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Abstract

The vast amount of gene expression profiling data of bulk tumors and cell lines available in

the public domain represents a tremendous resource. For any major cancer type, expression
data can identify molecular subtypes, predict patient outcome, identify markers of therapeutic
response, determine the functional consequences of somatic mutation, and elucidate the biology
of metastatic and advanced cancers. This review provides a broad overview of gene expression
profiling in cancer (which may include transcriptome and proteome levels) and the types of
findings made using these data. This review also provides specific examples of accessing public
cancer gene expression datasets and generating unique views of the data and the resulting

genes of interest. These examples involve pan-cancer molecular subtyping, metabolism-associated
expression correlates of patient survival involving multiple cancer types, and gene expression
correlates of chemotherapy response in breast tumors.

Introduction

For more than 20 years, the research community has extensively profiled human cancers

for gene expression, with the associated data representing thousands of studies being made
available in the public domain. Of the various “-omics” levels in cancer that can be profiled,
transcriptomics would have the most data generated to date, given the early adoption by
academic laboratories of DNA microarrays, starting in the late 1990s12. With the advent of
next-generation sequencing®, RNA sequencing (RNA-seq) as a transcriptomics platform has
become increasingly common. Gene expression would include protein as well as mMRNA,
where the two may not always be strongly correlated®:°. Historically, proteomics profiling
has represented additional challenges over transcriptomics, given the diverse chemistries
that proteins represent, requiring experienced laboratories. Reverse phase protein arrays—
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typically representing 150-300 targeted proteins—have been more widely adopted as a
proteomics profiling platform in recent years®. Also, recent technological advancements
in mass spectrometry-based proteomics technologies, profiling thousands of proteins, have
accelerated its application to study greater and greater numbers of cancer specimens’:8,

In addition to gene expression profiling data generated by individual laboratories for smaller
and more independent studies, major team science efforts have generated multi-omics

data on thousands of human tumors of various cancer types defined by tumor lineage

or histology. The Cancer Genome Atlas (TCGA) consortium, which went from 2006 to
2018, generated multi-omics data, including RNA-seq and RPPA proteomic data, on over
10,000 human tumors®19, Parallel to TCGA efforts focused mainly within the United States,
the International Cancer Genomic Consortium (ICGC) carried out multi-omics profiling

of thousands of cancers on a similar scale, with the cooperation of multiple countries!?.

In recent years, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the
International Cancer Proteogenome Consortium (ICPC) have generated multi-omics data on
over 2,000 human cancers®, including proteomics by mass spectrometry platform.

The vast amount of gene expression profiling data made available by published studies and
consortiums represents a most valuable resource for ongoing studies. As no original study
can comprehensively mine an expression profile dataset for all genes of potential relevance,
future studies may analyze previously published data with different questions in mind from
those of the original authors. This review will provide a broad overview of gene expression
profiling in cancer and the types of findings made using these data. The figures of this
review showcase specific examples of accessing public cancer gene expression datasets and
generating unique views of the data and the resulting genes of interest. Due partly to space
constraints, this review focuses on expression profiling of bulk tumors and cell lines, where
single-cell RNA sequencing (ScCRNA-seq) represents another expression platform profiling
individual cells within a tumor12,

subtyping

Due in part to the advent of gene expression profiling technologies, it is now universally
understood that multiple and distinct molecular subtypes would exist within any given
cancer type as defined by tissue of origin. Early studies of breast cancer using DNA
microarrays!314 revealed five major gene expression-based subtypes: luminal A, luminal
B, ERBB2+, basal-like, and normal-like. These subtypes reflected previous observations

of breast cancer subtypes based on histology2, with the luminal subtypes expressing

the estrogen receptor, denoting sensitivity to estrogen therapy, and the ERBB2+ subtype
expressing the Her2 receptor, denoting sensitivity to therapies blocking Her2. Breast cancer
might represent the most well-known example of molecular subtypes having therapeutic
implications. Gene expression profiling of other tissue-based cancer types has also defined
molecular subtypes existing within these diseases. For example, for most cancer types
studied by TCGA consortium, expression-based subtypes could be defined1>.16, These
subtypes may involve histologic features of the cancer cells (e.g., basal, luminal, or
squamous characteristics), cancer cell differentiation level, associated DNA-level mutations,
or infiltration of non-cancer cells (including immune cells or fibroblasts).

Cancer J. Author manuscript; available in PMC 2024 January 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Creighton

Page 3

Beyond identifying molecular subtypes within tissue-based cancer types, pan-cancer
analyses can define subtypes that may either align closely with cell or tissue of origin®7

or would transcend tumor lineage®12:18:19 One of the advantages of team science efforts
such as TCGA is that tumors from different cancer types are often profiled by the same
laboratory using the same analytical platform. This aspect should allow cross-cancer type
analyses defining molecular subtypes and associated pathways relevant to multiple cancer
types. Figure 1 provides an example of using TCGA data to define pan-cancer molecular
subtypes, reflecting the tissue of origin (Figure 1a) or transcending tissue of origin (Figure
1b), depending on the analytical approach used. In our pan-cancer study of TCGA RNA-
seq datal®, we classified 10224 cancers, representing 32 major types, into ten molecular-
based subtypes or “classes,” whereby we first computationally removed expression patterns
representing dominant tissue or histologic effects. For example, one of our pan-cancer
subtypes expressed neuroendocrine markers such as CHGA. Another subtype represented
basal-like breast cancer and MY C expression. Two of our subtypes expressed mesenchymal
markers (e.g., VIM). Another subtype expressed immune checkpoint pathway markers (e.g.,
CD274) and molecular signatures of immune infiltrates. Using mass spectrometry-based
proteomics data from CPTAC and ICPC, we could similarly identify pan-cancer subtypes
reflected in the mRNA data, but with notable exceptions®19. For example, a proteomic-
based subtype expressed proteins in the complement pathway, distinct from the subtype
expressing lymphocytic markers.

Prognostic gene signatures

Gene expression profiles of tumor samples taken from the initial surgery can predict the
patient’s eventual outcome. Early studies first demonstrated this means of prognostication
in breast cancer, establishing a 70-gene prognosis profile that could segregate patients

into good versus poor prognosis2%-21, consistent with patient follow-up data. Studies

from other groups could establish prognostic gene signatures in most other cancer types,
including lung?223, prostate?4:25, colon?®, medulloblastoma?’, leukemia28, lymphoma?®,
and so on. Gene signature information has generally represented an independent factor

in predicting disease outcome, along with relevant clinical variables such as age, tumor
size, histology, pathological grade, etc.2% Given the clinical application of cancer patient
prognosis, commercial gene panel assays with genes selected based on gene expression
profiling data, have been developed and approved for clinical use, such as the Oncotype DX
assays for breast39, colon3!, and prostate32 cancers. A prognostic gene signature may consist
of a discrete number of genes, often a function of statistical methods and cutoffs. At the
same time, many more genes not included in a given signature may also have prognostic
information.

In addition to their potential for clinical application, prognostic gene signatures can

provide molecular clues regarding the biological drivers and pathways underlying aggressive
cancers. Genes that may inform tumor biology would not be limited to the top ~100 most
significant genes but could additionally involve hundreds of genes that meet statistical
significance for survival association. An example of gaining insight from gene survival
correlates involves my work with TCGA consortium in clear cell renal cell carcinoma33,
where we defined molecular correlates of patient survival at mRNA, microRNA, protein,
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and DNA methylation levels. When viewed in the context of metabolism, aggressive renal
cancers demonstrated evidence of a metabolic shift, involving downregulation of TCA cycle
genes, decreased AMPK and PTEN, upregulation of the pentose phosphate pathway and
glutamine transporter genes, and increased acetyl-CoA carboxylase33. Along these lines,
Figure 2 of this review shows a pathway diagram representing core metabolic pathways,
with the genes denoting any survival associations at the mRNA level as observed in breast
cancer3*, clear cell renal cell carcinoma33, or across the entire TCGA pan-cancer dataset3°.
Other pathways would underlie prognostic gene signatures, which might be uncovered,

for example, by domain knowledge or by using methods and software such as Gene Set
Enrichment Analysis (GSEA)3.

Correlation with drug response in cell lines

Cancer cell lines have historically been the most commonly used models for studying
cancer biology. Using /n vitro cell line models would be a typical first step in validating
functional gene targets or drug responses in the laboratory, where results may be further
investigated using more complicated /n vivo models. Extensive molecular data (including
MRNA, protein, copy number alteration, and somatic mutation), gene knockout data, and
drug response data have been generated across over 1000 human cancer cell lines. These
data are available via team science efforts, including the Cancer Cell Line Encyclopedia
(CCLE)37-38 and the Genomics of Drug Sensitivity in Cancer (GDSC)3? projects. GDSC
datasets include half maximal inhibitory concentration (IC50) data on over 400 drugs across
cell lines, denoting which cell lines are most or least sensitive to a given drug /n vitro. Gene
expression data may be integrated with drug IC50 data to define gene correlates of drug
response. CCLE data include corresponding CRISPR and RNAI data?®4!, denoting which
cell lines depend on a specific gene for proliferation. These resources may be combined

to identify new gene targets with functional roles in a subset of cell lines for follow-up
functional studies. For example, the ERBBZ gene has high expression in cell lines most
sensitive to either HER2 inhibitors3® or loss of HER2 function. Candidate gene targets
involving other drugs and other cell lines may be similarly identified.

Therapeutically predictive gene signatures in patient tumors

Cancer cell lines represent models that would capture some but not all aspects of cancer
cells within patient tumors. Breast cancer perhaps provides the best-known examples of
therapeutically predictive markers, namely estrogen receptor and HER2 (ERBB2), with high
expression predicting patient response to therapies targeting these receptor pathways. Gene
expression profiling datasets of human tumors, combined with treatment data, including
patient response, could yield signatures of therapeutic response involving up to hundreds

of genes. Patient treatment response data may include short-term as well as long-term
responses. With long-term response data, there is a need to distinguish gene markers that
would be therapeutically predictive versus those that are merely prognostic. In identifying
markers of treatment response, numerous studies have carried out gene expression profiling
of pre-treatment breast tumor biopsies from patients treated with neoadjuvant chemotherapy,
with patient response recorded at the end of treatment#2-48, Many of the gene expression
markers from these studies are associated with basal-like breast cancer, as this subtype tends
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to be more responsive to chemotherapy“®. For Figure 3 of this review, we assembled a
compendium of eight different public breast cancer expression datasets. We used this to
define a top set of genes correlated with pathologic chemotherapy response, independent of
molecular subtype (Figure 3a). By enrichment analysis®?, these genes represent functional
gene categories of interest to cancer biology (Figure 3b). In addition, one can combine
expression data from human tumors with expression data from cell lines having drug
response data to identify treatment response markers that arise in both settings*®.

Integration of genome with transcriptome or proteome

Expression profiling data can be integrated with DNA-level somatic mutation data to
examine the functional consequences of specific mutations. For example, gene copy
alterations in cancer directly and widely impact gene expression, as these alterations
represent a dosage effect in how much a gene can be transcribed®l. Molecular pathways

in cancer involve multiple genes and pathway intermediates. For a given pathway, somatic
mutation—including point mutations, insertions-deletions, and copy number alterations—
may impact different genes in different tumors®2. The gene expression level often reflects
the downstream consequences of mutation, where the diverse set of alterations at the
pathway signaling level would converge upon the same set of transcriptionally regulated
genes®3-56, Cell line models can identify the top set of genes altered in expression when

a specific pathway is experimentally perturbed. These genes can then define pathway
signatures by which tumors or cell lines with expression data may be scored, with higher
signature scoring indicative of higher pathway activity®’. Gene signatures of pathways

can also help discover unexpected connections involving genes previously unrealized or
underappreciated as members of the given pathway. We demonstrated this approach in our
multi-omics survey of the PISK/AKT/mTOR pathway across TCGA cancers, whereby /DH1
and VHL mutations, previously underappreciated as impacting the pathway, were strongly
associated with increased pathway activation®®.

The impact of somatic alterations on gene expression is not limited to the gene coding
regions. The non-coding genome provides the regulatory framework of the coding genome,
and non-coding somatic alterations often impact the expression of nearby genes. One
well-known example of this involves TERT, where specific point mutations or structural
rearrangement breakpoints that occur directly upstream of 7ERT can result in up-regulation
of the gene®8-60, Recently, the Pan-Cancer Analysis of Whole Genomes (PCAWG)
consortium comprehensively surveyed the non-coding somatic landscape of 2658 tumors
from TCGA and ICGC, 1220 of these tumors having RNA-seq data®1-63. Few genes with
“hotspot” non-coding mutations (i.e., non-coding mutations at a specific coordinate that
recurrently occur across many tumors) were found, which included 7ER753. On the other
hand, somatic structural variation showed a widespread impact on the transcription of
hundreds of genes, where structural variant breakpoints may fall at different coordinates

in relation to the gene but which can alter regulation by various mechanisms, including
enhancer hijacking and TAD disruption82. In addition, non-coding point mutations that

fall within a wider genomic region, as opposed to recurrent hotspot mutations targeting a
specific nucleotide, can similarly impact the expression of certain genes54.
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Expression profiling of advanced and metastatic cancers

To date, the vast majority of tumors with expression data in the public domain or available
through large-scale efforts such as TCGA are primary tumors. Metastatic tumors, on the
other hand, represent a more advanced cancer that has left its primary site to grow elsewhere
in the body. By some estimates, as much as 90% of cancer deaths result from metastasis®®.
There is a need to understand better the genes and processes involved in metastasis. Public
repositories such as the Gene Expression Omnibus (GE0)®6 provide expression profiling
data on tumor metastases from individual published studies. These include data allowing for
paired metastasis versus primary comparisons within the same patient87-68, to help assess the
changes associated with metastatic cancer cells. Pan-cancer multi-omics initiatives to profile
tumor metastases from multiple cancer types include the recent MET5006° and POG57070
studies of 500 and 570 patients, respectively. The POG570 datasets include patient treatment
information. As advanced and metastatic tumors involve patients who have typically been
heavily treated at this stage, these data offer the opportunity to assess gene expression
features associated with specific therapies’9-71.

Future directions

More and more gene expression profiling data on cancers will continue to go into the public
domain. Expression profiling data from different studies representing different cellular
contexts may be re-analyzed, with the individual results sets brought together in interesting
ways to gain insights into cancer biology and therapeutic approaches. Data from cancer

cell lines or from PDX models’? could be integrated with data from human tumors, e.g.,

to identify gene targets for follow-up bench experiments. Bulk tumor expression profiles
represent a mixture of cancer and non-cancer cells. By profiling individual cells within

the tumor, the sScRNA-seq platform provides insights into the tumor cell populations and
how these may change over time or with treatment. At the same time, sScRNA-seq studies
often do not involve many samples or patients, where a study may need large numbers to
establish robust associations. With all the available expression data, more sophisticated data
portals could make the results available and accessible to non-computational researchers,
e.g., making data for gene-level results available by a point-and-click user interface’3:74,

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pan-cancer molecular subtypes asidentified using different analytical approaches.
(a) Across 9716 tumors represented in TCGA datasets, TCGA Network previously defined

28 pan-cancer subtypes closely following the cancer tissue of origin®. With the tumors
ordered by molecular subtype, the heat map shows differential MRNA expression patterns
(values normalized across all cancers to standard deviations from the median) for a

select set of genes representing pathways of particular interest: MYC, oncogene; MKI/67,
proliferation marker; CHGA, marker of neuroendocrine tumors; H/F1A, transcription factor
inducing hypoxia; CD274, PD-L1 gene and immunotherapy target; V/M, vimentin gene and
marker of mesenchymal cells; ZEB1, transcription factor activating epithelial-mesenchymal
transition. (b) Using an alternate analytical approach to define molecular subtypes that
would transcend tumor lineage and tissue of origin, we could classify TCGA tumors into
ten major subtypes!®. The heat map shows differential mMRNA expression patterns (values
normalized within each cancer type to standard deviations from the median) for the same
set of genes from part a. While TCGA RNA-seq datasets allow for cross-cancer type
comparisons, as carried out in defining the subtypes in part a% an alternative approach

to molecular classification, represented in part b, involves computationally subtracting the
gene expression differences between cancer types!8. As applied to TCGA RNA-seq data,
this alternative approach had the effect of consolidating the individual subtypes that might
be discoverable in individual cancer types into super-types or pan-cancer “classes” that
transcend tissue or histology distinctions.
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Figure 2. Gene expression correlates of cancer patient survival involving metabolic pathways.
Gene expression correlates of patient survival can be examined for clues as to the

molecular biology underlying the more aggressive cancers. Pathway diagram representing
core metabolic pathways33:72, with corresponding mRNA correlations with patient survival.
Red and blue shading respectively represent the association of increased mMRNA expression
with worse or better survival, by univariate Cox. For each gene, survival correlations across
three cancer expression profiling datasets are represented: breast cancer dataset from Pereira
et al3* (left, n=1904 patients, overall survival endpoint), renal cell carcinoma dataset from
TCGA (middle, n=417 patients, overall survival endpoint), pan-cancer dataset from TCGA
(right, n=10152 patients, overall survival endpoint, p-values correcting for cancer type).
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Figure 3. Gene expression correlates of therapeutic response to chemotherapy in breast cancer
patients.

(a) Numerous studies have carried out gene expression profiling of pre-treatment breast
tumor biopsies from patients treated with neoadjuvant chemotherapy, with patient response
recorded at the end of treatment#2-48. As part of this review, we assembled a compendium of
eight separate datasets from the above studies, representing 1240 tumor expression profiles
(GEO accession numbers provided in Data File S1). All datasets were generated using the
same Affymetrix gene array platform. In the same manner as carried out in our previous
studies®15.76, we transformed log2 gene expression values to standard deviations from the
median within each dataset, removing batch effect differences among datasets. We assessed
the correlation of expression with pathologic chemotherapy response (path CR) for each
gene feature after correcting for Pam50 subtype’8 by linear modeling. The heat map shows
expression patterns for a top set of 295 gene features (p<0.001, out of 22269 total). (b)
Selected significantly enriched GO terms’’ within the genes higher in breast tumors from
patients with path CR (from part a). Enrichment p-values and numbers of genes in the path
CR-associated gene set are indicated for each GO term. Enrichment p-values by one-sided
Fisher’s exact test.
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