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Abstract:

Background

Gene network inference (GNI) methods have the potential to reveal functional relationships

between different genes and their products. Most GNI algorithms have been developed for

microarray gene expression datasets and their application to RNA-seq data is relatively recent.

As the characteristics of RNA-seq data are different from microarray data, it is an unanswered

question what preprocessing methods for RNA-seq data should be applied prior to GNI to

attain optimal performance, or what the required sample size for RNA-seq data is to obtain

reliable GNI estimates.

Results

We ran 9144 analysis of 7 different RNA-seq datasets to evaluate 300 different preprocessing

combinations  that  include  data  transformations,  normalizations  and association  estimators.

We found that there was no single best performing preprocessing combination but that there

were  several  good  ones.  The  performance  varied  widely  over  various  datasets,  which
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emphasized the importance of choosing an appropriate  preprocessing configuration before

GNI.  Two preprocessing  combinations  appeared  promising  in  general:  First,  Log-2  TPM

(transcript  per  million)  with  Variance-stabilizing  transformation  (VST)  and  Pearson

Correlation Coefficient (PCC) association estimator. Second, raw RNA-seq count data with

PCC. Along with these two, we also identified 18 other good preprocessing combinations.

Any  of  these  algorithms  might  perform  best  in  different  datasets.  Therefore,  the  GNI

performances of these approaches should be measured on any new dataset to select the best

performing one for it. In terms of the required biological sample size of RNA-seq data, we

found that between 30 to 85 samples were required to generate reliable GNI estimates. 

Conclusions

This study provides practical recommendations on default choices for data preprocessing prior

to GNI analysis of RNA-seq data to obtain optimal performance results. 

Keywords: RNA-seq, gene network inference, preprocessing, normalization, association 

estimators, performance

Background:

Gene network inference (GNI) methods can identify putative interactions between different

genes and the gene products they encode. Gene regulatory networks (GRN), which can be

inferred  by  GNI  methods,  help  in  the  basic  biological  understanding  of  genes  and  their

functions as well as inferring potential drug targets of a disease [1]. It is worth emphasizing

that the focus of this study is on GRN, which are different than co-expression networks or

gene  module  analysis  [2].  Co-expression  networks  identify  all  significant  expression

associations  among  genes,  which  allows  clustering  genes  into  sets  (or  modules)  of  co-

expressed  genes  which  can  be  further  examined  by  e.g.  Gene  Set  Enrichment  Analysis
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(GSEA)  [3] to associate them with biological pathways. In contrast, the goal of GRN is to

infer only causal relationships between genes. An ideal GRN would connect two genes only if

the gene product of one gene was directly involved in regulating the expression of the other

gene, such as a transcription factor regulating the expression of another gene. 

GNI methods have mostly been developed for and applied to microarray gene expression

datasets  [4].  The  main  preprocessing  steps  that  are  common  to  GNI  algorithms  include

filtering, data transformation (also called scaling), normalization and estimating association

scores  among  genes  [5].  Application  of  GNI  algorithms  to  RNA-seq  datasets  is  not  yet

common,  as  RNA-seq  is  a  relatively  new technology  with  comparably  fewer  large  scale

datasets available [6]. RNA-seq data normalization and statistical analysis are not completely

mature  [7, 8] in general,  and they are in an infant stage for GNI implementations.  As the

characteristics of RNA-seq data are different from microarray data, it may not be suitable to

apply the same preprocessing methods.  Unlike microarray  data,  distributions  of RNA-seq

counts are naturally heteroscedastic and larger variances are observed for larger counts  [9,

10]. The skewness, mean-variance-dependency and extreme values of RNA-Seq require the

use of different data preprocessing methods than the ones used for microarray [10]. For RNA-

seq data, this question is well studied in the context of differential expression (DE) analysis

[11-16] but not for GNI. It is thus an unanswered question how to preprocess RNA-seq data

for GNI to attain best performances. 

 To the best of our knowledge, this is the first study that performs a systematic comparison of

preprocessing  combinations,  which  include  data  transformation,  normalization  and

association estimation for GNI. We compared the combination of 15 popular preprocessing

methods, along with no preprocessing case, by using 3 different GNI algorithm and 7 RNA-

seq datasets for the analysis. Optimal performance was measured by comparing the identified

GRN connections to a compiled literature interaction database. For this, we updated the R
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[17] software  package,  ganet v2.2,  in  order  to  measure  the  performance  of  each  GRN

prediction.  Using some of the identified good performing preprocessing combinations,  we

conducted  further  analysis  and determined  the  required sample  size  of  RNA-seq data  for

optimal GNI performances. This study addresses a need of our own lab to rationale decide

which pre-processing steps to apply to GNI, and we believe it provides useful guidelines and

practical tools for everyone interested in infer gene networks from RNA-seq datasets.

Results:

Analysis workflow 

We assembled a set of RNA-Seq data pre-processing steps, to evaluate how they perform

when applied prior to GNI analysis. We considered pre-processing steps commonly used prior

to GNI analysis applied to microarray data, and combining them with pre-processing steps

commonly applied to RNA-Seq data in the context of differential expression analysis. Fig. 1

outlines the overall workflow of our analysis. Every analysis starts with RNA-Seq data as

input, which provides an integer read count for each gene for each sample at Step 1 as shown

in Fig. 1.  At Step 2, we consider 6 different basic data transformations: First, no conversion

at all, leaving the counts as they are. Second, converting the raw counts to CPM (counts per

million), which corrects for different numbers of reads in different samples. Third, we also

used TPM (transcript per million) which is similar to CPM but also take gene lengths into

account. For each of these three approaches, we also implemented a second version in which

the transformation was followed by a logarithm in base 2 (Log-2). We refer to this group as

data types (or datatypes) in the analysis and figures in the paper.

At  Step 3,  we considered more advanced normalizations,  namely 3 popular normalization

techniques  of  RNA-seq  and  another  one  that  is  frequently  used  in  microarray  datasets.

Specifically, Variance-stabilizing transformation (VST)  [18] from DeSeq2 R package  [19],
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the trimmed mean of M-values normalization (TMM)  [12] and also relative log expression

(RLE) [18] from the calcNormFactors function of edgeR [20] R software package and finally

the quantile normalization (QN) [11] that is widely used for microarray data. We also did not

apply any of these 4 normalizations before GNI and named this case as no normalization

(NoNorm).

Fig. 1 The analysis workflow for performance evaluations.

At Step 4, we implemented the rank based data transformation technique, copula–transform

(CT) as it was used in the popular GNI algorithms ARACNE [21] and C3NET [22]. They are

STEP 1: Filtered RNA-seq raw dataset as input

STEP 2: Basic data transforma:ons: raw, cpm, tpm, l2, l2cpm, l2tpm 
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chosen as the representative GNI algorithms along with the very base one RELNET [23]. We

also did not implement CT and named this case noCT in the analysis.

At Step 5, we implemented association estimators to measure the similarity of the expression

of gene pairs. Among the 27 available estimators [24], we selected five of the estimators that

were shown to be best performing on microarray expression data [25]. They are B-spline (BS)

[26],  Chao-Shen (CS)  [27],  Pearson Correlation  Coefficient  (PCC),  Spearman  Correlation

Coefficient (SCC) and Pearson-based Gaussian (PBG) as described in detail in [24, 28]. The

total number of the combined preprocessing methods is 300 (6x5x2x5; see Fig. 1). Using the

three  GNI  algorithms,  we  obtained  900  different  performance  scores  for  each  of  the  6

datasets. 

At Step 6, we used the preprocessed datasets to infer GRNs and input them to Step 8. At Step

7,  we  input  the  literature  interaction  information  to  Step  8,  where  overlap  analysis  was

performed between the predicted networks and the literature to evaluate the performances of

each preprocessing combinations.

A pipeline  was developed  to  implement  this  workflow,  which  is  based  on  the  workflow

management system Snakemake [29].

Exploratory data analysis

We downloaded  7  different  RNA-seq  datasets  using  the  recount [30] R package  and  its

repository.  Details  of  all  the  used  datasets  are  described  in  the  Methods  section.  In  our

analysis and figures, we named them as Dataset 1 to 7 (or Data 1 to 7). In order to illustrate

the effect of the preprocessing combinations on the RNA-seq data, as an example, we present

the boxplots of Dataset 4 after some of the preprocessing combinations in Fig. 2. It shows

how the data preprocessing methods may cause dramatic changes to a raw data. In this study,
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we answered  the  question  of  whether  these  observed  changes  cause  improvement  to  the

performance and if so, which specific preprocessing combinations are the best and should be

used for GNI on RNA-seq datasets. From Fig. 2, we note that QN with CT seem to provide

best shape from the quality control observation point of view. It allowed the median values

and the shapes of boxplots over all the samples almost same to each other. In the Fig. S1 of

Additional File 1, we also provided more of the other interesting RNA-seq data distributions

in various forms of Dataset 2. QN produces most ordered distribution of datasets as observed

in Fig. 2. Nonetheless, it does not appear to be in any of the best preprocessing combinations

according  to  our  performance  evaluations.  This  is  another  point  to  note  as  an  observed

difference between RNA-seq and microarray, which shows that the methods developed for

microarray, such as QN, may not necessarily be suitable for RNA-seq datasets too.
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Fig. 2 Some of the interesting RNA-seq data distributions as boxplots in various forms of 
Dataset 4.
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Overall performance evaluation:

For the main analysis, we used 6 different RNA-seq datasets (Dataset 2 to 7) and obtained a

total  of  5400  different  performance  scores  to  select  best  performing  preprocessing

combinations  with  the  representative  GNI  algorithms.  The  horizontal  bar  plots  in  Fig.  3

demonstrate 900 precision scores of all the combinations for Dataset 2 (left) and Dataset 6

(right). Similar results were provided for the other 4 datasets in Fig S2 of Additional file 1.

Precisions are computed by two main components as TP (true positive), which stands for the

number  of  correctly  predicted  interactions, and  FP  (false  positive)  for  the  number  of

incorrectly predicted ones. In order to determine a reference lowest point for the performance

results we generated 10 random networks and assessed their precision scores. The number of

interactions in the random networks selected to be the same as the one that gave best precision

score over all the analysis. The mean value of the precisions of random networks computed to

be approximately 0.003 and used as a reference value to compare all the results in Fig. 3. This

helps  to  see  whether  the  combinations  result  better  than  a  random prediction.  Details  of

generating random networks described in the Methods section. 
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Fig. 3 Horizontal bar plots of GNI performances over 900 different GNI and preprocessing

combinations for two different datasets. 

All the precision scores of Dataset 2. All the precision scores of Dataset 6.

Fig. 3 appears to be quite informative. Because it shows that there are good, fair, bad and poor

performing preprocessing combinations. Meaning, if one does not take careful attention on

the preprocessing part of GNI applications over RNA-seq datasets, the results may be very

poor similar to random predictions. CS estimator consistently provides poor results as seen in

the tails of the bar plot in Fig. 3. We therefore excluded it from further analysis. On the other

hand, we also observed on the right tail that a small fraction of the combinations provides

good results. Among them, there several best performing ones available regarding the other

good ones. When we look at the results of the other datasets (Fig S2 of Additional file 1), we

observed similar trend with slightly different distributions. For example, as seen in Fig. 3, the

difference between good and poor performing preprocessing combinations is sharper in the

results of Dataset 2 than Dataset 6. Nonetheless, the trends of both figures are similar as all

the other  results,  which can also be seen in Fig S2 of Additional  file  1 that  support our

observation. This suggests that a good preprocessing combination must be carefully selected
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before  the  implementation  of  a  GNI  on  RNA-seq  datasets  as  they  might  influence  the

performances considerably.

The wide heterogeneity  in the RNA-seq data  makes  it  very difficult  to choose a  suitable

preprocessing combination  that  works best  for all  the datasets.  In Fig 4,  we compare the

performance of all the 6 datasets at one sight. The plot shows that each RNA-seq dataset may

have dramatic effect in the performance. We excluded CS estimator for its poor performance

and QN for its inconsistent performance, as will be detailed later, from this analysis. Effects

of each algorithm were also evaluated separately in the coming sections. 

Fig. 4. Performances of 6 of the datasets for various preprocessing and GNI combinations. 
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In Table 1, we zoom into the results of Dataset 6 presented in Fig.3. It shows the top 20 best

performing GNI and preprocessing combinations with respect to precision scores. Table 1

also shows, in the last three row, the more statistically significant (lower p-value) overlapping

analysis  results  but  with  poor  precision  scores  as  a  noteworthy  example.  In  Table  1,  we

presented the highest precision scores comparing 5400 results of all the 6 datasets. It stands as

an exemplary table that shows the performance results of our analysis in detail. We derived all

the figures for the analysis from those information of all the datasets. 

If we had looked at a result of a single dataset we would end up selecting a best preprocessing

combination. But, we used 6 different datasets that allowed us to find out that there is no best

preprocessing combination valid for all the datasets. Rather, there are good combinations that

work well mostly but each dataset might need a different preprocessing combination for the

best GNI performance. This is pretty different than we would expect to find in the beginning

of this study. For example, the best performing GNI and preprocessing combination in Table

1 does not provide highest scores in the other datasets. Therefore, in order to be able to select

the  good  performing  preprocessing  combinations,  we  first  evaluated  them  for  each  GNI

algorithm  separately  to  eliminate  the  effect  of  GNI  and  see  only  the  performances  of

preprocessing combinations. We then ranked them based on precision scores for each dataset

and obtained 6 different rank tables; each have ranked values for each unique preprocessing

combinations. We computed the median values of these ranks over all the 6 datasets. We then

sorted all the combinations based on the median ranks. This approach allowed us to see the

performance of each preprocessing combinations considering all  the 6 datasets at once. If

there is a tie, then we assigned the minimum rank to each of them. Best rank is 1 and worst

rank is 192 as we excluded some of the poor performing methods (CS and QN) already from

the analysis. We present the top 25 best performing results from this analysis in Table 2 and

provide all of them in Additional file 2. 
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Table 1. Shows some of the inference performances of the top 20 and the 3 very low p-value 
preprocessing combinations of Dataset 6. 

Combinations
Precision
TP/(TP+FP)

#Overlap
(TP)

#Predicte
d
(TP+FP)

p.value

c3.PBG_CT_NoNorm_l2tpm 0.0575 273 4750 4.75E-194
c3.PBG_CT_NoNorm_tpm 0.0575 273 4750 4.75E-194
c3.PCC_CT_NoNorm_l2tpm 0.0575 273 4750 4.75E-194
c3.PCC_CT_NoNorm_tpm 0.0575 273 4750 4.75E-194
c3.SCC_CT_NoNorm_l2tpm 0.0575 273 4750 4.75E-194
c3.SCC_CT_NoNorm_tpm 0.0575 273 4750 4.75E-194
c3.SCC_noCT_NoNorm_l2tpm 0.0575 273 4750 5.59E-194
c3.SCC_noCT_NoNorm_tpm 0.0575 273 4750 5.59E-194
c3.bspline_CT_NoNorm_l2tpm 0.0561 270 4820 3.72E-189
c3.bspline_CT_NoNorm_tpm 0.0561 270 4820 3.72E-189
c3.PBG_noCT_NoNorm_l2tpm 0.0557 264 4740 3.22E-184
c3.PCC_noCT_NoNorm_l2tpm 0.0557 264 4740 3.22E-184
c3.PBG_noCT_NoNorm_l2cpm 0.0544 263 4840 5.57E-181
c3.PCC_noCT_NoNorm_l2cpm 0.0544 263 4840 5.57E-181
c3.bspline_noCT_RLE_l2 0.0542 263 4850 1.20E-180
c3.bspline_noCT_NoNorm_l2 0.0534 255 4780 1.42E-173
c3.bspline_noCT_TMM_l2 0.0533 259 4860 3.20E-176
ar.PBG_noCT_NoNorm_l2tpm 0.0533 415 7790 7.20E-281
ar.PCC_noCT_NoNorm_l2tpm 0.0533 415 7790 7.20E-281
c3.bspline_noCT_TMM_l2cpm 0.0527 263 4990 1.36E-177
……………… ……… ……… ……… ………
rn.PCC_CT_VST_l2cpm 0.00936 5300 566000 0
rn.SCC_noCT_VST_l2tpm 0.00908 5150 567000 0
rn.bspline_noCT_VST_l2tpm 0.00878 4960 565000 0
There are shortened representations  of the preprocessing methods in the first
column of Table 1. Most of them are available in the main text; others expressed
here:  ar,  c3,  and  rn  are  ARACNE,  C3NET  and  RELNET  GNI  algorithms,
respectively. If a name is not mentioned it means it was not used but some of
them emphasized with ‘No’ prefix to mention non-existence. Namely, noCT and
NoNorm  means  copula  transform  (CT)  and  normalizations  are  not  used,
respectively.  If  there  is  no  Log-2 applied,  then  there  is  no  l2  in  the  names.
Overlap  analysis  over  the literature  via  hyper-geometric  tests  resulted  the p-
values. #Overlap represents the number of overlap between the predicted gene
network and the literature interactions database.

The complete tables for each GNI algorithm and the table of the similar analysis of all the

GNI and preprocessing combinations together can be seen as a spreadsheet file in Additional

file 2 that allows sorting the results as wanted. Table 2 is very useful to see that there is no

best  performing  preprocessing  combination  in  general.  For  example,  the  top-ranking
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prepressing  combination  of  ARACNE  GNI  algorithm  is  the  combination  of  B-spline

association estimator, CT, no normalization and Log-2 TPM data. There is also a tie and the

same combination with TPM instead of Log-2 TPM performs the same. But even the best

combination has median rank = 22.5, best rank = 7 and worst rank = 143 out of 192. This

shows that even the best performing combination may still provide very poor results. This is a

very important observation out of this study, which cause us to be always very cautious in

GNI of RNA-seq data. We have a conclusion and suggest a solution based on this observation

in the Conclusion section.

Table 2. Top 25 ranked GNI performances with ARACNE over all the 6 datasets. Sorted by 
median ranks. The worst rank can be 192 and the best can be 1.

GNI preprocessing 
combinations

median 
rank

mean
rank

best
ran
k

worst
rank

ar.bspline_CT_NoNorm_l2tpm 22.5 57.2 7 143
ar.bspline_CT_NoNorm_tpm 22.5 57.2 7 143
ar.PBG_noCT_NoNorm_tpm 24.5 48.5 3 165
ar.PCC_noCT_NoNorm_tpm 24.5 48.5 3 165
ar.PBG_CT_NoNorm_l2tpm 31.5 61.3 9 156
ar.PBG_CT_NoNorm_tpm 31.5 61.3 9 156
ar.PCC_CT_NoNorm_l2tpm 31.5 61.3 9 156
ar.PCC_CT_NoNorm_tpm 31.5 61.3 9 156
ar.PBG_noCT_NoNorm_l2tpm 33.5 47.3 1 154
ar.PCC_noCT_NoNorm_l2tpm 33.5 47.3 1 154
ar.SCC_CT_NoNorm_l2tpm 33.5 63 8 160
ar.SCC_CT_NoNorm_tpm 33.5 63 8 160
ar.bspline_noCT_TMM_l2 37 72.8 5 187
ar.bspline_noCT_RLE_l2 38.5 75.3 6 188
ar.SCC_noCT_NoNorm_l2tpm 40 66.5 6 162
ar.SCC_noCT_NoNorm_tpm 40 66.5 6 162
ar.bspline_noCT_RLE_raw 40.5 80.2 21 176
ar.PBG_noCT_TMM_l2tpm 40.5 57.2 1 175
ar.PCC_noCT_TMM_l2tpm 40.5 57.2 1 175
ar.bspline_noCT_NoNorm_l2tpm 41 76.5 1 190
ar.PBG_CT_TMM_l2tpm 42 74 7 171
ar.PCC_CT_TMM_l2tpm 42 74 7 171
ar.SCC_CT_TMM_l2tpm 42 75.3 9 173
ar.SCC_noCT_TMM_l2tpm 42 75.3 9 173
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ar.bspline_noCT_NoNorm_l2 44.5 68.3 17 174

The preprocessing  combinations  in  Table  2  may be  considered  to  be  in  the  set  of  good

performing  ones  for  ARACNE  GNI  algorithm  with  some  cautious.  We  present  similar

analysis for C3NET GNI algorithm in Table 3. As seen, the top performing preprocessing

combinations are very similar to the results of ARACNE with some difference in their ranks.

The best performing combinations for C3NET is B-spline, CT and TPM (or Log-2 of TPM)

has  median  rank  of  10.5,  best  rank  2  and  worst  rank  148.  Again,  we  see  that  the  best

performing combinations has still potential to perform very poorly. 

Table 3. Top 25 ranked GNI performances with C3NET over all the 6 datasets. Sorted by 
median ranks and the worst rank can be 192 and the best can be 1.

GNI preprocessing combinations median
rank

mean
rank

best 
rank

 worst 
rank

c3.bspline_CT_NoNorm_l2tpm 10.5 47.7 2 148
c3.bspline_CT_NoNorm_tpm 10.5 47.7 2 148
c3.PBG_noCT_VST_l2tpm 18.5 54.7 1 190
c3.PCC_noCT_VST_l2tpm 18.5 54.7 1 190
c3.bspline_noCT_VST_l2tpm 20.5 47 4 192
c3.bspline_noCT_TMM_l2 23 70.5 7 183
c3.PBG_noCT_NoNorm_l2tpm 26 57.3 5 170
c3.PCC_noCT_NoNorm_l2tpm 26 57.3 5 170
c3.bspline_noCT_RLE_l2 29 70.3 3 186
c3.bspline_noCT_NoNorm_tpm 31.5 69.8 6 172
c3.PBG_CT_NoNorm_l2tpm 41 66.3 1 180
c3.PBG_CT_NoNorm_tpm 41 66.3 1 180
c3.PCC_CT_NoNorm_l2tpm 41 66.3 1 180
c3.PCC_CT_NoNorm_tpm 41 66.3 1 180
c3.PBG_CT_VST_l2tpm 45 64.3 5 174
c3.PCC_CT_VST_l2tpm 45 64.3 5 174
c3.SCC_CT_VST_l2tpm 45 62.8 5 174
c3.SCC_noCT_VST_l2tpm 45 62.8 5 174
c3.SCC_CT_NoNorm_l2tpm 46 68 1 180
c3.SCC_CT_NoNorm_tpm 46 68 1 180
c3.bspline_noCT_VST_l2 47 68.7 25 150
c3.PBG_noCT_RLE_l2tpm 47.5 70.5 7 159
c3.PCC_noCT_RLE_l2tpm 47.5 70.5 7 159
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c3.SCC_noCT_NoNorm_l2tpm 48 72.8 7 186
c3.SCC_noCT_NoNorm_tpm 48 72.8 7 186

Ranking approach, as in Table 2 and 3, helps to evaluate the combinations over all  the 6

datasets at once but we still need to consider the raw information as in Table 1. Because there

are  many  good  performing  combinations  with  very  close  precision  scores.  For  example,

C3NET precision scores of Dataset 2 ranges from 0.024 to 0.03 for all the 192 combinations

(Additional  file 2, sheet 3).  Also, the top 53 combinations  of it  is  ranging from 0.028 to

0.0308. In this list of results, we had removed the poor performing method CS and QN. If we

look at all the results in all the 6 datasets for C3NET and ARACNE, as shown in Fig. 5, the

performances  are  close  to  each  other  in  5  out  of  6  datasets  but  for  one  of  them  it  is

considerably higher. This shows that performances of the good combinations are quite close

to each other mostly when the very poor performing ones are not used. 

Fig. 5. Performance of C3NET and ARACNE over all datasets (CS and QN excluded).

On  the  other  hand,  there  are  still  best  performing  combinations  available  and  that  small

difference in accurate predictions may still biologically have profound effect. Because even a

single  newly  detected  interaction  may be  the  main  regulator  of  that  biological  condition.

Therefore, it is still interesting to use the best performing ones among the good ones when
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inferring GRN from RNA-seq data. In order to be able to find best ones, we use the ranking

approach on them as explained above. The difference among rank values may look larger than

the real performance scores. Therefore, we consider all the information as in Table 1, 2 and 3

(Additional file 2) while selecting a good combination. This approach lead us to determine the

good preprocessing combinations as follows in the quotes: ‘B-spline and CT and Log-2 TPM

(or TPM)’, ‘PCC or PBG and no CT and VST and Log-2 TPM’, ‘B-spline and no CT and

VST and Log-2  TPM’.  RLE and TMM may also  be  replaced  in  the  estimators  of  those

combinations.  As  observed,  even  the  selected  good  ones  may  not  always  provide  best

performances. If the best performing one is wished to be selected for a specific dataset, then

all the determined good ones should be tested along with the several other good preprocessing

combinations  mentioned  earlier  on  Table  2.  In  the  following,  we  analyze  each  step  of

preprocessing, shown in Fig. 1, separately. This will help us to learn the individual effects of

the methods for each step in general.

Effect of transformed data types:

In Fig. 6, we present the performances of each of the data forms (datatypes) derived from the

basic data transformations.  CS and QN were removed from further analysis as mentioned

previously. Results in the box plots in Fig. 6 show that 4 out of 6 times Log-2 TPM (l2tpm)

data type provides best median precision scores. Nevertheless, 2 out of 6 times it provided

worst median values. Interestingly, raw data type provided best median score 2 out of 6 times

and it only provided worst median value one out of 6 times Considering the largest precision

scores that are not outliers, Log-2 TPM provided the best scores 5 out of 6 and Log-2 alone

provided it 1 out of 6 times. The pie charts in Fig 6 were plotted for the performance of the

data  types  in  only  top performing preprocessing  combinations.  The pie  charts  in  the  left

column are from C3NET and the ones in the right column from ARACNE using the similar

information as in Table 2 and Table 3. The pie charts on the left, for each of the algorithms,
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show the percentages of the normalization methods from the top 42 ranked preprocessing

combinations regarding median rank values. We show more stringent ratios on the right plots

by presenting the percentages from top 10 ranked combinations. Considering top 42 median

ranks (see Additional file 2), Log-2 TPM appeared in 55%, CPM in 17%, TPM in 14% and

Log-2 in 14% of the preprocessing combinations. The second pie chart derived from the top

10 best performing preprocessing combinations of C3NET. Log-2 TPM appeared in 60% in

the results. Similar dominant results of Log-2 TPM can be seen in the pie charts of ARACNE

in the right column of pie charts in Fig. 6. Regarding box plots and pie charts of Fig. 6, Log-2

TPM appears to be mostly better than others as a basic data type. However, Log-2 and raw

data are also useful as they may provide better results too. We do not recommend CPM or

Log-2 CPM type data.
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Fig. 6 The performance of the data transformation methods (datatypes) overall the 6 datasets.

Green color is for C3NET and blue color is for ARACNE in the box plots. Pie charts on the

left column is from C3NET and the right is from ARACNE.
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Effect of the normalizations methods:

In Fig. 7, we see the performance of the normalization methods TMM, VST, RLE and QN

along with no normalization applied case (NoNorm). Regarding the best performances, there

is  no  one  clearly  differentiated  from  others  considering  all  the  6  datasets.  Nonetheless,

regarding worst performances, QN clearly provides 3 worst median scores and it does not

provide a best score over all the 6 datasets. It is a clear evidence of inconsistence performance

of QN. This observation lead us to exclude QN from most of the analysis as we have no

intention  to  use  it  in  real  applications  regarding  these  outcomes.  Considering  the  median

values, VST has 4 highest and 2 lowest ranks. NoNorm has 2 best and 4 worst ranks. It is not

safe to choose VST as the best performing normalization method in general as we see it also

performs worst in two out of 6 datasets. One thing is worth mentioning that when VST has

best median value 4 times, then NoNorm has always the worst values. Additionally, when

NoNorm has  the  best  median  values  twice  then  VST has  the  worst  median  values.  This

suggest  that  we  need  to  consider  preprocessing  combinations  with  and  without  VST

normalization. RLE and TMM seem to show moderate performances and similar to each other

but RLE seem to be slightly better. This analysis was done regarding median performance

results but we are normally interested in the best performance scores. As we see from Fig. 7

that the highest performance values, which are not outliers, are showing different ranking than

median values. For example, in the result of Dataset 3 in Fig. 7, TMM has the highest score

contrary to the rank of its median value. This suggests that we should also consider RLE and

TMM for implementations but as they are similar we would suggest to use RLE only. 
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Fig. 7 The performance of the normalization methods over all the 6 datasets. Light color is 

from C3NET and dark color is from ARACNE results.

We have a closer look into the best performing normalization methods in Fig 8. We plot the

percentages of the normalization methods in pie charts regarding their median rankings as

shown in Table 2 and 3. Upper plots are based on C3NET and lower ones are of ARACNE.

Again, the pie charts on the left show the percentages of the normalization methods from the

top 42 ranked preprocessing combinations regarding median rank values. The pie charts on

right  are  for  top  10  ranked  combinations.  Regarding  the  top  42,  VST appears  for  40%,

NoNorm 36%, RLE and TMM 12% in the C3NET results. Regarding the top 10 rankings,

NoNorm appears half of the times, then VST for 30%, RLE and TMM for 10%. In the lower
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plots, we show the results of ARACNE, similarly. In that case, NoNorm dominates more and

then TMM, RLE and VST appears with smaller percentages. Considering the top performing

combinations, these results suggest primarily not using one of those normalizations. However,

VST and RLE should also be tried separately. In general, one of the three options may be tried

in preprocessing. 

Fig. 8 Pie charts that show rank performance ratios of the normalizations methods. Upper part

is for C3NET and the lower is for ARACNE results. 
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Effect of estimators

In Fig. 9, we present the performances of each of the association estimators. CS and QN were

already removed from the analysis. According to the median values, all the estimators provide

close performance results. Even for the largest and smallest scores that are not outliers, we do

not  observe  a  clear  difference  mostly  among  the  methods.  There  are  slight  differences

observed in the performances over all the datasets. This suggest that all the estimators may be

selected  considering  the  best  performing preprocessing  combinations.  However,  PCC and

SCC contain more information as they provide signed correlation values that help to decide

the positive and negative associations between genes. B-spline provides mutual information

(MI) values that can be only positive values. MI based estimators may capture non-linear

relationships  too  but  the  performance  results  do  not  show a  clear  empirical  evidence  in

general to favor it. 

Fig. 9 The performance of the association estimators over all the 6 datasets. Green color is for

C3NET and blue color is for ARACNE results. 
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If  we  look  at  to  the  pie  charts  in  Fig  10,  presented  similar  to  the  previous  pie  charts,

considering the top 42 ranked preprocessing combinations,  all  of  the 4 estimators  almost

equally performing for both C3NET (upper left) and ARACNE (lower left). Considering the

top 10 ranking combinations, B-spline somewhat outperforms the others and PCC and PBG

follows it for C3NET (upper right). On the other hand, for ARACNE (lower right), PCC and

PBG performs better and B-spline follows it. In general, all the estimators perform somewhat

similar as there is no clear difference observed in general.

Fig. 10 Pie charts that show rank performance ratios of association estimators. Upper part is 

for C3NET and the lower is for ARACNE results.
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Effect of copula transform (CT)

CT is an important part of GNI over microarray datasets. Here, we investigated its effect on

RNA-seq datasets. In Fig 11, the box plots on the left two columns (light color) show the

performance of CT in two different datasets using C3NET. Similarly, the other two box plots

(dark color) are for ARACNE. Regarding the outcomes of C3NET, not using CT (noCT)

seems slightly better. For ARACNE, CT is slightly better regarding the median values but

noCT seems better regarding the maximum scores. The pie charts below the box plots are for

top ranking preprocessing combinations and provide similar observations. Left column is for

C3NET and the right for ARACNE. Although the performance scores of both in general are

very close, noCT seems to be giving slightly better scores considering the maximum values

and the pie charts. There is no clear difference regarding median values.  

Fig. 11 The performance of CT over all the 6 datasets shown by box plots. Left two columns

(light color) are from C3NET and the other two (dark color) are from ARACNE results. Pie

charts show top ranking performance ratios of CT. Left column is for C3NET and the right is

for ARACNE.
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Determining the required sample size for best performances

Our analysis until here focused on the problem of which GNI preprocessing combinations

should be chosen and what are the possible consequences if not properly done. Nevertheless,

current  RNA-seq datasets  may be of  any  size from a few to several  hundreds.  It  is  also

important to know if the sample size of the available count data is sufficient to attain to the

best  or  optimal  GNI  performances.  This  important  question  was  answered  in  [31] for

microarray gene expression datasets and sample size of around 64 was shown as the region

where  the  GNI  performances  converges  dramatically.  In  this  study,  we  investigated  the

relation  between  sample  size  and  GNI  performance  to  determine  the  required  minimum

sample size for satisfying performance with RNA-seq datasets. We demonstrate the relations

between sample size and performance over various preprocessing combinations and datasets

in Fig. 12. In total, we run 288 different simulations for the sample size analysis that helped

answering our questions on the issue.

Dataset 1 was used as an additional different data set (with sample size 85). It is used for only

sample  size  analysis  along with  the  other  datasets.  In  Dataset  1,  using  the  preprocessing

combination B-spline, RLE and Log-2 CPM (first row and column), we observe that there is

constant and slow increase in performance until the precision score 0.025 around maximum.

C3NET and ARACNE show similar trend until the sample size 85 but C3NET provided the
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precision score of 0.025 in 70 samples compared to the score for sample size 85 of ARACNE.

In the Dataset 1, when we use PCC (first row, second column) along with the same other

combination (RLE ad log-2 CPM), then we can obtain the same performance score of around

0.025 in 40 samples with C3NET. With this combination, the performance of C3NET showed

somewhat convergence at sample size around 40 but it still produced a performance increase

from 0.025 to 0.030 after sample size 70 to 85. ARACNE does not seem to converge but

produce a slow performance increase until the sample size 85 and hits the score around 0.027.

We do not  mention about RELNET (RN) as it  was already included the study as a base

algorithm and used as a reference to somewhat justify the performance scores of the main

representative GNI algorithms ARACNE and C3NET. Because RN is used as the first base

step of those and many other algorithms [5].

For Dataset 2, the scores of C3NET from the preprocessing combination B-spline, RLE and

Log-2 (first row, third column) start converging to precision 0.027 at sample size 60. The

performances show an increase from around 0.027 to 0.03 between the sample sizes 70 to 80.

A convergence is observed afterwards until the sample size 96. On the other hand, ARACNE

seems to converge at precision around 0.027 after sample size 80. For Dataset 2, using the

same preprocessing combination but replacing SCC instead of B-spline (second row, first

column), we observe slower increase in performances than before until the sample size 96.

For Dataset 3, the scores of C3NET with the combination B-spline, RLE and Log-2 TPM

(second row and column), rapidly converge to precision around 0.022 from sample size 8 to

30. It then increases to the precision score of around 0.026 from sample size 60 to 80 and

converges second time afterwards. Here, the scores of ARACNE seem to converge at sample

size 60. For Dataset 3, when we replace PCC instead of B-spline in the previous combination

(second row, third column), the performance scores of C3NET converge at sample size 50 to
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the precision of around 0.027. Whereas, ARACNE seem to converge at sample size 60 to the

precision of around 0.026.

For Dataset 4, the combination B-spline, no normalization (labeled as nonnormalized in these

figures)  and  Log-2  TPM (third  row,  first  column),  C3NET and  ARACNE converged  at

sample size 50. On the other hand, using PCC instead of B-spline allowed them to converge at

sample size 30 with the similar performance scores. PCC made significant difference with

respect to sample size at similar converged performance scores.

For Dataset  5,  the combination PCC, RLE and Log-2 TPM provided converged scores at

sample size 40 for all the GNI algorithms. Dataset 6 and 7 have smaller sample sizes as 55

and  41,  respectively  and  since  their  range  is  small  they  are  not  used  in  this  analysis

specifically.  However,  we  had  compared  them  in  general  with  all  the  other  datasets

considering their full sample sizes in Fig 4 and 5. Dataset 6 and 7 have almost half the sample

size of the other datasets. However, they show higher performance scores despite their smaller

sample sizes.

Overall, the results suggest that RNA-seq dataset sample size from 30 to 85 may be required

to obtain optimal GNI performances. This reflects the inherent heterogeneity of RNA-seq data

on  the  issue  of  required  sample  sizes  too.  Results  reveals  a  very  interesting  and  new

conclusion on this topic that we did not see anywhere else before. The critical required sample

size number may be as small  as  around 30 but also as high as around 85. Comparing to

microarray datasets, the required sample size was observed to be around 64 for convergence

of GNI performance scores [31]. 
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Fig. 12. Sample size and performance relationships of GNI preprocessing over RNA-seq data.

Filtering effect with variance:

Variations in the expression levels are the main components to compute associations scores.

We already filtered RNA-seq data based on only gene expression levels as described in the
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Methods section. However, we wanted to answer the question whether data filtering based on

variation might improve the GNI performance. We filtered out one fifth of the genes that have

lowest variance and compared overall performance with the previous results as demonstrated

in Fig. 13. In the figure, D label stands for ‘dataset’; numbers refer to the specific Dataset 2 to

7 and HV stands for ‘high variance’ referring to the further filtered datasets with only genes

of higher variance.  Results show that mostly they get worse if filtered based on variance.

Whereas, as seen in Dataset 6 and 7, there may still be potential to get better performance

with filtering based on variance. Additional, 3456 analysis (red box plots) were run to make

this comparison.

Fig. 13 Comparison between default datasets with further filtered versions of them based on

variance (HV). D label stands for ‘dataset’; numbers refer to the specific Dataset 2 to 7. HV

stands for ‘high variance’ referring to the filtered datasets based on higher variance.
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Discussion:

This  study  helps  selecting  good  preprocessing  approaches  for  the  applications  of  GNI

algorithms on RNA-seq datasets. To the best of our knowledge, there is no such systematic

study available in the context of GNI over RNA-seq datasets and this study meets an urgent

need on the issue. There are very large number of possibilities to combine a preprocessing

considering association estimations,  normalizations,  data transformations (this may also be

considered as basic normalizations). Therefore, we selected some popular ones as they are

expected to be promising. As illustrated in Fig. 1, initially, the combinations appeared to have

6 different  data  forms,  5  association  estimators,  5  normalizations  cases  and  2  CT cases.

Considering also not implementing some of those methods, in total there were 300 different

preprocessing  combinations.  Considering  the  three  GNI algorithms,  we had  900 different

combinations  that  are  run  over  the  6  different  RNA-seq  datasets,  which  made  5400

performance analysis to answer the main research question of this study. As we observed very

poor performances of CS and QN, we excluded them from further analysis. In the sample size

analysis,  we run 288 different  simulations.  In the high variance filtering analysis,  we run

another 3456 analysis. Total number of analysis presented in this study is 9144. The number

of analysis and possible comparisons are overwhelming that limit to include more possible

combinations. Other extensive studies may help on this for the similar endeavor in the future.

This study also reveals that current preprocessing methods are not satisfactory in the context

of GNI over RNA-seq datasets and new approaches are needed that work well in general.

By  using  6  different  datasets,  we  found  out  that  there  is  no  best  but  there  are  good

combinations that work well in mostly but each dataset might need a different preprocessing

combination. That directs us to use the literature and perform a quick performance analysis
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with the good preprocessing combinations and select the best combination specifically for the

dataset of interest. Alternatively, one may just choose one of the good ones that we present in

this study; knowing the fact that it may not give the best performance but a good one. 

Comparing to the performance of randomly generated networks, we observed some close poor

performance scores to random networks but we also observed dramatic gains in performance

when  right  preprocessing  combinations  used.  This  shows  the  importance  of  this  kind  of

studies that will help better selecting the preprocessing combinations to be able to apply GNI

algorithms  on  RNA-seq  datasets  with  some  confident.  From  our  extensive  analysis,  we

selected some good preprocessing combinations as specified in the conclusion section.

Conclusions

We concluded that  preprocessing is  the most  important  part  of any GNI application over

RNA-seq datasets. Because, if not properly chosen, one might end up with very poor results.

We also conclude that there is no best preprocessing method but several good combinations

for GNI over RNA-seq datasets, as shown in Table 2. We further conclude that the literature

interactions databases should be part of any GNI process and be used as a reference to select

most suitable preprocessing combination that is specific to the RNA-seq dataset of current

interest. For the ease of practical implementation of this, we provided an updated R package,

ganet, along with this study.

We also concluded that the minimum required sample size may vary from around 30 to 85 for

each  RNA-seq  data  for  sufficient  performances  of  GNI.  We  also  concluded  that  GNI

algorithm and preprocessing combinations can make significant differences in the required

sample size.
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For the  practical  applications  in  general,  instead  of  selecting  a  single  GNI preprocessing

combination,  we  suggest  to  select  several  good  ones  and  apply  them  for  testing  their

performance with the literature as demonstrated in this study.

Considering  all  the  results,  especially  Table  1,  2,  3  and  Additional  file  2,  we select  the

following preprocessing combinations as reference ones among the good ones. First one is the

combination of PCC and VST and Log-2 TPM. Second one is PCC and no normalization. The

performances of these two can tested and the better one may be selected for faster practical

implementation in general. However, in the search of best performance on a specific dataset,

then Log-2 TPM or raw should be tried in the combination additionally. If raw data performs

better, then Log-2 of the raw should also be tested. Then, VST, RLE and no normalization

should be tested in the combinations. Then, PCC, SCC and B-spline should be tested in the

combinations.  This  way 18 possible  combinations  may be tried  in  the  search of  the  best

performing combinations for a new dataset. This study concluded on two main combinations

or  18 other  good preprocessing  combinations  out  of  300 possible  ones  considered  in  the

beginning of this study.

Methods

GNI and Preprocessing components

We  provided  important  practical  information  about  the  used  methods  in  this  section.

However, further details are provided for all the methods in Additional file 1. For the GNI as

seen at Step 6 in Fig. 1, we have used three GNI algorithm ARACNE [21], C3NET [22] and

RELNET [23] with R software packages minet [32] and c3net [33]. For ARACNE, when we

set  the  DPI  parameter  to  0.1  as  used  in  their  original  paper,  it  infers  more  than  40000

interactions and performance of it was not good as also seen in [22]. In order to increase its

performance, we set DPI parameter to 0. This removed all the weakest edges in the triangles
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in the network and ARACNE performed dramatically better. However, in this case it predicts

very low number of interactions (around 5000) similar to C3NET. If ARACNE will be used

with the default DPI parameter 0.1 to be able to infer large numbers of interactions, then it can

provide  performance  results  only  in  between  C3NET  and  RELNET  [22].  One  must  be

cautious in using ARACNE with a DPI parameter higher than 0.

At Step 5 in Fig. 1, we used 5 association estimators B-spline of order 2 [26], Chao-Shen [27],

Pearson  Correlation  Coefficient  (PCC),  Spearman  Correlation  Coefficient  (SCC)  and

Pearson-based Gaussian (PBG) as described in detail in  [24, 28]. Implementations of them

were performed with the R software package DepEst that includes functions for 11 different

association estimators, which also allows parallel processing [34]. 

At Step 4 in Fig. 1, For copula transform (CT), we used the function copula in c3net software

package [33].  At Step 3 in Fig. 1, We used 4 advanced normalizations, Variance-stabilizing

transformation  (VST)  [18] of  DeSeq2  R  package  [19],  the  trimmed  mean  of  M-values

normalization  [12] and also relative log expression (RLE)  [18] from the  calcNormFactors

function of edgeR  [20] R software package and quantile normalization (QN)  [11]. Further

details of all these methods are provided in the Methods sections of Additional file 1. At Step

2 in Fig. 1, For CPM scaling we followed the procedure of the cpm function of the popular

edgeR software package [20, 35]. For TPM, we also included gene lengths in this procedure

as described in the Additional file 1. 

Practical notes

An important practical note is that, before implementing any of these preprocessing steps, we

add one to each value in the dataset matrices, which otherwise may cause erroneous results

because of possible zeros in the matrix. Adding one to matrix do not change the results but

may prevent from failing because of zeros. Also, if a result is obtained much better than the
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ones presented in this study, one must be very cautious and check the predicted network. We

had come across cases where a few of the genes, who have extremely larger variations than

most of the others, may dominate the network as big hubs. This biased case may cause to

higher scores if the gene is one of the well-studied ones in the literature. Our default filtering

and  adding  one  before  each  preprocessing  helped  overcome  these  cases  in  the  studied

datasets.  However,  one  should  always  check  out  the  network  once  predicted  for  such

dominated genes and also other unusual structures of the network.

Filtering

We first filtered out the NA named genes, meaning not annotated genes from the data. If there

are multiple rows with the same gene symbol, we kept only one of the raw of that gene with

the highest variance.  After  cleaning up the dataset,  we filtered  them as follows: We first

removed those genes whose CPM expression values less than or equal to 0.1 for at least 20%

of the samples. In Fig. 14, upper left figure, we plot CPM expression values of a gene that

need to be filtered and this rule eliminates such genes. In Fig. 14, upper right figure, we plot

all the genes with respect to this filtering threshold and number of samples. As it is observed

in the lower left tail of the plot, there are around 5000 genes that might be filtered out by the

specified rule and threshold. CPM value 0.1 corresponds to 2 expressed counts with a lowest

sequencing depth (library size) of around 20 million. If the library size is 75 million then it

corresponds to approximately 7.5 expressed counts [36]. We further filtered the genes whose

maximum CPM value is less than or equal to 0.7 over all the samples. Similarly, we then

filtered the genes whose mean CPM value is less than 0.35 over all the samples. These are

based on our exploratory analysis as mentioned over Fig. 14. There is no well-established,

commonly  used  and  scientifically  justified  approach  on  filtering  too.  This  topic  needs  a

separate extensive study in general. The filtered and non-filtered density plots of Dataset 2 is
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presented in Fig. 14 (second row). This shows that our filtering helped somewhat eliminating

poorly expressed genes and the data has a better distribution after filtering.

Fig. 14 Presented to show the need for filtering. Upper left plot show an example of a gene to

be filtered. Upper right shows the number of genes whose CPM < 0.1 relative to number of

samples. Below density plot shows both non-filtered and filtered data that is Dataset 2 for all

these plots. 

The literature as reference network and performance metrics:

In order to assess the performance of GNI results, we used the combination of all the suitable

wet-lab validated interaction databases we found in the literature as in  [37]. The hypothesis
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behind  the  approach  is  the  following:  Regardless  of  cell  condition,  if  there  is  an

experimentally validated gene interaction pair in the literature and if we predict the same gene

interaction pair with a statistically significant association score from our datasets then it is

very highly likely that the pair can be validated in our cell condition as well. Considering this

hypothesis, when a GNI algorithm infers a gene interaction pair and if it is available in the

combined database of the literature then we accept that interaction as true positive (TP) in the

performance metric [37]. In the other case, when a predicted interaction is not in the literature,

it is accepted as false positive (FP). Since the literature is not complete, some of those FP

results may in fact be TP. This means, performance is more likely to get better but not worse

in the case of an absolute reality. This hypothesis is only accepted based on existence of data;

it means positive cases. The predictions are the first positive case, and the interactions in the

literature  database  are  second  positive  case.  Since  the  literature  database  is  far  from

completeness, when we do not predict an interaction and it is not in the literature database this

cannot be accepted as a true result on a negative case (True Negative or TN). Apparently, that

interaction may not be in the literature yet because it is not experimentally tested yet in the

cell  condition  of interest.  If  we use these TN results  in the performance metric,  then the

measured performance might actually be lower with respect to the absolute reality. Therefore,

it  is  not  safe to  use such cases  in  the performance metrics  with an incomplete  reference

network such as the literature. Similarly, when we do not predict an interaction and but it is in

the literature  database this  cannot  be accepted as a  false result  on a negative  case (False

Negative).  The main hypothesis  to use the literature  does not  cover those negative cases.

Therefore,  we mainly measure performances using the precision metric  that only consider

positive cases (True Positive and False Positive).  This may not a perfect metric but when

comparing algorithms, all of them face the same biases and we can have reliable conclusions
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relatively  when  comparing  different  algorithms.  We  explain  and  discuss  more  on  the

performance metrics in detail in Additional file 1. 

We tested whether it makes sense to accept the hypothesis of using the literature as a relative

reference network for performance evaluation using the randomly generated gene networks

and its overlap with the literature. The result was not significant with respect to the overlap

analysis. We gave more details on this below while describing random networks. Comparing

it with the inferred networks by GNI algorithms, we observed very highly significant overlap

results over the literature in general. These tests support the hypothesis to use the literature

and  we  have  some  level  of  justification  to  use  the  literature  as  a  reference  network  for

globally assessing, or at least comparing, the inference performance of GNI algorithms on real

datasets. Nonetheless, we are aware of the fact that when a gene interaction pair is labelled as

TP according to the approach, it is not an absolute TP and we might still make mistake. But

for the purpose of comparison of various algorithms on real and especially de novo datasets,

this idea is very helpful and works well. 

The idea of using the literature for GNI performance evaluation is also not new to this study.

It was initially used in [37] and since then there are many other studies utilized all or part of

the  literature  for  inference  or  performance  assessment  of  GNI  [38-42].  For  the  practical

implementation of it,  an R software package ganet (version1.0) was presented in  [37] that

combined, by 2011, all the available manually curated databases that include experimentally

validated interactions. The total number of combined unique interactions was about 550000.

The software also provided  some functions  to  run overlap analysis  for  GNI performance

assessment. In this paper, we present a significantly updated version of the R package, ganet

(version 2.2) by updating the interactions from existing databases and also by adding more

databases as specified below. The literature database in ganet now includes 936850 unique

interactions that can be used as a practical reference database for performance assessment. We
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also added hyper-geometric test function for overlap analysis along with the available Fisher’s

exact  test  function.  The  updated  software  package  ganet  v2.2  is  available  at  a  public

repository that can be downloaded and used. We utilized from ganet package in our RNA-seq

preprocessing performance evaluation pipeline too.

RNA-seq preprocessing performance evaluation pipeline

Since one of the conclusions of this study is to evaluate the performance each de-novo dataset

with the suggested good combinations, we developed a pipeline than can be run efficiently

over high performance clusters or on a single computer for a smaller size evaluation. It is

based on Snakemake [29], which is an efficient workflow management system. The pipeline

allowed  evaluating  the  performance  of  hundreds  of  preprocessing  combinations

approximately in several hours as it runs parallel  over clusters. Although it is prepared to

evaluate the performance of different preprocessing combinations, if needed, it can also be

used as benchmark to evaluate the performance of GNI algorithms as well.

R software ganet v2.2:

The literature database in R software package ganet (version1.0) was including the following

databases  by  2011:  BioGRID  [43],  Human  Protein  Reference  Database  (HPRD)  [44],

Molecular Interaction Database (MINT) [45], IntAct [46] and B-Cell Interactome (BCI) [47].

With this study, we have updated newer version of ganet (version 2.2) from those databases

and also added the Database of Interacting Proteins (DIP) [48], innateDB [49], CORUM [50]

and the Mammalian Protein-Protein Interaction Database (MIPS) [51] databases, which make

936850 unique interactions in total in the current version. One can access to most of these

databases from the server of [52]. We also added two more functions for overlapping analysis,

ganet.hyperg,  which  runs  hyper-geometric  test,  and for  practical  performance assessment,

ganet.getperformance. The software ganet v.2.2 is available to be downloaded and used from
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a public repository. The details of how to install and use ganet with a practical example can be

seen in Additional file 1. 

Random network performance for reference level

We generated 10 different random networks with 4748 interactions that is the same as the

number of predicted interactions of the best scoring preprocessing combination in the best

performing dataset, which is Dataset 6. We then performed the same overlap analysis for the

random networks as done so far in this study. The literature database in ganet and the random

networks overlap analysis resulted average precision of 0.003 and p value of 0.58 from hyper

geometric tests. These results are very useful as we can employ them as base reference levels

on performances.  Any performance  result  close  to  or  worse than  the  performance  of  the

random network is considered as very poor and the associated combination is excluded with

no doubt. For example, it appeared that the combinations that include CS estimator provided

very poor results and excluded from further analysis. In fact, CS estimator was among the

good ones in microarray analysis [25]. This shows how important is to choose the right GNI

and preprocessing combinations for the analysis of RNA-seq datasets. On the other hand, if

right combinations are chosen one can blindly infer meaningful results. 

Datasets:

RNA-seq datasets were downloaded conveniently using the  recount [53] R package and its

repository. We provide the details of each dataset here. Each dataset was given a name for the

analysis of this study. They are mentioned in this paper with names Dataset 1 to 7 (or Data 1

to 7 in case there is not sufficient space in the figures).

Dataset 1: This dataset has GEO accession number GSE79970 [54]. The title of the dataset in

GEO is ‘Peripheral Blood Mononuclear Cells (PBMC) Gene Expression-Based Biomarkers in
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Juvenile Idiopathic Arthritis (JIA)’. After filtering, we had 14398 unique genes and 85 sample

in the raw dataset. This dataset was only used for sample size analysis in this study. 

Dataset 2: The GEO number of this dataset is GSE57148 [55] and its SRA number in recount

repository  (https://jhubiostatistics.shinyapps.io/recount/)  is  SRP041538.  The  title  of  this

dataset in GEO database is ‘Characterizing gene expression in lung tissue of COPD subjects

using RNA-seq’. We used 96 of COPD samples of this dataset as Dataset 2. After filtering,

there were 17520 unique genes and 96 samples in the raw dataset. 

Dataset 3: This dataset has the 91 normal samples of GSE57148 from the same publication

[55] of Dataset 2. After filtering, there were 17517 unique genes in the raw dataset.

Dataset 4: GEO number is GSE54456 [56] and SRA number is SRP035988. The title of this

dataset in GEO is ‘Transcriptome analysis of psoriasis in a large case-control sample: RNA-

seq provides insights into disease mechanisms’. We used 95 samples that are obtained from

lesional psoriatic skin. After filtering, there were 16888 unique genes in the raw dataset.

Dataset 5: This dataset has 83 normal samples of GSE54456 from the same publication [56]

of Dataset 4. After filtering, there were 17196 unique genes in the raw dataset.

Dataset 6:  GEO number is  GSE69529 and SRA number is  SRP059039. The title  of this

dataset  in  GEO  database  is  ‘Elucidating  the  etiology  and  molecular  pathogenicity  of

infectious diarrhea by high throughput RNA sequencing’. This study is based on whole blood

samples.  We used 55 of Rotavirus type samples of this  dataset for Dataset 6.  It is  worth

reminding  that  this  dataset  performed best  overall  despite  its  smaller  number  of samples.

After filtering, there were 15040 unique genes in the raw dataset.
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Dataset 7:  This dataset has 41 Salmonella samples of GSE69529 from the same study of

Dataset 6. After filtering, there were 15112 unique genes in the raw dataset. Despite its low

number of sample, this dataset has second best performance. 

List of abbreviations

BS: B-spline

CPM: counts per million

CS: Chao-Shen

CT: copula transformation

GNI: Gene network inference

GRN: Gene regulatory networks

GSEA: Gene Set Enrichment Analysis ()

Log-2 or l2: Logarithm with base 2

noCT: no copula transformation

NoNorm or none: No normalization (also denoted as nonnormalized)

QN or Q: quantile normalization (QN)

PCC: Pearson Correlation Coefficient

SCC: Spearman Correlation Coefficient 

PBG: Pearson-based Gaussian

RLE: relative log expression (RLE)

TMM: The trimmed mean of M-values normalization

TPM: transcript per million)

VST: Variance-stabilizing transformation

# symbol stands for “number of”
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