denote the edge set between 

v and w for vertices v, w ∈ V (G). Let S ⊆ V (G) be a subset and define the induced 
subgraph of S in G, G[S], to be the full subgraph of G having S as its vertex set. The closed 
neighborhood set N[S] is defined by

N[S] = S ∪ u ∣ u ∈ V (G) adjacent to a vertex v ∈ S

namely, N[S] is the union of the neighborhoods of vertices v ∈ S. The link set of S in G is

Lk(S) = N[S]\S .

Let H be a subgraph of G and let S ⊆ V (H) be a subset of the vertex set of H. The 

link-blowup2 of H along S is defined as

H[V (H)\S] ∪ G[Lk(S) ∩ V (H)] .

Note that the graph H[V (H) \ S] ∪ G[Lk(S) ∩ V (H)] has the same vertex set of H[V (H) \ 

S].

2This definition is taken from a geometric setting. We may consider the subgraph G[N[S]] as a regular neighborhood of S. Then Lk(S) 
are the vertices located in the “boundary” of the regular neighborhood. Geometrically, we add all of edges in G joining vertices in 
Lk(S) ∩ V (H) to form a blowup on H[V (H) \ S].
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Now suppose that there is a disjoint clustering p on the vertex set V (G) so that there is a 

disjoint union

V (G) = ∐
i = 0

m
V i(G)

under p with each Vi(G) a cluster. Let H be a subgraph. Then there exists a unique sequence 

(k0, k1, …, kn) with 0 ≤ k0 < k1 < … < kn ≤ m such that V (H) ∩ Vi(G) ≠ ∅ for i ∈ {k0, k1, 

…, kn} and V (H) ∩ Vi(G) = ∅ if i ∉ {k0, k1, …, kn}. Let V j(H) = V (H) ∩ V kj(G). Define 

the link-blowup face operation as

dj
lk(H) = H V (H)\V j(H) ∪ G Lk V j(H) ∩ V (H) (25)

that is, the link-blowup of H along V j(H) = V (H) ∩ V kj(G) for 0 ≤ j ≤ n.

Remark 3.13. For helping to understand the link-blowup face operation, one can give a 

coloring on the vertices of G so that the vertices in each cluster has the same color under the 

disjoint clustering p, and perform the link-blowup on the vertices having the same color.

Proposition 3.14. Given a disjoint clustering p, let dj
lk be defined as above. Then

di
lkdj

lk = dj
lkdi + 1

lk (26)

for i ≥ j.

Proof. Let H be a subgraph of G. Let Vj denote Vj(H) defined as above and let dj denote dj
P, 

the induced face operations from the disjoint clustering p. We will use the fact that

V dl
lk(H) = V dl(H) = V (H)\V l .

Now

dilk djlk(H) = djlk(H) V djlk(H) \V i + 1 ∪ G Lk V i + 1 ∩ V djlk(H)
= djlk(H) V djlk(H) \V i + 1 ∪ G Lk V i + 1 ∩ V (H)\V j
= djlk(H) V djlk(H) \V i + 1 ∪ G Lk V i + 1 ∩ V (H)\V j\V i + 1

because Lk(Vi+1) ∩ Vi+1 = ∅.

The term dj
lk(H) V dj

lk(H) \V i + 1  is the induced subgraph of dj
lk(H) on its vertex subset

V djlk(H) \V i + 1 = V (H)\V j\V i + 1 .
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By definition, dj
lk(H) = H V (H)\V j(H) ∪ G Lk V j(H) ∩ V (H) . Restricting to the vertex 

subset

W = V (H)\V j\V i + 1

we have

djlk(H) V djlk(H) \V i + 1 = H[W ] ∪ G Lk V j ∩W

and so

dilk djlk(H) = H[W ] ∪ G Lk V j ∩W ∪ G Lk V i + 1 ∩W .

By the same arguments,

djlk di + 1
k (H) = H[W ] ∪ G Lk V j ∩W ∪ G Lk V i + 1 ∩W .

□

3.4.2. Face operations on subgraphs with marked starting-vertices.—Let H be 

a subgraph of G and let S be a subset of the vertex set V (H). When we remove S from 

H, we wish to add as few edges as possible to make a blowup for the subgraph H \ S with 

the aim of preserving particular properties of H. For this construction, consider an extension 

of the working graph G by adding an extra edge between any two distinct vertices v, w 
in G labeled as ∞vw. This is an analogue to the idea of compactification in geometry. To 

showcase this we consider a special family of subgraphs.

Let G be a directed/undirected (multi-)graph.

Definition 3.15. A subgraph with marked starting-vertices of G is a pair (H, SV(H)) 

satisfying the following conditions:

1. H is a subgraph of G,

2. SV(H) is a subset of V (H),

3. Every vertex v of H is reachable by a directed/undirected path out from a vertex 

in SV(H).

In the case of digraphs, one may require further that there are no directed edges in H 
incident into any vertex in SV(H). In this case, SV(H) acts as a source set for H. We want to 

give a description of face operations that is consistent across graphs and digraphs, therefore 

we do not require such an extra condition. There could be some redundant vertices contained 

in SV(H). A trivial example is to choose SV(H) = V (H), in which case there are no face 

operations. If SV(H) is a proper subset of V (H), there will be nontrivial face operations.
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Let (H, SV(H)) be a subgraph with marked starting-vertices of G. We will now recursively 

construct a partition on the vertex set V (H), called the neighborhood-extension partition, in 

the following way. Let V0(H) = SV(H) and suppose that Vj(H) is constructed with j ≥ 0. 

Define Vj+1(H) as follows:

1. In the undirected case, let Vj+1 be the link set of the subgraph H[Vj] in the graph 

H.

2. In the directed case, let Vj+1 be the out-link set of the subgraph H[Vj] in 

the graph H. Here, for a (multi-)digraph Γ and a subgraph Γ′, the closed out-
neighborhood set of Γ′ in Γ is the union of Γ′ and the out-neighbors of Γ′ in Γ, 

denoted by Nout(Γ′). The out-link set of Γ′ is defined as

Lkout  Γ ′ = Nout  Γ ′ \V Γ ′ .

For a subset S of V (Γ), let Nout(S) = Nout(Γ[S]) and Lkout(S) = Lkout(Γ[S]).

If (H, SV(H)) is a finite subgraph with marked starting-vertices of G, then above recursive 

construction will stop after finitely many steps, hence this gives a finite partition on V (H).

To define face operations taking marked starting-vertices in to account, we embed G into a 

larger graph Ĝ, where V (Ĝ) = V (G) and E(Ĝ) is the extension of E(G) by adding one edge 

∞vw for v ≠ w ∈ V (G) in the undirected case, and by adding two directed edges ∞vw from 

v to w and ∞wv from w to v for vertices v ≠ w ∈ V (G) in the directed case.

Now let (H, SV(H)) be a finite subgraph with marked starting-vertices of Ĝ with the 

neighborhood extension partition

V (H) = ∐
i = 0

n
V i .

We assume that H ≠ ∅ and so V0 = SV(H) ≠ ∅. From the recursive definition, Vi+1 ≠ ∅ 
implies that Vi ≠ ∅. Therefore, Vn is the last nonempty set in the recursive procedure.

We define the face operation dj
SV on H, 0 ≤ j ≤ n, with n > 0 as follows:

1. d0
SV(H) = H V (H)\V 0  with SV d0

SV(H) = V 1.

2. dn
SV(H) = H V (H)\V n  with SV dn

SV(H) = V 0.

3. For 0 ≤ j < n,

dj
SV(H) = H V (H)\V j ∪ ℰH V j − 1, V j + 1

with SV dn
SV(H) = V 0, where ℰH V j − 1, V j + 1  is a subset of the edge set E(Ĝ) 

consisting of ∞vw for v ∈ Vj−1 and w ∈ Vj+1 satisfying the property that there 

does not exist an edge from v to w in H3.
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Let V−1 = Vn+1 = ∅. Then we can write in a unified way that

dj
SV(H) = H V (H)\V j ∪ ℰH V j − 1, V j + 1  with SV dj

SV(H) = V δj, 0 (27)

for 0 ≤ j ≤ n, where δa, b is the Kronecker δ symbol.

We need to show that (dj
SV(H), SV dj

SV(H) ) is also a finite subgraph with marked starting-

vertices of Ĝ. This is straightforward because we add in ∞vw for possible missing edges 

in H from Vj−1 to Vj+1. We also need to show that the Δ-identity holds for these face 

operations. Let i ≥ j. For i > j, we get

di
SV dj

SV(H) = dj
SV di + 1

SV (H) = H V (H)\V j\V i + 1 ∪ ℰH V j − 1, V j + 1 ∪ ℰH V i, V i + 2 .

For i = j, we have

dj
SV dj

SV(H) = dj
SV dj + 1

SV (H) = H V (ℋ)\V j\V j + 1 ∪ ℰH V j − 1, V j + 2 .

This gives the following proposition.

Proposition 3.16. In the set of finite subgraphs with marked starting-vertices of Ĝ, the 

operations dj
SV are well-defined and satisfy the Δ-identity for face operations. □

Now let ℋ be a collection of finite subgraphs with marked starting-vertices of G. Under the 

extension G ≺ G, ℋ is also a collection of finite subgraphs with marked starting-vertices of 

Ĝ. Let X be the collection of finite subgraphs with marked starting-vertices of Ĝ given by all 

elements in ℋ together with all of their iterated faces under face operations dj
SV. Then X is 

Δ-set dominated by Ĝ. We call (P(G) ∩ X, X) the super-hypergraph generated by ℋ.

3.4.3. Revisiting path complexes.—We now come back to the work of Yau’s school 

on path (co-)homology of graphs [76]. Following their terminology, a simple digraph G is a 

pair (V, E), where V is any set and E ⊆ {V × V \ diag}. We will show that dj
SV can be used 

to describe the face operations given in [76]. To do this, we consider the “largest quotient 
simple digraph” G on Ĝ. Let V (G) = V (G) = V , and for any ordered pair (v, w) ∈ V × V \ 

diag, identify all the directed edges from v to w to give one such directed edge. Since G is 

a simple graph, G can be chosen to be a quotient of Ĝ. Then G is a subgraph of the simple 

digraph G. Let v, w ∈ V (G) = V (G) be two distinct vertices. If there exists a directed edge 

evw from v to w, then ∞vw is identified with evw. Otherwise ∞vw is isolated. The graph 

G can be considered as the completion of G in the sense that it is the smallest complete 

simple digraph containing G. Here a complete simple digraph means a simple digraph with 

the property that for any two distinct vertices v and w, there are exactly two directed edges 

with one from v to w and another from w to v.

3In the directed case, we only consider directed edges from a vertex in Vj−1 to a vertex in Vj+1 in H. If there are no directed edges in 
H from v ∈ Vj−1 to w ∈ Vj+1, we add ∞vw to join them with direction from v to w.
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Replacing Ĝ by G, our face operation dj
SV on paths in G coincides with the face operation 

in [76, Section 4] in the sense that it describes the j-th term in the boundary operators 

for chains and cochains on the path complex. Here, to match the definitions, a regular 

elementary path in [76, Section 4] is a path in G and an allowed regular elementary path 

in [76, Section 4] is a path in the subgraph G. Then one can obtain the same objects by 

going via the definition of path homology in [76] or the definition of embedded homology of 

hypergraphs given above. In the undirected case, the operations dj
SV on paths in G coincide 

with the face operations in [76, Section 5].

For directed multi-graphs (quivers), the operations dj
SV describe the face operations in [77]. 

Similarly to the undirected case, we need to do a certain identification on Ĝ. Following the 

argument in [77, Section 3], for a complete quiver G, ∞vw is identified with the 1-chain 

given by the sum of all directed edges from v to w in G. This would define a chain complex 

on the path complex of a complete quiver. For an arbitrary quiver G, one can embed G 
into its completion Ḡ, and take the infimum chain complex (in Proposition 2.2) of the path 

complex of G in the chain complex of the path complex of Ḡ to define path homology for 

the quiver G, see [77] for details.

As notions of paths and walks are commonly used in data analytics, generalising them 

to higher dimensional combinatorial objects, such as path complexes, could provide new 

tools for various applications. From a data science point of view, a graph G is assumed 

as a working data. Then the path homology gives some topological information on G. 

Using a scoring scheme of G, one could get persistent path homology of G, this gives a 

persistence diagram/barcode of G as a topological feature. However, if the graphic data-set 

G is large, the computational complexity may be an issue. From such a perspective, it would 

be reasonable to consider a selected sub complex, or more generally a selected graded subset 

of the path complex. The general theory developed in this article gives a framework that 

makes it possible to explore topological features from subcomplexes or graded subsets of 

path complexes.

3.5. Descriptions of simplicial homology via Δ-sets.

In this subsetion we only consider mod 2 homology, hence the coefficients are taken in 

F = ℤ/2.

3.5.1. Δ-neural network.—We can interpret a Δ-set as a quiver or network. A similar 

object is a feed-forward neural network, as defined in [141, Section 3.6.1].

Feed-forward neural networks, are the simplest form of artificial neural networks. The 

feed forward neural network was the first and arguably simplest type of artificial network 

devised. In this network, the information moves in only one direction, forward, from the 

input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles 

or loops in the network. In a feed-forward system, processing elements are arranged into 

distinct layers with each layer receiving input from the previous layer and outputting to the 

next layer.
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Let X = {Xn}n≥0 be a Δ-set. Each element in X is considered as a node (vertex), that is, 

the node set X is partitioned by layers labeled by X0, X1,…. For each x ∈ Xn, assign one 

and only one arrow (directed edge) di, x
n :x di(x) for 0 ≤ i ≤ n. This forms a set of arrows 

whose tails lie in Xn and whose heads lie in Xn−1. So it forms a quiver. The following picture 

illustrates the arrows from X2 to X1.

Rephrasing the definition of Δ-set into the terminology of network, a Δ-neural network is a 

quiver with distinct layers of nodes labeled by X0, X1,… such that for each node x ∈ Xn 

with n > 0, there are arrows di, x
n , 0 ≤ i ≤ n, tailed at x and headed at some node di

n(x) ∈ Xn − 1
such that

di
n − 1 dj

n(x) = dj
n − 1 di + 1

n (x) (28)

for 0 ≤ j ≤ i ≤ n − 1. In a Δ-neural network, the information only flows in one direction, from 

input nodes that could be located in different layers to the output nodes.

The adjacency relationship from the nth layer Xn to the n − 1th layer Xn−1 can be described 

by (n + 1) matrices as follows. For x ∈ Xn and y ∈ Xn−1, let

wx, yi =
1  if y = di(x)
0  otherwise 

for 0 ≤ i ≤ n. Let

Wn(i) = wx, yi x ∈ Xn, y ∈ Xn − 1

be a |Xn| × |Xn−1| matrix, which is the matrix for the face operation di : Xn → Xn−1. 

Equation (28) can be rewritten as the following formula

W n(j)W n − 1
t (i) = W n(i + 1)W n − 1

t (j) (29)

for 0 ≤ j ≤ i ≤ n − 1, where At is the transpose of a matrix A.

Let ℋ be a graded subset of the Δ-set X. In our theory of super-hypergraphs, ℋ carries 

part of the Δ-set structure of X. More precisely, the face operation di : Xn → Xn−1 induces 

a partially defined face operation di:ℋn ℋn − 1. By considering this as a network, ℋ
is full subnetwork of the Δ-neural network induced by X, where a full subnetwork is the 

induced network of the nodes of ℋ in the neural network induced by X. Therefore, one can 
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get homology on any full subnetwork of a Δ-neural network using embedded homology of 

super-hypergraphs.

Remark 3.17. The product rule (28) is important to define the boundary operator on 

the chains. But variations are possible. For example, one could vary the product rule for 

weighted simplicial complexes [116], or the boundary operators on cochains could be varied 

to account for twisted de Rham cohomology [56].

3.5.2. Descriptions of mod 2 homology.—We proceed by giving the ideas behind 

the intuition of mod 2 homology of Δ-sets and super-hypergraphs. Let (ℋ, X) be a super-

hypergraph. Then the n-chains on X are linear combinations of the elements in Xn with 

coefficients in ℤ/2. So each n-chain α corresponds to a subset {x1, …, xk} ⊆ Xn given by α 
= x1 + x2 + ⋯ + xk. Since the coefficients are in ℤ/2,

∂(α) = ∑
i = 1

k
∂ xi = ∑

i = 1

k
Σj = 0

n dj xi

which is the trace of the multi-subset {dj(xi) | 0 ≤ j ≤ n, 1 ≤ i ≤ k} of Xn−1. Here the 

multiplicity of y = dj(xi) ∈ Xn−1 is the number of pairs (j′, i′) such that dj′ (xi′) = dj(xi) = 

y, that is, the in-degree of the node y ∈ Xn−1 in the Δ-neural network. Hence we have the 

following proposition.

Proposition 3.18. An n-chain α = x1 + x2 + ⋯ + xk is a mod 2 cycle (that is, ∂(α) = 0) if and 
only if any node in the subset

dj xi ∣ 0 ≤ j ≤ n, 1 ≤ i ≤ k

of Xn−1 has even in-degree. □

This proposition indicates that one can consider the nodes in Xn−1 with even in-degrees in 

search for possible mod 2 cycles in n-chains.

The following proposition follows from the fact that Zn inf∗
C∗(X)(ℋ) = ℤ/2 ℋn ∩ Zn C*(X) .

Proposition 3.19. A mod 2 cycle α = x1 + x2 + ⋯ + xk in the chains Cn(X), with all xi 

distinct represents a cycle for the mod 2 embedded homology Hn
emb, X(ℋ) if and only if 

x1, …, xk ⊆ ℋn. □

An n-chain α = x1 + ⋯ + xk with all xi distinct is a boundary in the chain complex C∗(X) if 

and only if the equation

α = ∂(β)
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where β = y1 + ⋯ + ym with all xi distinct in Xn+1 has a solution. If there is a solution α = 

∂(β), then {x1, …, xk} is the set of nodes in the multi-set {ds(yt) | 0 ≤ s ≤ n + 1, 1 ≤ t ≤ m} 

which have odd in-degrees. This proves the following statement.

Proposition 3.20. An n-chain α = x1 + ⋯ +xk with all xi distinct is a boundary in the mod 2 

chain complex C∗(X) if and only if there exists a subset {y1, …, ym} ⊆ Xn+1 with y1, …, ym 

distinct such that {x1, …, xk} is the set of nodes in the multi-set {ds(yt) | 0 ≤ s ≤ n + 1, 1 ≤ t 
≤ m} which have odd in-degrees. □

Note that Bn inf∗
C∗(X)(ℋ) = ℤ/2 ℋn ∩ ∂ ℤ/2 ℋn + 1 .

Proposition 3.21. Let α = x1 + ⋯ + xk ∈ ℤ/2 ℋn  with x1, …, xk distinct. Then α is a 

boundary in inf∗
C∗(X)(ℋ) if and only if there exists a subset y1, …, ym ⊆ ℋn + 1 with y1, …, 

ym distinct such that {x1, …, xk} is the set of nodes in the multi-set {ds(yt) | 0 ≤ s ≤ n + 1, 1 

≤ t ≤ m} which have odd in-degrees. □

4. Potential applications.

4.1. Potential applications in bio-molecular structures and drug design.

Applications of persistent homology to molecular biology has achieved great success 

in computer aided drug design [106, 131, 137]. According to [137, Paragraph 0005], 

theoretical models for the study of the structure-function relationships of biomolecules 

are conventionally based on purely geometric techniques. Mathematically, these approaches 

make use of local geometric information such as: coordinates, distances, angles, areas and 

curvatures for the physical modeling of biomolecular systems. However, conventional purely 

geometry based models tend to be overwhelmed by too much structural detail and are 

frequently computationally intractable. Topological approaches to determining the nature of 

structure-function relationships of biomolecules provide a dramatic simplification compared 

to conventional geometry based approaches [137, Paragraph 0053].

However, persistent homology neglects chemical and biological information during 

topological simplification and is thus not as competitive as geometry or physics-based 

alternatives in quantitative predictions [136]. Element-specific persistent homology, or 

multi-component persistent homology built on colored biomolecular networks, has been 

introduced to retain chemical and biological information in topological abstractions [30]. 

This approach encodes biological properties—such as hydrogen bonds, van der Waals 

interactions, hydrophilicity, and hydrophobicity—into topological invariants, rendering a 

potentially revolutionary representation for biomolecules, according to the SIAM news 

[136].

Recently, we have proposed hypergraph based persistent cohomology (HPC) for molecular 

representations in drug design [93]. In our HPC model, the protein-ligand interactions at 

the molecular level are represented as a series of element-specific hypergraphs. Figure 

5 illustrates our hypergraph model for a protein-ligand complex with ID 3PB3. Its 

binding core region is divided into a series of element-specific atom-sets. From these 
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atom sets, element-specific hypergraphs can be constructed to characterize the interactions 

between protein atom-sets and ligand atom-sets at the level of atoms. Further, we have 

proposed a distance-related filtration process as illustrated in Figure 6. With the embedded 

homology model for hypergraphs, we have developed the hypergraph persistent homology 

and cohomology for molecular characterization. Molecular features and descriptors can 

be obtained from hypergraph persistent barcodes and hypergraph enriched barcodes, and 

this information can be further combined with machine learning models, in particular, 

the gradient boosting tree (GBT). Our HPC-GBT model has performed well for protein-

ligand binding affinity predictions. Its Pearson correlation coefficients (PCCs) for the three 

PDBbind datasets, including PDBbind-v2007, PDBbind-v2013 and PDBbind-v2016, are 

consistently better than traditional machine learning models with molecular descriptors.

A molecular representation based on super-hypergraphs could give more flexibility in 

molecular structure and interaction characterization. Unlike simplicies and hyperedges, 

super-hyperedges can incorporate local topological structures, that is, subgraphs. This 

provides a unique way to identify and describe molecular motifs, function groups, 

and domains. Further, boundary operators can be defined through vertex-deletion and 

edge-deletion, which provide ways to define different types of homology groups and 

thus characterize different types of inner topological connections. Moreover, different 

filtration processes can be defined by considering different scoring functions, which in 

turn will induce different super-hypergraph based persistent homology/cohomology. Finally, 

molecular descriptors/fingerprints can be generated from super-hypergraph models and 

further combined with machine learning models for molecular data analysis in materials, 

chemistry and biology.

4.2. Potential applications in networks with group interactions.

The abstract of a recent review article [12], citing more than 800 references, reads,

The complexity of many biological, social and technological systems stems from 

the richness of the interactions among their units. Over the past decades, a 

variety of complex systems has been successfully described as networks whose 

interacting pairs of nodes are connected by links. Yet, from human communications 

to chemical reactions and ecological systems, interactions can often occur in groups 

of three or more nodes and cannot be described simply in terms of dyads…We 

review the measures designed to characterize the structure of these systems and 

the models proposed to generate synthetic structures, such as random and growing 

bipartite graphs, hypergraphs and simplicial complexes. We introduce the rapidly 

growing research on higher-order dynamical systems and dynamical topology, 

discussing the relations between higher-order interactions and collective behavior…

Here we can see that simplicial complexes, a fundamental notion in algebraic topology, 

has been extensively used for providing representations of higher-order interactions [12, 

First paragraph of Section 2.1.3]. In some practical problems, the limitations of simplicial 

complexes due to completeness and vertax-determination present a problem. Hypergraphs 

provide a more general and unconstrained description of higher-order interactions [12, 

Paragraphs 2–4, page 7].
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Recent progress shows that simplicial homology can be naturally extended as a homology 

theory on hypergraphs [23]. This provides topological invariants for geometric models using 

hypergraphs which have had successful applications in biomolecular structures and drug 

design, described in the previous subsection.

As an extension of hypergraphs, super-hypergraphs would provide more a general and 

unconstrained description of higher-order interations. If we assume that the higher-order 

interactions take place among the nodes in a working graph, which indicates the pre-

existence of the pairwise bonds or the primary pairwise links between the nodes, then the 

most general and unconstrained description of higher-order interations would be a collection 

of finite subgraphs of the working graph, which is exactly the topic explored in this article.

5. Conclusion.

In this paper, we introduced a new mathematical theory which allows for topological 

invariants to be applied to broader range of problems, in particular enriching the methods 

of TDA. This new theory is suitable for both graph data and point cloud data analysis, 

while overcoming various limitations of the standard persistent homology theory such as 

the topological noise and the constraining requirements to use data with metric. Using this 

new theory, the upgraded pipeline of TDA becomes indetermiinistic in nature allowing for 

flexibility and adjustments. Moreover, various new topological invariants can be constructed 

in our flexible setting. As highlighted in Subsections 3.2–3.5, based on this topological 

approach, more computational tools of algebraic topology will find applications in data 

science. For example, in algebraic topology the computation of simplicial homology of a 

space can be largely simplified by homotopically deforming it into a simpler shape, see [80].

As each simplex of a simplicial complex is uniquely determined by its vertieces, simplicial 

complexes cannot model collections of subgraphs. To explore topological structures on 

space of subgraphs, in this paper we use Δ-sets. Furthermore, we introduce the notion of 

sup-hypergraph, as a generalization of hypergraphs, which sets a stage for the exploration of 

topological structures on subgraphs. The homology theory of super-hypergraph, established 

in Section 2, endows any collection of subgraphs with topological features.

In this work we also use the notion of scoring scheme. As highlighted in Section 3, scoring 

schemes are used to introduce persistence in an abstract setting without the use of any 

notion of metric. The classical constructions in persistent simplicial homology theory can be 

recovered using various scoring schemes.

We should point out that this work presents a theoretic research resulting in a framework 

that provides an upgraded topological approach to data science, with the aim to foster further 

interactions between topology and data science.

Further research on super-hypergraphs is needed as this is a new and challenging 

mathematical concept. From a topological perspective there are many interesting questions 

to consider such as, the algebraic structure of the homology of these objects as well 

as the homotopy aspects of super-hypergraphs that are far less-understood. Furthermore, 

developments in the topological study of super-hypergraphs will feed into new innovative 
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methods in TDA and other wide-ranging applications. Additionally, the computational 

complexity of the homology theory of super-hypergraphs is comparable to that of simplicial 

homology, therefore algorithms methods stemming from our approach will be similarly 

feasible as classical computation.
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Appendix A.: Topological structures associated to graphs.

Throughout mathematics numerous topological and categorical structures on graphs have 

been explored. In this appendix, we will survey various simplicial complexes associated to 

graphs that allow us to consider the space of subgraphs of a given graph from a topological 

perspective.

A directed (multi-)graph (or multi-digraph or quiver) is a pair G = (V (G), E(G)) together 

with a function end: E(G) → V (G) × V (G) given by

endG(e) (i(e), t(e))

where V (G) is the vertex set, E(G) is the edge set, i(e) is the initial vertex of the edge e, and 

t(e) is the terminal vertex of e.

An undirected (multi-)graph4 is a pair G = (V (G), E(G)) together with a function endG : 

E(G) → (V (G) × V (G))/Σ2 given by

endG(e) i(e), t(e)

where (V (G) × V (G))/Σ2 is the orbit set of (V (G) × V (G)) modulo the Σ2-action given by 

permuting the coordinates, V (G) is the vertex set, E(G) is the edge set, endG is an incidence 
relation that associates with each edge of G an unordered pair of, possibly equal, elements of 

V (G). In this definition of a directed/undirected (multi-)graph, the empty graph is allowed.

A subgraph H of a directed/undirected (multi-)graph G is a graph H = (V (H), E(H)) with V 
(H) ⊆ V (G), E(H) ⊆ E(G) and endH = endG|E(H).

4We follow the definition of a multi-graph in [51, 10]. In some literature such as [113], a multi-graph is defined by requiring the edge 
set to be a multi-set. The difference is that the edges between two vertices are labeled by E(G) together with the incidence map endG. 
Such a definition coincides with the definition on quiver (as directed multi-graph) [121].
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A directed/undirected graph G is simple if endG is injective and the image endG(E(G)) is 

disjoint from the diagonal Δ(V (G)) in V (G) × V (G) or (V (G) × V (G))/Σ2. This means that 

there are no loops or multi-edges between two vertices.

From the perspective of applications, the initial data is represented by a given graph G and 

let ℋ be a collection of subgraphs of G. Our goal is to investigate the possible topological 

structures on ℋ. However, before we address this general question, we review some classical 

constructions of simplicial complexes associated to graphs.

A.1. Clique complexes.

Typically, the study of collections of subgraphs has focused on measuring how strongly 

connected different parts of a graph are. A clique (or flag) complex and an independence 

complex (the clique complex of the complementary graph) are topological spaces that 

contain information about the connectivity of a graph. These are widely used objects in 

mathematics and its applications, see [4, 11, 58, 60, 87] for some recent works.

A complete graph is a simple graph G = (V (G), E(G)) with the property that every pair of 

distinct vertices of G are adjacent in G.

A clique of a graph G is a complete subgraph of G.

The clique complex of a simple graph G is the abstract simplicial complex Clique(G) whose 

simplices consist of all cliques of G. An n-simplex σ in Clique(G) is a clique of G with (n 
+ 1) vertices, and a face of a simplex σ ∈ Clique(G) is a complete subgraph obtained by 

deleting some vertices of σ.

When working with a multi-graph G = (V, E), the set of cliques Clique(G) is generally not a 

simplicial complex as this requires that all simplices are uniquely determined by their vertex 

set. For example, let G be a multi-graph with two vertices v and w and two edges e1 and e2 

joining them. Then

Clique(G) = e1, e2, v, w

has two 1-simplices ē1 and ē2 sharing the same vertices v and w, see Figure 7. Therefore, a 

more suitable object for describing the topological structure of Clique(G) is a Δ-set.

For an undirected multi-graph G, the Δ-set structure on Clique(G) is given in the following 

way. Assign a total ordering to V (G) and define Cliquen(G) to be the set of cliques of G that 

have exactly n+1 vertices. For σ ∈ Cliquen(G) with vertices v0 < v1 < ⋯ < vn, define diσ = σ 
− vi, the subclique of σ obtained by deleting the vertex vi and the edges incident to vi for 0 ≤ 

i ≤ n. It is straightforward to check that Clique∗(G) forms a Δ-set5.

5The definition of the Δ-set Clique∗(G) depends on the given order on vertices of G, but the homology of Clique∗(G) is independent 
on this choice because the geometric realization of a Δ-set is a Δ-complex [139, Proposition 1.39, p. 51] in the sense of Hatcher [80].
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A.2. Neighborhood complexes and Jonsson’s graph complexes.

We proceed by considering a collection of simplicial complexes associated to graphs which 

will naturally lead to new constructions suitable for studying spaces of subgraphs. We start 

with a famous construction of the neighborhood complex of a graph. This was introduced 

by Lovász [94] in 1978 in his work on Kneser’s conjecture which laid the foundations of 

topological combinatorial by introducing homotopy theoretical methods to combinatorics. 

Nowadays, the research area of topological combinatorics is very active and fruitful. The 

generalization by Lovász of the neighborhood complexes to the Hom complex [7, 89], which 

has the same homotopy type as the clique complex of an exponential graph [54, Remark 

3.6], was used in a breakthrough work of Babson and Kozlov [8] to solve the Lovász 

conjecture which relates the chromatic number of a graph with the homology of its Hom 

complex. Our theory is based on the exploration of the interplay between topology and 

combinatorics.

The neighborhood complex N(G) of a graph G is a simplicial complex on vertex set V (G) in 

which an n-simplex is a subset of V (G) with n + 1 vertices such that all vertices are adjacent 

to an other vertex in G.

As we discussed in the previous subsection, Clique(G) may not be a simplicial complex for 

a multi-graph G. However, for any graph G the neighborhood complex N(G) is a simplicial 

complex.

The topology on the geometric realization of N(G) can be quite different from that of 

Clique(G) in general. For example, let G be a graph with three vertices a, b, c and two 

edges given by ab and bc. Then N(G) = a, c , a , b , c , which is not connected, see 

Figure 8b, and Clique(G) = {{a, b}, {b, c}, {a}, {b}, {c}} which is connected, see Figure 

8a. This indicates that there are various topological structures one could construct for a given 

working graph G.

In [84, p.26], Jonsson defines a graph complex in the following way. A graph complex6 on 

a finite vertex set V is a family ℰ of simple graphs on the vertex set V such that ℰ is closed 

under deletion of edges; if H ∈ ℰ and e ∈ H, then H − e ∈ ℰ. Identifying H = V , E ∈ ℰ
with the edge set E, we may interpret ℰ as a simplicial complex. There are potentially 

different graph complexes on a given vertex set V because the collection of simple graphs 

can be chosen in a different way.

With a slight modification to Jonsson’s definition, namely adding a hypothesis that the 

simple graphs in ℰ are subgraphs of G, we retain the central ideas of Jonsson’s construction 

but also gain control over the space of subgraphs. In contrast to clique complexes and 

neighborhood complexes, the face operations in Jonsson’s graph complex are given by 

deleting edges. Also, the construction of a graph complex is not fully determined by G 
as there are various choices for families ℰ of simple subgraphs of G that can form graph 

complexes. A non-deterministic characteristic of these complexes might be useful in data 

science as the family ℰ can be adjusted for each iteration of the analysis.

6Kontsevich also introduced graph complexes with a different defintion [86].
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A.3. Path complexes.

Considering hypergraphs as a combinatorial generalization of simplicial complexes allows 

the construction of the path complex of a given digraph.

The topological exploration of path complexes was first introduced by Shing-Tung Yau and 

his collaborators in a series of papers [73, 74, 75, 76, 68, 72, 69, 70, 71, 77]. Motivated by 

ideas from physical applications, A. Dimakis and F. Müller-Hoissen attempted to construct 

the cohomology of digraphs [53, 52]. They considered path complexes on an intuitive level 

without a precise definition of the corresponding cochain complex.

In this subsection, we survey the main ideas of path complexes of simple digraphs.

Let G be a simple digraph. A directed path in G is an alternating sequence λ = v0α1v1α2v2 

⋯αkvk, with all vertices vi distinct for 0 ≤ i ≤ k and the edges, αi, are incident out of vi−1 

and incident into vi for 1 ≤ i ≤ k.

Let P be the set of directed paths in G. We want to associate a combinatorial object to G 
built out of directed paths. Since G is simple, there is at most one edge joining two distinct 

vertices. So a directed path λ = v0α1v1α2v2⋯αkvk is determined by its vertices v0, v1, …, 

vk. Thus we consider λ = v0α1v1α2v2⋯αkvk as an abstract k-simplex {v0, v1, …, vk}. For 

P to be a simplicial complex, any nonempty subset of {v0, v1, …, vk} must be a simplex. In 

other words, any subsequence vi0, vi1, vi2, … , vit , 0 ≤ i0 < i2 < ⋯ < it ≤ k of λ must forms a 

directed path in G. This is not true in general. For example, if v0α1v1α2v2 is a directed path 

in G, then there may not exist an edge incident out of v0 and incident into v2 in G, that is, 

(v0, v2) may not form a directed path. Therefore, a structure to consider on the set P is that 

of a hypergraph.

The set P becomes a hypergraph with its vertex V (G) and the hyperedge set given by 

directed paths in G. By definition, an abstract simplicial complex is a hypergraph with the 

additional condition that any nonempty subset of a hyperedge is a hyperedge. Therefore, 

a hypergraph can be viewed as a simplicial complex with some faces missing, where a 

hyperedge of cardinal k + 1 is a k-simplex in the terminology of simplicial complexes. The 

approaches in [53, 52] and Yau’s school lead to the embedded homology of hypergraphs as 

an extension of simplicial homology theory as introduced in [23].

By allowing vertex repetition in directed paths, we get directed walks. The walk complex 

W(G) for a digraph or quiver (i.e. directed multi-graph) G, is similar to the path complex but 

with we replace directed paths with directed walks. Therefore, W(G) is an extension of the 

notion of the nerve of a category in the following sense. Consider a category C as a quiver 

with the composition operation on head-to-tail arrows. Then the nerve of category C is the 

walk complex of quiver C.

A.4. Vertex-deletion topology.

Let G be a directed/undirected (multi-)graph. Let ℋ be a collection of finite subgraphs of 

G. Assign to ℋ the grading function fv:ℋ ℕ = 0, 1, 2, …  given by the size, namely, for 
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H ∈ ℋ, let fv(H) = |V (H)| − 1. Let ℋn = fv
−1(n). Next step is to define face operations to 

obtain a topological structure. There are several natural approaches available.

A.4.1. Primary vertex-deletion topology.

Assume that the vertex set V (G) is totally ordered. A geometric way to define face 

operations is to delete a vertex together with all edges incident to this vertex. More precisely, 

let H ∈ ℋn with vertices v0, v1, …, vn. Define di(H) for 0 ≤ i ≤ n to be the subgraph of H by 

deleting vi together with any edges joining with vi. This vertex deletion does not ensure that 

di(H) lies in ℋn − 1. Let

Δ(ℋ) = di1di2⋯dit(H) H ∈ ℋ, 0 ≤ i1 < i2 < ⋯ < it ≤ V (H) ∣ − 1 (30)

be the family of subgraphs of G obtained from ℋ together with iterated faces on the 

subgraphs in ℋ. It is straightforward to check that Δ(ℋ) is a Δ-set, and ℋ ⊆ Δ(ℋ) is a graded 

subset7. Hence (ℋ, Δ(ℋ)) is a super-hypergraph.

Definition A.1. Let G be a directed/undirected (multi-)graph. Let ℋ be a collection of 

finite subgraphs of G. The primary vertex-deletion topological structure on ℋ is the super-

hypergraph structure defined as above.

Similarly to clique complexes on multi-graphs, Δ(ℋ) may not be a simplicial complex 

in general. Therefore, the notion of a super-hypergraph is the most natural and suitable 

topological description for ℋ.

The super-hypergraph (ℋ, Δ(ℋ)) has a structure of fibrewise topology as follows.

Let

V (ℋ) = V (H) ∣ H ∈ ℋ  and V (Δ(ℋ)) = V (H) ∣ H ∈ Δ(ℋ)

be a family of finite subsets of V (G). Then V (Δ(ℋ)) is a simplicial complex, and V (ℋ) is a 

hypergraph whose simplicial closure is V (Δ(ℋ)). Moreover we have a Δ-map

V :Δ(ℋ) V (Δ(ℋ))

and a morphism of super-hypergraphs

V :ℋ V (ℋ) .

By taking geometric realization, we have a continuous map

V : Δ(ℋ) V (Δ(ℋ))

7From the Δ-identity (5), Δ(H) contains all iterated faces on the subgraphs in ℋ, which is the smallest family of subgraphs of G 
containing ℋ that is closed under the face operation.
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which is a fibrewise topology in the sense of James [83].

Clique complexes are typical examples of primary vertex-deletion topology, where ℋ is 

given by cliques in a grpah G. In this case, ℋ itself is already a Δ-set so ℋ = Δ(ℋ) and the 

map V :ℋ V (ℋ) is an isomorphism.

The neighborhood complex is another good example that admits a fibrewise topological 

structure as follows. Let

N(G) = H ∣ H is a subgraph of G and V (H) ∈ N(G) . (31)

Then it is straightforward to check that

N(G) = Δ(N(G)) and V (N(G)) = N(G) (32)

with a continuous map

V : N(G) N(G) (33)

which is called a fibrewise neighborhood topology of G.

A.4.2. Secondary vertex-deletion topology.

Consider the path complex of a simple digraph G and its face operation di. Let λ = 

v0α1v1α2v2⋯αnvn be a directed path. Then di(λ) is given by deleting the vertex vi. 

However, we have to add back the directed edge from vi−1 to vi+1 provided that it exists 

to ensure that di(λ) ∈ Pn. This gives a different type of topological structure, in which we 

need to redefine the edges to match the vertex removal of the face operation. This can be 

generalized in the following way.

Let G be a directed/undirected simple graph and let ℋ be a family of finite subgraphs of 

G. Let the vertex set V (G) be totally ordered. For H ∈ ℋ, as a finite subgraph of G with 

vertices v0 < v1 < ⋯ < vn, define diH to be the subgraph of G by removing vi from H 
and adding the edge between vi−1 and vi+1 if it exists. Then ℋ forms a super-hypergraph 

in a similar way as in the case of primary vertex-deletion topology. Here the notion of a 

super-hypergraph is necessary because there could be two subgraphs in ℋ sharing same 

vertices. For instance, if there is an edge joining two distinct vertices v and w in G, then the 

subgraphs consist of two vertices v and w with the edge joining them and without the edge 

joining them, respectively, are different.

Definition A.2. Let G be a directed/undirected simple graph. Let ℋ be a collection of 

finite subgraphs of G. The secondary vertex-deletion topological structure on ℋ is the 

super-hypergraph structure defined as above.

The secondary vertex-deletion topology naturally applies to subgraphs of a simple graph. 

However, to construct a topological structure on a space of subgraphs of a multi-graph in 

this a way would be more complicated.

Grbić et al. Page 54

Found Data Sci. Author manuscript; available in PMC 2023 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are other possible topological structures on special families of subgraphs. 

Analogously to various techniques developed in simplicial homotopy theory, for special 

families of subgraphs having good patterns, one could delete more than one vertex under 

each elementary face operation di.

A.5. Edge-deletion topology.

Let G be a directed/undirected (multi-)graph and ℋ be a collection of finite subgraphs of 

G. Another reasonable way to assign the grading function fe:ℋ ℕ = 0, 1, 2, …  is by 

counting edges, that is, for H ∈ ℋ let fe(H) = |E(H)| − 1. Then ℋn = fe
−1(n). Note that a 

subgraph H of G is uniquely determined by its edge set E(H). We do not need to use the 

notion of a Δ-set for describing topological structure on ℋ from edge-deletion. If ℋ is 

closed under edge-deletion operation, then it forms a simplicial complex, which is exactly a 

path complex in the sense of Jonsson. Otherwise, ℋ is only a hypergraph.

For a fixed graph G, the edge-deletion topology could be quite different from the vertex-

deletion topology because already the grading functions fv and fe could be quite different. 

The edge-deletion operation may not commute with the vertex-deletion operation, so the 

relationship between the edge-deletion topology and the vertex-deletion topology is not 

immediately clear. To better understand these structures, more exploration of the relationship 

between different topological structures on families of subgraphs is needed.

Finally, we should point out that there are many other ways to introduce topological 

structures on subgraphs, for example following ideas related to Hom complexes. The frontier 

of research in topological combinatorics has potential to provide new mathematical tools in 

data science.

Appendix B.: The connections of the concepts in the article.

There are various concepts in the article, including new concepts such as super-hypergraph. 

We highlight the connections between them in this appendix.

The following statements are well known and important:

• A simple graph is a 1-dimensional simplicial complex.

• A multi-graph with its vertices totally ordered is a 1-dimensional Δ-set/Δ-

complex.

• A quiver (multi-digraph) is a 1-dimensional Δ-set/Δ-complex.

In the following table, the arrow ↪ means an inclusion of sets.
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Figure 1. 
Illustration of TDA and TDA-based learning models for data analysis. Generally speaking, 

all TDA-based learning models have four components, including data, topology, feature and 

learning. More specifically, data is collected and preprocessed firstly. Second, topological 

representations and models are constructed to describe the inner structural and interactional 

information of the data. Note that efficient representations are of key importance to machine 

learning. Third, a series of topological features are generated by using persistent homology 

models. Topological-invariant-based features provide a better characterization of the most 

fundamental and intrinsic properties of the data, thus they have a better generalizability and 

transferability for machine learning models. Finally, the topological features are combined 

with machine learning models for various classification and regression tasks.
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Figure 2. 
Illustration of a super-hypergraph model constructed from the protein-ligand complex (ID: 

3E6Y). The ligand (green color) is a drug that is used to cure the disease caused by the 

protein (red color). The potency and efficacy of the drug is directly determined by the 

atomic interactions between the ligand and the protein. Traditionally, atomic interactions 

are modeled by a graph (A). However, graphs can only characterize pair-wise interactions 

(by edges) and fall short for many-body interactions. Hypergraph models (C) use the 

hyperedge, i.e., a set of vertices, to represent many-body interactions and have demonstrated 

great power for biomolecular data analysis (See Section 4 for details). Mathematically, 

a n-hyperedge contains n + 1 vertices in it. Note that 1-hyperedges are denoted by red 

ellipses and n-hyperedges (n > 1) are represented by blue ellipses. The super-hypergraph 

(D) provides an even more flexible representation and incorporates detailed local topology 

within each hyperedge. Note that the hyperedge in super-hypergraph is a subgraph, i.e., a 

set of vertices together with edges. If we only consider vertex part of the subgraph, the 

super-hypergraph reduces to a hypergraph.
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Figure 3. 
(a) The hypergraph ℋ, where the cross indicates that a vertex is missing. (b) Δ(ℋ), the 

smallest Δ-set that contains ℋ.
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Figure 4. 
The hypergraph ℋ is a standard 2 simplex where the dotted edge is missing.
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Figure 5. 
Illustration of an element-specific hypergraph model for a protein-ligand complex (ID 

3PB3). The binding core region of the complex is decomposed into a series of element-

specific atom-sets. The interactions between protein atom-sets and ligand atom-sets are 

modeled as a series of hypergraphs.
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Figure 6. 
Illustration of a hypergraph-based filtration process for the protein-ligand complex with ID 

3PB3.
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Figure 7. 
The multi-graph G, which looks the same as the clique complex Clique(G).
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Figure 8. 
(a) The graph G, which is the same as Clique(G). (b) The neighborhood complex of G, 

N(G).
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Table 1.

Topological structures associated to graphs

Constructions Complex Type Face Type

clique complex of a simple graph simplicial complex vertex-deletion

clique complex of a multi-graph Δ-set vertex-deletion

neighborhood complex simplicial complex vertex-deletion

Jonsson’s graph complex simplicial complex edge-deletion

path complex of a simple graph hypergraph vertex-deletion

path complex of a multi-graph/quiver super-hypergraph vertex-deletion
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