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Abstract

The vast amount of gene expression profiling data of bulk tumors and cell lines available in 

the public domain represents a tremendous resource. For any major cancer type, expression 

data can identify molecular subtypes, predict patient outcome, identify markers of therapeutic 

response, determine the functional consequences of somatic mutation, and elucidate the biology 

of metastatic and advanced cancers. This review provides a broad overview of gene expression 

profiling in cancer (which may include transcriptome and proteome levels) and the types of 

findings made using these data. This review also provides specific examples of accessing public 

cancer gene expression datasets and generating unique views of the data and the resulting 

genes of interest. These examples involve pan-cancer molecular subtyping, metabolism-associated 

expression correlates of patient survival involving multiple cancer types, and gene expression 

correlates of chemotherapy response in breast tumors.

Introduction

For more than 20 years, the research community has extensively profiled human cancers 

for gene expression, with the associated data representing thousands of studies being made 

available in the public domain. Of the various “-omics” levels in cancer that can be profiled, 

transcriptomics would have the most data generated to date, given the early adoption by 

academic laboratories of DNA microarrays, starting in the late 1990s1,2. With the advent of 

next-generation sequencing3, RNA sequencing (RNA-seq) as a transcriptomics platform has 

become increasingly common. Gene expression would include protein as well as mRNA, 

where the two may not always be strongly correlated4,5. Historically, proteomics profiling 

has represented additional challenges over transcriptomics, given the diverse chemistries 

that proteins represent, requiring experienced laboratories. Reverse phase protein arrays—
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typically representing 150–300 targeted proteins—have been more widely adopted as a 

proteomics profiling platform in recent years6. Also, recent technological advancements 

in mass spectrometry-based proteomics technologies, profiling thousands of proteins, have 

accelerated its application to study greater and greater numbers of cancer specimens7,8.

In addition to gene expression profiling data generated by individual laboratories for smaller 

and more independent studies, major team science efforts have generated multi-omics 

data on thousands of human tumors of various cancer types defined by tumor lineage 

or histology. The Cancer Genome Atlas (TCGA) consortium, which went from 2006 to 

2018, generated multi-omics data, including RNA-seq and RPPA proteomic data, on over 

10,000 human tumors9,10. Parallel to TCGA efforts focused mainly within the United States, 

the International Cancer Genomic Consortium (ICGC) carried out multi-omics profiling 

of thousands of cancers on a similar scale, with the cooperation of multiple countries11. 

In recent years, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the 

International Cancer Proteogenome Consortium (ICPC) have generated multi-omics data on 

over 2,000 human cancers5, including proteomics by mass spectrometry platform.

The vast amount of gene expression profiling data made available by published studies and 

consortiums represents a most valuable resource for ongoing studies. As no original study 

can comprehensively mine an expression profile dataset for all genes of potential relevance, 

future studies may analyze previously published data with different questions in mind from 

those of the original authors. This review will provide a broad overview of gene expression 

profiling in cancer and the types of findings made using these data. The figures of this 

review showcase specific examples of accessing public cancer gene expression datasets and 

generating unique views of the data and the resulting genes of interest. Due partly to space 

constraints, this review focuses on expression profiling of bulk tumors and cell lines, where 

single-cell RNA sequencing (scRNA-seq) represents another expression platform profiling 

individual cells within a tumor12.

Molecular subtyping

Due in part to the advent of gene expression profiling technologies, it is now universally 

understood that multiple and distinct molecular subtypes would exist within any given 

cancer type as defined by tissue of origin. Early studies of breast cancer using DNA 

microarrays13,14 revealed five major gene expression-based subtypes: luminal A, luminal 

B, ERBB2+, basal-like, and normal-like. These subtypes reflected previous observations 

of breast cancer subtypes based on histology13, with the luminal subtypes expressing 

the estrogen receptor, denoting sensitivity to estrogen therapy, and the ERBB2+ subtype 

expressing the Her2 receptor, denoting sensitivity to therapies blocking Her2. Breast cancer 

might represent the most well-known example of molecular subtypes having therapeutic 

implications. Gene expression profiling of other tissue-based cancer types has also defined 

molecular subtypes existing within these diseases. For example, for most cancer types 

studied by TCGA consortium, expression-based subtypes could be defined15,16. These 

subtypes may involve histologic features of the cancer cells (e.g., basal, luminal, or 

squamous characteristics), cancer cell differentiation level, associated DNA-level mutations, 

or infiltration of non-cancer cells (including immune cells or fibroblasts).
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Beyond identifying molecular subtypes within tissue-based cancer types, pan-cancer 

analyses can define subtypes that may either align closely with cell or tissue of origin9,17 

or would transcend tumor lineage5,15,18,19. One of the advantages of team science efforts 

such as TCGA is that tumors from different cancer types are often profiled by the same 

laboratory using the same analytical platform. This aspect should allow cross-cancer type 

analyses defining molecular subtypes and associated pathways relevant to multiple cancer 

types. Figure 1 provides an example of using TCGA data to define pan-cancer molecular 

subtypes, reflecting the tissue of origin (Figure 1a) or transcending tissue of origin (Figure 

1b), depending on the analytical approach used. In our pan-cancer study of TCGA RNA-

seq data15, we classified 10224 cancers, representing 32 major types, into ten molecular-

based subtypes or “classes,” whereby we first computationally removed expression patterns 

representing dominant tissue or histologic effects. For example, one of our pan-cancer 

subtypes expressed neuroendocrine markers such as CHGA. Another subtype represented 

basal-like breast cancer and MYC expression. Two of our subtypes expressed mesenchymal 

markers (e.g., VIM). Another subtype expressed immune checkpoint pathway markers (e.g., 

CD274) and molecular signatures of immune infiltrates. Using mass spectrometry-based 

proteomics data from CPTAC and ICPC, we could similarly identify pan-cancer subtypes 

reflected in the mRNA data, but with notable exceptions5,19. For example, a proteomic-

based subtype expressed proteins in the complement pathway, distinct from the subtype 

expressing lymphocytic markers.

Prognostic gene signatures

Gene expression profiles of tumor samples taken from the initial surgery can predict the 

patient’s eventual outcome. Early studies first demonstrated this means of prognostication 

in breast cancer, establishing a 70-gene prognosis profile that could segregate patients 

into good versus poor prognosis20,21, consistent with patient follow-up data. Studies 

from other groups could establish prognostic gene signatures in most other cancer types, 

including lung22,23, prostate24,25, colon26, medulloblastoma27, leukemia28, lymphoma29, 

and so on. Gene signature information has generally represented an independent factor 

in predicting disease outcome, along with relevant clinical variables such as age, tumor 

size, histology, pathological grade, etc.20 Given the clinical application of cancer patient 

prognosis, commercial gene panel assays with genes selected based on gene expression 

profiling data, have been developed and approved for clinical use, such as the Oncotype DX 

assays for breast30, colon31, and prostate32 cancers. A prognostic gene signature may consist 

of a discrete number of genes, often a function of statistical methods and cutoffs. At the 

same time, many more genes not included in a given signature may also have prognostic 

information.

In addition to their potential for clinical application, prognostic gene signatures can 

provide molecular clues regarding the biological drivers and pathways underlying aggressive 

cancers. Genes that may inform tumor biology would not be limited to the top ~100 most 

significant genes but could additionally involve hundreds of genes that meet statistical 

significance for survival association. An example of gaining insight from gene survival 

correlates involves my work with TCGA consortium in clear cell renal cell carcinoma33, 

where we defined molecular correlates of patient survival at mRNA, microRNA, protein, 
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and DNA methylation levels. When viewed in the context of metabolism, aggressive renal 

cancers demonstrated evidence of a metabolic shift, involving downregulation of TCA cycle 

genes, decreased AMPK and PTEN, upregulation of the pentose phosphate pathway and 

glutamine transporter genes, and increased acetyl-CoA carboxylase33. Along these lines, 

Figure 2 of this review shows a pathway diagram representing core metabolic pathways, 

with the genes denoting any survival associations at the mRNA level as observed in breast 

cancer34, clear cell renal cell carcinoma33, or across the entire TCGA pan-cancer dataset35. 

Other pathways would underlie prognostic gene signatures, which might be uncovered, 

for example, by domain knowledge or by using methods and software such as Gene Set 

Enrichment Analysis (GSEA)36.

Correlation with drug response in cell lines

Cancer cell lines have historically been the most commonly used models for studying 

cancer biology. Using in vitro cell line models would be a typical first step in validating 

functional gene targets or drug responses in the laboratory, where results may be further 

investigated using more complicated in vivo models. Extensive molecular data (including 

mRNA, protein, copy number alteration, and somatic mutation), gene knockout data, and 

drug response data have been generated across over 1000 human cancer cell lines. These 

data are available via team science efforts, including the Cancer Cell Line Encyclopedia 

(CCLE)37,38 and the Genomics of Drug Sensitivity in Cancer (GDSC)39 projects. GDSC 

datasets include half maximal inhibitory concentration (IC50) data on over 400 drugs across 

cell lines, denoting which cell lines are most or least sensitive to a given drug in vitro. Gene 

expression data may be integrated with drug IC50 data to define gene correlates of drug 

response. CCLE data include corresponding CRISPR and RNAi data40,41, denoting which 

cell lines depend on a specific gene for proliferation. These resources may be combined 

to identify new gene targets with functional roles in a subset of cell lines for follow-up 

functional studies. For example, the ERBB2 gene has high expression in cell lines most 

sensitive to either HER2 inhibitors39 or loss of HER2 function. Candidate gene targets 

involving other drugs and other cell lines may be similarly identified.

Therapeutically predictive gene signatures in patient tumors

Cancer cell lines represent models that would capture some but not all aspects of cancer 

cells within patient tumors. Breast cancer perhaps provides the best-known examples of 

therapeutically predictive markers, namely estrogen receptor and HER2 (ERBB2), with high 

expression predicting patient response to therapies targeting these receptor pathways. Gene 

expression profiling datasets of human tumors, combined with treatment data, including 

patient response, could yield signatures of therapeutic response involving up to hundreds 

of genes. Patient treatment response data may include short-term as well as long-term 

responses. With long-term response data, there is a need to distinguish gene markers that 

would be therapeutically predictive versus those that are merely prognostic. In identifying 

markers of treatment response, numerous studies have carried out gene expression profiling 

of pre-treatment breast tumor biopsies from patients treated with neoadjuvant chemotherapy, 

with patient response recorded at the end of treatment42–48. Many of the gene expression 

markers from these studies are associated with basal-like breast cancer, as this subtype tends 
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to be more responsive to chemotherapy49. For Figure 3 of this review, we assembled a 

compendium of eight different public breast cancer expression datasets. We used this to 

define a top set of genes correlated with pathologic chemotherapy response, independent of 

molecular subtype (Figure 3a). By enrichment analysis50, these genes represent functional 

gene categories of interest to cancer biology (Figure 3b). In addition, one can combine 

expression data from human tumors with expression data from cell lines having drug 

response data to identify treatment response markers that arise in both settings45.

Integration of genome with transcriptome or proteome

Expression profiling data can be integrated with DNA-level somatic mutation data to 

examine the functional consequences of specific mutations. For example, gene copy 

alterations in cancer directly and widely impact gene expression, as these alterations 

represent a dosage effect in how much a gene can be transcribed51. Molecular pathways 

in cancer involve multiple genes and pathway intermediates. For a given pathway, somatic 

mutation—including point mutations, insertions-deletions, and copy number alterations—

may impact different genes in different tumors52. The gene expression level often reflects 

the downstream consequences of mutation, where the diverse set of alterations at the 

pathway signaling level would converge upon the same set of transcriptionally regulated 

genes53–56. Cell line models can identify the top set of genes altered in expression when 

a specific pathway is experimentally perturbed. These genes can then define pathway 

signatures by which tumors or cell lines with expression data may be scored, with higher 

signature scoring indicative of higher pathway activity57. Gene signatures of pathways 

can also help discover unexpected connections involving genes previously unrealized or 

underappreciated as members of the given pathway. We demonstrated this approach in our 

multi-omics survey of the PI3K/AKT/mTOR pathway across TCGA cancers, whereby IDH1 
and VHL mutations, previously underappreciated as impacting the pathway, were strongly 

associated with increased pathway activation55.

The impact of somatic alterations on gene expression is not limited to the gene coding 

regions. The non-coding genome provides the regulatory framework of the coding genome, 

and non-coding somatic alterations often impact the expression of nearby genes. One 

well-known example of this involves TERT, where specific point mutations or structural 

rearrangement breakpoints that occur directly upstream of TERT can result in up-regulation 

of the gene58–60. Recently, the Pan-Cancer Analysis of Whole Genomes (PCAWG) 

consortium comprehensively surveyed the non-coding somatic landscape of 2658 tumors 

from TCGA and ICGC, 1220 of these tumors having RNA-seq data61–63. Few genes with 

“hotspot” non-coding mutations (i.e., non-coding mutations at a specific coordinate that 

recurrently occur across many tumors) were found, which included TERT63. On the other 

hand, somatic structural variation showed a widespread impact on the transcription of 

hundreds of genes, where structural variant breakpoints may fall at different coordinates 

in relation to the gene but which can alter regulation by various mechanisms, including 

enhancer hijacking and TAD disruption62. In addition, non-coding point mutations that 

fall within a wider genomic region, as opposed to recurrent hotspot mutations targeting a 

specific nucleotide, can similarly impact the expression of certain genes64.
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Expression profiling of advanced and metastatic cancers

To date, the vast majority of tumors with expression data in the public domain or available 

through large-scale efforts such as TCGA are primary tumors. Metastatic tumors, on the 

other hand, represent a more advanced cancer that has left its primary site to grow elsewhere 

in the body. By some estimates, as much as 90% of cancer deaths result from metastasis65. 

There is a need to understand better the genes and processes involved in metastasis. Public 

repositories such as the Gene Expression Omnibus (GEO)66 provide expression profiling 

data on tumor metastases from individual published studies. These include data allowing for 

paired metastasis versus primary comparisons within the same patient67,68, to help assess the 

changes associated with metastatic cancer cells. Pan-cancer multi-omics initiatives to profile 

tumor metastases from multiple cancer types include the recent MET50069 and POG57070 

studies of 500 and 570 patients, respectively. The POG570 datasets include patient treatment 

information. As advanced and metastatic tumors involve patients who have typically been 

heavily treated at this stage, these data offer the opportunity to assess gene expression 

features associated with specific therapies70,71.

Future directions

More and more gene expression profiling data on cancers will continue to go into the public 

domain. Expression profiling data from different studies representing different cellular 

contexts may be re-analyzed, with the individual results sets brought together in interesting 

ways to gain insights into cancer biology and therapeutic approaches. Data from cancer 

cell lines or from PDX models72 could be integrated with data from human tumors, e.g., 

to identify gene targets for follow-up bench experiments. Bulk tumor expression profiles 

represent a mixture of cancer and non-cancer cells. By profiling individual cells within 

the tumor, the scRNA-seq platform provides insights into the tumor cell populations and 

how these may change over time or with treatment. At the same time, scRNA-seq studies 

often do not involve many samples or patients, where a study may need large numbers to 

establish robust associations. With all the available expression data, more sophisticated data 

portals could make the results available and accessible to non-computational researchers, 

e.g., making data for gene-level results available by a point-and-click user interface73,74.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CPTAC Clinical Proteomic Tumor Analysis Consortium

RNA-seq RNA sequencing

CNA Copy Number Alteration
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Figure 1. Pan-cancer molecular subtypes as identified using different analytical approaches.
(a) Across 9716 tumors represented in TCGA datasets, TCGA Network previously defined 

28 pan-cancer subtypes closely following the cancer tissue of origin9. With the tumors 

ordered by molecular subtype, the heat map shows differential mRNA expression patterns 

(values normalized across all cancers to standard deviations from the median) for a 

select set of genes representing pathways of particular interest: MYC, oncogene; MKI67, 

proliferation marker; CHGA, marker of neuroendocrine tumors; HIF1A, transcription factor 

inducing hypoxia; CD274, PD-L1 gene and immunotherapy target; VIM, vimentin gene and 

marker of mesenchymal cells; ZEB1, transcription factor activating epithelial-mesenchymal 

transition. (b) Using an alternate analytical approach to define molecular subtypes that 

would transcend tumor lineage and tissue of origin, we could classify TCGA tumors into 

ten major subtypes15. The heat map shows differential mRNA expression patterns (values 

normalized within each cancer type to standard deviations from the median) for the same 

set of genes from part a. While TCGA RNA-seq datasets allow for cross-cancer type 

comparisons, as carried out in defining the subtypes in part a9, an alternative approach 

to molecular classification, represented in part b, involves computationally subtracting the 

gene expression differences between cancer types18. As applied to TCGA RNA-seq data, 

this alternative approach had the effect of consolidating the individual subtypes that might 

be discoverable in individual cancer types into super-types or pan-cancer “classes” that 

transcend tissue or histology distinctions.
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Figure 2. Gene expression correlates of cancer patient survival involving metabolic pathways.
Gene expression correlates of patient survival can be examined for clues as to the 

molecular biology underlying the more aggressive cancers. Pathway diagram representing 

core metabolic pathways33,75, with corresponding mRNA correlations with patient survival. 

Red and blue shading respectively represent the association of increased mRNA expression 

with worse or better survival, by univariate Cox. For each gene, survival correlations across 

three cancer expression profiling datasets are represented: breast cancer dataset from Pereira 

et al.34 (left, n=1904 patients, overall survival endpoint), renal cell carcinoma dataset from 

TCGA (middle, n=417 patients, overall survival endpoint), pan-cancer dataset from TCGA 

(right, n=10152 patients, overall survival endpoint, p-values correcting for cancer type).
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Figure 3. Gene expression correlates of therapeutic response to chemotherapy in breast cancer 
patients.
(a) Numerous studies have carried out gene expression profiling of pre-treatment breast 

tumor biopsies from patients treated with neoadjuvant chemotherapy, with patient response 

recorded at the end of treatment42–48. As part of this review, we assembled a compendium of 

eight separate datasets from the above studies, representing 1240 tumor expression profiles 

(GEO accession numbers provided in Data File S1). All datasets were generated using the 

same Affymetrix gene array platform. In the same manner as carried out in our previous 

studies5,15,76, we transformed log2 gene expression values to standard deviations from the 

median within each dataset, removing batch effect differences among datasets. We assessed 

the correlation of expression with pathologic chemotherapy response (path CR) for each 

gene feature after correcting for Pam50 subtype76 by linear modeling. The heat map shows 

expression patterns for a top set of 295 gene features (p<0.001, out of 22269 total). (b) 
Selected significantly enriched GO terms77 within the genes higher in breast tumors from 

patients with path CR (from part a). Enrichment p-values and numbers of genes in the path 

CR-associated gene set are indicated for each GO term. Enrichment p-values by one-sided 

Fisher’s exact test.
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