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ABSTRACT 

Hepatitis B virus (HBV) remains a global public health concern, with over 250 million 

individuals living with chronic HBV infection (CHB) and no curative therapy currently 

available. Viral diversity is associated with CHB pathogenesis and immunological control 

of infection. Improved methods to characterize the viral genome at both the population 

and intra-host level could aid drug development efforts. Conventionally, HBV sequencing 

data are aligned to a linear reference genome and only sequences capable of aligning to 

the reference are captured for analysis. Reference selection has additional 

consequences, including sample-specific ‘consensus’ sequence construction. It remains 

unclear how to select a reference from available sequences and whether a single 

reference is sufficient for genetic analyses. Using simulated short-read sequencing data 

generated from full-length publicly available HBV genome sequences and HBV 

sequencing data from a longitudinally sampled individual with CHB, we investigate 

alternative graph-based alignment approaches. We demonstrate that using a 

phylogenetically representative ‘genome graph’ for alignment, rather than linear 

reference sequences, avoids issues of reference ambiguity, improves alignment, and 

facilitates the construction of sample-specific consensus sequences genetically similar to 

an individual’s infection. Graph-based methods can therefore improve efforts to 

characterize the genetics of viral pathogens, including HBV, and may have broad 

implications in host pathogen research.
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INTRODUCTION 

Approximately one-third of the world’s population has been exposed to the hepatitis B 

virus (HBV), a major cause of hepatocellular carcinoma and end-stage liver disease.1 

With over 250 million individuals suffering from chronic HBV infection (CHB), novel drugs 

are needed as no effective curative therapies currently exist.2 While spontaneous 

recovery occurs, the biological mechanisms underlying the immunological control of 

HBV remain unclear. In addition to age, clinical and environmental factors, and host 

genetic variation,3,4 viral genetic diversity contributes to the pathogenesis and the 

severity of CHB.5–10  

HBV has a small (3.2kb) partially double-stranded circular genome with four overlapping 

gene-encoding regions and a higher mutation rate than most DNA viruses.11 With 10 

known genetically and geographically distinct HBV genotypes and >30 subgenotypes, 

CHB is also caused by recombinants or mixtures of genotypes.12–19 Additionally, like 

other chronic viral infections, intra-host CHB diversity involves multiple viral strains which 

evolve, mutate, and change in frequency over time, termed a viral quasispecies.20–24 

This intra-host diversity has also been shown to influence disease progression,25–27 

treatment outcome,28,29 and confound molecular epidemiology or surveillance efforts.30 

Characterizing this extensive genetic variation is therefore important for advancing our 

understanding of the natural history of disease and potential treatment targets. 

Sequencing-based analyses of HBV and other microbial pathogens usually involve an 

initial alignment of sequencing data to a representative reference genome. Choosing the 

right reference is critical, as only data sufficiently similar to the reference can be aligned 

and retained within subsequent analyses.31,32 However, it can be difficult to select the 

most appropriate reference sequence when analyzing clinical CHB samples of unknown 

HBV genotype or subgenotype. One option is to assess all potential HBV reference 
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sequences to identify the most appropriate reference sequence but this is both 

computationally expensive and can still fail within the context of recombinant or mixed 

infections.  

Nevertheless, the use of unrepresentative reference sequences can interfere with 

characterizing pathogen diversity, resulting in false or missing mutations and biased 

phylogenetic relationships.33–35 Reference selection can also affect the ability to 

accurately derive sample-specific ‘consensus’ sequences, which provide an 

approximation of the genome sequence causing an infection. This issue of reference 

ambiguity is especially problematic for CHB, as a set of phylogenetically representative 

HBV reference sequences has only recently been proposed.36 Furthermore, given the 

extreme diversity of HBV, the use of a single reference sequence, even of the correct 

HBV genotype, may be insufficient.32,33 

Aligning to a phylogenetically representative ‘genome graph’ constructed from many 

different HBV genome sequences rather than a single HBV genome sequence could 

potentially avoid these reference ambiguity issues. Genome graphs are comprised of 

‘nodes’ which reflect stretches of genetic sequence connected by ‘edges’ which 

determine the path a genome sequence traverses across a subset of nodes within the 

graph.31,34,37,38 Graph-based structures containing genetic variation from multiple 

genomes have been shown to improve sequence alignment and variant calling for highly 

variable regions of the human genome and microbial organisms like Escherichia 

coli.31,34,39 A graph-based reference containing a representative sampling of the genetic 

variation observed across all known HBV genotypes/subgenotypes might also improve 

sequence alignment and variant calling, as well as enable the generation of accurate 

sample-specific consensus sequences for HBV-related genetic analyses. Consensus 

sequences reflect the most commonly observed nucleotide at each site across the 
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genome, inferred from aligning sequencing data against a specific reference sequence. 

The construction of consensus sequences is a typical objective of viral-focused genetic 

analyses,40,41 including HBV.42,43 However, whether a graph-based approach can 

improve viral sequence alignment and sample-specific consensus sequence 

construction has, to our knowledge, yet to be demonstrated. 

In this study, we leverage 2,837 publicly available full-length HBV genomes, simulated 

high-throughput sequencing data from these HBV sequences, and real-world 

longitudinally collected sequencing data from an individual with CHB to identify the 

optimal alignment method as determined by the proportion of successfully aligned HBV 

sequencing data. Additionally, by comparing alignment derived sample-specific 

consensus sequences, the accuracy of graph vs. linear reference-based alignment 

methods will be evaluated.  

MATERIALS AND METHODS 

Source of genetic sequence data 

Full-length HBV genome sequences: A set of non-redundant full-length HBV genomes 

(N=2,837) was obtained from the publicly available resource provided by McNaughton et 

al.36 Briefly, 7,108 full-length HBV genomes were obtained from the HBVdb database 

(https://hbvdb.lyon.inserm.fr/HBVdb/) and recombinant or highly similar full-length HBV 

genome sequences were removed. A set of 44 sequences representative of all 

phylogenetically identified genotypes, subgenotypes, and genetically distinct clades was 

then identified for use as reference sequences in downstream analyses.  

High-throughput CHB sequencing data: HBV-targeted sequencing data from an 

individual included in a longitudinal cohort study of treatment naïve individuals with CHB 

was obtained via the NCBI Sequence Read Archive (BioProject ID: 479693).44 Sample-
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level clinical and demographic data were obtained through communication with study 

authors. The high-throughput CHB sequencing data included in this study reflects five 

longitudinally sampled visits from a single individual (identifier ‘C4’). C4 is a male who 

was 36 years old at the time the first sample was obtained in 1991. The final sample was 

obtained in 1996. Individual C4 remained chronically infected and HBeAg positive for the 

entirety of study follow-up. Sequencing was performed using an Illumina HiSeq 2500, as 

previously described.44 Cutadapt was used to trim adapters, poor-quality bases, and 

reads <36bp long.45 FastQC was used to ensure the post-QC data passed Illumina 

sequencing-related QC checks.46 

Patients with HBV infection, including individual C4, were recruited with fully informed 

written consent from the Division of Gastroenterology and Hepatology at the National 

University Health System, Singapore.44  

Simulated high-throughput sequencing data: Realistic high throughput HBV sequencing 

data were simulated using InSilicoSeq, which enables the generation of error-prone 

Illumina-like sequencing data with pre-specified abundance/coverages.47 Two datasets 

of paired-end sequences/reads were generated using an Illumina HiSeq error model, the 

first set (N=50,000 reads/genome) was simulated from each of the recommended HBV 

reference sequences (N=44). The second set (N=500,000 reads total) was simulated 

from a randomly selected HBV genome sequence from each of the 9 HBV genotypes 

(excluding genotype J, as only a single isolate remains available) and 50 additional 

randomly selected HBV genomes not included within the HBV reference graph (N=59).  

Sequence-to-graph alignment 

HBV reference graph construction and alignment: A sequence variation graph, termed 

the HBV reference graph, was created using the full set of phylogenetically 

representative reference sequences (N=44) (Supplementary materials).36 The HBV 
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reference graph was created using the pangenome graph builder (PGGB) pipeline 

(https://github.com/pangenome/pggb), which performs pairwise whole-genome 

alignment using wfmash and graph induction using the seqwish software.48,49 PGGB can 

then sort and order the graph via partial order alignment using smoothxg 

(https://github.com/pangenome/smoothxg).  

The variation graph toolkit (VG, v1.39) was used to perform all graph-related format 

conversions, indexing, sequence-to-graph alignment, and collating of mapping/alignment 

statistics, as described in the VG documentation.31,50 Fast short-read alignment via the 

VG giraffe mapper was accomplished by creating a haplotype-aware graph index where 

each reference genome was indexed as a unique haplotype.51 Highly accurate but more 

computationally intensive graph-based mapping was performed using the VG map 

mapper. 

Establishing internal validity of the HBV reference graph: All reads simulated from the 

graph-embedded HBV genomes were concatenated and then randomly subsampled to 

20,000X coverage seven times. Coverage-based subsampling was performed using 

rasusa.52 These subsampled HBV sequencing datasets were aligned to the HBV 

reference graph using the haplotype-aware VG giraffe mapper. For the graph to be 

internally valid, we required >99% of the reads simulated from HBV genomes embedded 

within the graph to successfully align.  

To assess whether each path within the graph was utilized during sequence alignment, 

and to test whether aligned sequences had the highest alignment scores to graph-

embedded HBV genomes which were more genetically similar to the aligned sequences, 

each full-length HBV sequence (N=2,837) was aligned to the graph using VG map. A 

‘correct’ alignment was observed if the reference path with the highest alignment score 

was of the same HBV genotype as the query sequence. Path-specific alignment scores 
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were also derived for alignments made using the set of simulated high throughput 

sequencing data from HBV genomes not used in graph construction (N=59). Briefly, by 

identifying the graph nodes for each path with successful alignments, the genome path 

with the most alignments was able to be identified (Figure S1). Path-specific alignment 

scores were derived using the sum of weights estimated for each node involved in a 

successful alignment. Weights reflect the path depth of each node (i.e. the number of 

genome sequences containing/traversing through the node), with nodes traversed by a 

single HBV genome weighted heavily and nodes traversed by all genomes weighted 

least (Figure S2). A ‘correct’ alignment was observed if the path with the highest 

weighted alignment score was of the same HBV genotype as the genome sequence 

used to simulate the HBV sequencing data. 

Alignment of HBV sequencing datasets – graph vs. linear references 

Simulated HBV sequencing data: To determine whether a graph-based reference 

improves sequence alignment compared to linear reference-based approaches for HBV 

sequencing datasets, we aligned the combined simulated high-throughput sequencing 

data (generated from 59 HBV genomes not included within the graph) to the graph using 

VG giraffe and to each linear reference sequence (N=44) using BWA-MEM. The 

proportion of successfully aligned reads was obtained using ‘VG stats’ and ‘SAMtools 

flagstat’,53 respectively. While comparisons of the computational time and resources 

required for variation graph and linear-reference-based aligners have been performed 

previously,50 ‘/usr/bin/time’ estimates for the alignments using BWA-MEM, VG giraffe, 

VG giraffe in fast-mode, and VG map can be found in Table S1. To approximate a more 

realistic scenario, in which the observed genetic diversity spans a subset of HBV 

genotypes known to circulate within a geographic region rather than all currently known 

HBV genotypes/subgenotypes, linear reference and graph-based alignment 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.11.523611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


comparisons were performed using simulated sequencing data from randomly selected 

HBV genotype B (N=6) and C (N=12) sequences, the primary genotypes endemic in 

East and Southeast Asia.54,55  

We estimated the depth of coverage across the HBV genome for the alignment of all 

simulated high-throughput sequencing data to each linear reference using ‘SAMtools 

depth’. Genotype-specific depth estimates were obtained by estimating the mean 

alignment depth across alignments made using references of the same genotype via a 

sliding-window approach (50bp wide) in R. Local minima in depth were estimated using 

the ggmisc package in R. To approximate site-specific depth of coverage across the 

HBV genome from the graph-based alignment, the start site of each successfully aligned 

read was used to infer coverage by estimating a rolling sum of the median number of 

reads within a sliding window the length of the simulated reads (125bp).  

To facilitate the comparison of whether regions of poor coverage corresponded to loci of 

increased pairwise diversity, the local nucleotide sequence diversity across the set of 

reference sequences (N=44) was estimated using a sliding window approach (150bp 

wide) in R using the pegas package.56 

Alignment of real CHB sequencing data: To determine the approximate sequencing 

depth for each CHB sample (N=5), raw sequencing data were aligned to each linear 

reference sequence (N=44) using BWA-MEM.57 Alignment quality was assessed using 

Qualimap (v2.2.1).58 The proportion of successfully aligned reads were estimated using 

‘SAMtools flagstat’. For each sample, the linear reference with the highest proportion of 

successfully aligned reads was an HBV subgenotype B2 sequence (GenBank ID: 

GU815637). For alignments to this reference, mean depth of coverage ranged from 

82,930X-334,157X. To reduce computational time and resources required for our 

analyses, QC-passed reads were down-sampled to obtain an average coverage of 
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20,000X. To test whether subsampling altered the proportion of successfully aligned 

reads, subsampled reads were also aligned to each linear reference sequence and the 

proportion of successful alignments was compared to the alignments involving all QC-

passed sequencing data using a binomial generalized linear mixed model (GLMM) with 

random intercepts in R. The GLMM treated each alignment as a binomial outcome 

(successful alignment vs. not successful alignment), with the total number of reference-

specific alignments used as weights. Whether alignments of these subsampled reads to 

an extended linear reference, obtained by concatenating the first 120bp of each 

reference to the end of each sequence, altered alignment statistics were also assessed 

using the same GLMM performed in R. To identify whether reads which failed to align to 

sub-optimal linear references (non-HBV subgenotype B2) were uniformly distributed 

across the genome, unaligned reads from each linear reference-based alignment were 

re-aligned to the best performing linear reference. The genome-wide distribution of these 

‘rescued’ reads was visually assessed in R. 

Graph-based alignment of subsampled CHB sequencing data was performed using the 

VG map mapper. For samples with higher alignment proportions to the graph than any 

linear reference, unmapped reads from the best performing linear reference for each 

sample were re-mapped to the graph and the genome-wide distribution of the reads 

‘rescued’ via graph alignment was visualized using R. To identify and visualize the loci 

where HBV sequence was rescued via graph alignment, the rescued reads were queried 

via BLAST against a compacted de Bruijn Graph comprised of the reference sequences 

and de novo (reference-free) assembled HBV haplotypes from each sample created 

using Bifrost and visualized with Bandage.59,60 We also performed BLAST in Bandage 

using these successfully re-mapped reads against the HBV reference graph only to 

confirm that rescued reads mapped to regions of increased graph complexity. 
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Derived consensus sequences – graph vs. linear reference sequences 

Simulated HBV sequencing data: Consensus sequences were obtained from linear 

reference-based alignments of simulated non-graph derived sequencing data using 

iVar.61 iVar was developed to analyze amplicon-based viral sequencing data and 

leverages SAMtools to call variants and derive a consensus from the most common 

nucleotide across each position in an alignment file. We used a minimum base-level 

quality score of 20 and depth threshold of 10 while accounting for ambiguous 

nucleotides. For graph-based alignments, we used a wholly graph-based variant calling 

approach leveraging the alignments across all paths using VG 

(https://github.com/vgteam/vg), followed by consensus generation via bcftools.62  

Longitudinal CHB sample consensus sequences: Prior to performing alignment and 

variant calling for the real CHB samples, QC-passed paired-end reads were merged 

using PEAR and filtered to retain the highest quality reads >150bp long for analysis via 

bbmap.63,64 Reads were aligned to each linear reference or the HBV reference graph, 

followed by iVar-based consensus sequence identification. We also performed variant 

calling using the LoFreq software, a variant calling tool able to identify even low-

frequency variants from high-coverage data across diverse genetic sequencing 

datasets,65 for each linear reference-based alignment followed by consensus generation 

using a majority allele rule for each site (i.e. alleles with frequency >50% were integrated 

into the consensus sequence) via bcftools. For LoFreq-derived consensuses, we used 

the same depth threshold (10) used in iVar and estimated insertion/deletion qualities 

which were used in addition to LoFreq’s method of combining base-level, mapping, and 

alignment quality information to determine variant quality and identify the majority 

nucleotide at each position, accounting for insertions/deletions. Graph-based alignment 

was performed using VG giraffe. VG-based variant calling using the graph alignments 
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and consensus generation were obtained via bcftools. For these CHB samples, we also 

derived consensus sequences after re-aligning the successful graph-aligned reads to a 

single path within the graph via VG, termed surjection, followed by iVar consensus 

construction. Graph-aligned reads were surjected into the path corresponding to the 

best-performing linear reference. 

Consensus sequence comparisons 

Consensus sequence comparisons from simulated HBV sequencing data: Comparisons 

between each simulation-based consensus sequence and the full set of HBV genomes 

from which reads were simulated were performed using Mash,66 which estimates a 

genetic distance metric, the Mash distance, based on the estimated mutation rate 

between two sets of sequences and the jaccard index (the fraction of k-mers shared 

between the comparison sequences). The Mash distance also approximates average 

nucleotide identity (ANI) estimates, with ANI equivalent to one minus the distance 

estimate, while also having the benefit of facilitating comparisons between 

sequences/sequencing datasets of variable lengths/sizes.66 Given the short length of the 

HBV genome (3.2kb), a k-mer sequence length of 7 was used for Mash distance 

estimations.67,68 The consensus sequence with the lowest estimated genetic distance 

with the set of full-length HBV genome sequences can be inferred to be the most 

accurate or genetically representative consensus sequence. 

Identifying accurate consensus sequences from real CHB sequencing data: To facilitate 

comparisons between CHB-derived consensus sequences and to identify the most 

genetically similar consensus to the HBV quasispecies of each sample, we estimated 

the Mash distance between each consensus and the subsampled HBV sequencing data 

which aligned to the best performing reference (linear or graph-based) for each sample. 

We also performed de novo HBV strain-level assembly using SAVAGE and VG-Flow to 
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identify the viral haplotypes comprising each CHB infection.69,70 For each sample, the 

best-performing linear reference was added to the SAVAGE output for VG-Flow to 

improve strain-level contiguity and assembly. The set of sample-specific viral haplotypes 

with frequencies >1% were included in all pairwise genetic distance comparisons. The 

consensus sequence with the lowest estimated genetic distance with the HBV-specific 

high throughput sequencing data can be inferred to be the most accurate and genetically 

representative consensus sequence for each sample.  

 

RESULTS 

Simulations to assess HBV sequence-to-graph alignment and coverage  

Short Illumina-like reads were simulated from 59 genetically diverse HBV genomes 

encompassing 9 HBV genotypes and aligned to a non-overlapping set of 44 

phylogenetically representative HBV genome sequences reflecting the known breadth of 

HBV diversity. Despite all reads being of HBV origin (N=500,002 reads), only 84.3% to 

96.6% of sequences successfully aligned to these 44 linear references (Figure 1). In 

contrast, >99.9% of this diverse simulated HBV sequencing data successfully aligned to 

an HBV reference graph constructed using the same set of 44 phylogenetically 

representative HBV genome sequences. To ensure that loci from across all HBV 

genomes used to create the graph are adequately represented by the reference graph, 

seven randomly subsampled sets of simulated high-throughput HBV sequencing data 

(N=507,938 reads) generated from these 44 genomes were aligned to the HBV 

reference graph, with 100% of reads always aligning to the graph. 

To reflect a more realistic scenario utilizing simulated HBV sequencing data, we limited 

the simulated data used in our alignment comparisons to those generated from HBV 
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sequences of genotypes B or C. While >99.9% of simulated reads from genotypes B and 

C successfully aligned to the reference graph, a high proportion of these reads also 

successfully aligned to linear reference sequences of genotype B (97.9%-98.4%) and C 

(97.6%-98.8%) (Figure S3).  

The simulated HBV sequences that failed to align to the linear references (3.4%-15.7%) 

were not uniformly distributed across the genome, with loci observed to have precipitous 

drops in coverage corresponding to loci of increased genetic diversity (Figure 1). Within 

these loci, drops in coverage were highly heterogeneous across reference sequences of 

different HBV genotypes, with the lowest proportion of successfully aligned HBV 

sequencing data and the most precipitous drops in coverage in regions of increased 

nucleotide diversity occurring for HBV genotypes H and G reference sequences. As 

>99.9% of sequencing data successfully aligned to the HBV reference graph, no major 

coverage differences were observed.  

To determine whether graph-aligned HBV sequences aligned best to the path/reference 

sequence embedded within the graph of the same HBV genotype as the query 

sequence, all full-length HBV genome sequences (N=2,837) and each set of simulated 

short-read HBV sequencing data generated from the HBV genomes used in the 

simulations (N=59) were aligned to the HBV reference graph. For each alignment, query 

sequences always resulted in paths of the same HBV genotype having the highest 

alignment score (Table 1), demonstrating the importance of representing each 

phylogenetically distinct HBV genotype within the reference graph. These results also 

demonstrate that the path-specificity of sequence-to-graph alignment can enable HBV 

genotype prediction using either the alignment score directly or a metric based on the 

path-depth of nodes with successful alignments for genome-length and high-throughput 

HBV sequences, respectively.  
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Alignment of real CHB sequencing data to an HBV reference graph 

Unlike our simulated HBV sequencing datasets, real CHB-derived HBV sequencing data 

can reflect extensive genetic variation due to both host and pathogen-derived 

evolutionary pressures in addition to any sample processing or sequencing-related 

errors. Additionally, real CHB sequencing data can have highly variable quality and 

coverage distributions across the genome. For the analyses of real longitudinally 

collected CHB samples, graph-based sequence alignment consistently achieved higher 

proportions of successfully aligned HBV sequence data compared to any single linear 

reference (N=44), with 98.6%, 98.7%, 93.5%, 99.4%, and 98.7% of successfully aligned 

sequence for samples SRR747499, SRR747500, SRR747501, SRR747502, 

SRR747513 (Figure 2), respectively (Figure S4). The choice of linear reference had a 

significant effect on the proportion of aligned sequences across the five samples, with a 

per-sample difference between the best and worst performing linear reference ranging 

from 32.8% to 38.1%. The best performing linear reference (HBV subgenotype B2, 

GenBank ID: GU815637) resulted in 98.5%, 98.6%, 92.4%, 99.3%, and 98.6% of 

aligned sequences for each sample (SRR747499, SRR747500, SRR747501, 

SRR747502, SRR747513, respectively), which were all lower than the proportion of 

successful graph-based alignments. Notably, differences were also observed between 

references of the ‘correct’ HBV genotype (B), with a per-sample difference between the 

best and worst-performing reference ranging between 7.2% (85.3% vs. 92.4% for 

SRR7471501) and 7.8% (90.8% vs. 98.6% for SRR7471513). Thus, compared to graph-

based alignment across these samples, up to 8.8% of HBV sequencing data can be 

missed due to the use of a linear reference sequence of the correct HBV genotype 

compared to the HBV reference graph.  
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HBV-derived sequences that failed to align to the non-subgenotype B2 reference were 

also not uniformly distributed across the genome (Figure S5). The distribution of where 

rescued reads aligned to the B2 reference is informative as more reads from non-HBV 

genotype B references were rescued across the HBV genome except in the pre-

core/core region. At this locus, the average distribution of rescued reads from genotype 

C was always the lowest (Figure S5), which is unsurprising as the pre-core/core region 

within HBV subgenotype B2 reflects a known recombination event between genotypes B 

and C.55 For reads which still failed to align to the best performing linear B2 reference 

sequence across each sample, 30.5%-63.2% were rescued via graph-based alignment 

(N=130,154, 71,526, 83,348, 61,692, 52,071 reads rescued, respectively). The 

distribution in the start sites of all rescued reads was similarly non-uniformly distributed. 

Interestingly, the loci in which graph-based alignment rescued the most reads also 

corresponded to loci with increased pairwise nucleotide diversity estimated across the 

44 phylogenetically representative proposed HBV reference sequences (Figure S6), 

suggesting regions of increased genetic diversity globally may correspond to loci of 

increased intra-host sequence variation in real CHB samples. 

There was no significant difference in the observed proportion of successfully aligned 

reads when using all or a subset of the QC-passed HBV sequencing data across the real 

CHB samples (P>0.99). Additionally, there was no significant difference in the proportion 

of aligned reads when the full-length linear reference sequences or extended linear 

reference sequences were used across the linear reference-based alignments (P=0.76) 

(Figure S7). 

Graph-derived consensus sequences are more genetically similar to HBV sequencing 

datasets 
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While no single full genome-length HBV sequence could realistically capture the 

sequence variation observed across our simulated high throughput HBV sequencing 

data, the graph-based variant calling performed using the variation graph toolkit (VG) 

provided a consensus sequence with the lowest genetic distance to the full set of HBV 

genomes used in the simulations (Figure S8) mash distances ranging between 7.50x10-

2 and 7.82x10-2. Using the Mash distance as an approximation of average nucleotide 

identity (ANI), consensus sequences had ANIs ranging between 92.2%-92.5%, with the 

consensus inferred from VG-based variant calling having the highest ANI (92.5%). 

For consensus sequences derived using the subset of HBV sequencing data generated 

from HBV genotypes B/C only, VG-based variant calling also resulted in the sequence 

with the lowest Mash distance and highest ANI compared to the full HBV genotype B/C 

sequences. However, all genotype B and C specific consensus sequences had similar 

Mash distances, ranging between 6.01x10-2 and 6.17x10-2, and ANIs ranged between 

93.8% and 94.0% (Figure S9).  

For analyses of the real CHB sequencing data, the de novo assembled viral haplotypes 

always had the lowest Mash distance compared to the HBV sequencing data for each 

sample. This suggests viral haplotypes comprising an individual’s CHB quasispecies 

better approximate the overall sequence diversity of an infection than any derived 

consensus sequence.  

For consensus sequence comparisons, a graph-based variant calling approach resulted 

in consensus sequences with the lowest average Mash distance and highest ANI 

compared to each sample-specific set of HBV sequencing data across the longitudinal 

CHB samples. Our graph-based consensus sequence construction method provided 

improvements (i.e., a reduction in genetic distance) over attempts involving linear 

reference sequences when variants were identified via LoFreq and every sample other 
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than SRR7471499 when consensus sequences were generated using iVar (Figure 3, 

Figure S10). For this sample, graph-based variant calling and consensus sequence 

generation resulted in the same genetic similarity estimate (ANI=89.3%) as a consensus 

derived using a subgenotype C1 reference sequence (GenBank ID: DQ089781). While 

both iVar and LoFreq can be used to identify variants across a diverse set of viral 

pathogens,71,72 LoFreq has repeatedly been used to identify variants from real CHB-

derived HBV sequencing data.73,74 Additionally, while both consensus identification 

methods used the same site-specific depth threshold, our LoFreq-based approach 

accounted for insertions and deletions, potentially explaining its consistently lower Mash 

distance compared to the consensus sequences obtained via iVar (Figure 3, Figure 

S10). 

For linear reference iVar-based variant calling across all samples, Mash distances 

ranged between 1.07x10-1 and 1.27x10-1, for SRR7471499, SRR7471500, and 

SRR7471502. For SRR7471501, distances ranged between 1.07x10-1 and 1.30x10-1 and 

for SRR7471513 ranged between 1.07x10-1 and 1.28x10-1. Mash distances from the 

LoFreq-derived consensus sequences ranged between 1.07x10-1 and 1.10x10-1 for 

SRR7471499, SRR7471501, SRR7471502, and SRR7471513 and 1.07x10-1 to 1.09x10-

1 for SRR7471500. VG-based variant calling derived consensus sequences each had 

Mash distances of 1.07x10-1. Additionally, we observed no differences in the Mash 

distances between consensus sequences derived using reads surjected into the HBV 

subgenotype B2 path (B2, GenBank ID: GU815637) and the linear reference-based 

alignment derived consensus using the same B2 reference.  

 

Discussion 
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In this study, we confirm that the choice of reference plays a critical role in the alignment 

of high throughput HBV sequencing data and can influence the construction of sample-

specific consensus sequences in genetic studies of CHB. We also demonstrate that 

sequence variation graphs can improve upon widely accepted methodologies used for 

sequence alignment of highly diverse pathogens such as HBV. Using both real CHB and 

simulated high diversity HBV sequencing datasets, we show that alignment to a 

phylogenetically representative reference graph results in a higher proportion of 

successful sequence alignment and facilitates the generation of accurate sample-

specific consensus sequences.  

As the benefits of sequence-to-graph alignment are greatest for highly diverse 

sequencing datasets, the utility of graph-based sequence alignment is dependent upon 

the research question of interest. For example, sequence-to-graph alignment recovers 

only marginally more simulated sequencing data generated from a subset of HBV 

genotype B and C sequences (Figure S3) compared to linear reference-based 

approaches using genotype B or C reference sequences. Furthermore, linear reference-

based sequence alignment is highly successful at capturing HBV sequences from 

regions across the HBV genome with non-extreme global sequence diversity (Figure 1). 

While our results demonstrate that for regions of increased diversity any single linear 

reference is likely insufficient to capture the genetic variation observed across all HBV 

genotypes/subgenotypes or mixed CHB infections, many CHB infections are comprised 

of a single HBV genotype, and thus linear reference-based alignment using a correct 

genotype/subgenotype sequence would not be expected to omit important information. 

This is, however, not guaranteed as we find >8% of viral sequence can fail aligning to a 

phylogenetically representative linear reference sequence. For more genetically diverse 

infections, a hybrid approach in which a linear reference-based alignment is followed by 
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graph alignment of unmapped reads could also solve issues related to reference 

ambiguity while limiting the computational burden associated with graph-based 

sequence alignment. Notably, we find reads rescued via graph alignment largely 

originate from regions across the HBV genome of increased global sequence diversity 

(Figure S6), suggesting these loci could also correspond to regions of increased intra-

host genetic variation. 

The generation of consensus sequences is an important product of microbial-focused 

genomic analyses, and novel software and workflows devoted to generating pathogen 

consensus sequences, including for SARS-CoV-2,40 continue to be developed. In 

addition to providing an accurate characterization of the genome comprising a clinical 

infection, publicly available consensus sequences enable molecular epidemiology-

focused research, allow for large-scale phylogenetic analysis, and can aid disease 

surveillance efforts.75–78 Consensus sequences can also serve as the ‘reference’ 

sequence in subsequent bioinformatic analyses, reducing the number of spuriously 

identified variants for HBV.32 Thus, care should be taken to ensure the most accurate 

and genetically representative sequences are obtained from clinical CHB or other HBV-

infected samples. We show that graph-based alignment and variant calling can often 

improve upon linear reference-based approaches to derive sample-specific consensus 

sequences, even when such efforts utilize reference sequences of the correct HBV 

subgenotype, which produces consensus sequences less genetically similar to an 

individual’s CHB quasispecies than sequences derived via graph alignment. However, 

given the minute differences in average nucleotide identity between consensus 

sequences obtained from any of the best performing linear references and our graph-

based approach, the deleterious consequences of linear reference-based alignment are 
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likely minimal when effort is made to first identify a genetically representative reference 

sequence for use in alignment.  

However, when reference selection is not carefully considered, unrepresentative 

reference sequences can impact the fidelity of consensus sequences and other 

downstream phylogenetic-focused analyses.33,79 It is therefore possible that some 

publicly available full-length HBV genome sequences are not the most accurate HBV-

related sample-specific consensus sequences. While alternative approaches to infer 

sample-specific consensus sequences exist,5,32 our approach using the Mash distance to 

compare and identify the consensus sequence that best approximates the set of HBV 

sequencing data or de novo assembled haplotypes could provide a mechanism by which 

sample-specific consensus sequences are compared and selected for use as ideal 

reference sequences. 

While sequence-to-graph alignment requires more computational resources than linear 

alignment-based approaches, especially for the VG map mapper (Table S1), if the goal 

is to capture and retain as much HBV-related sequencing data as possible for analysis, 

we show that graph-based methods outperform traditional linear reference-based 

alignment for HBV. We should note that effective tools enabling sequence-to-graph 

alignment and the subsequent identification of graph-derived genetic variation are a 

relatively recent development. Improvements in computational performance have 

already been demonstrated through graph-simplification and the development of more 

advanced mapping and variant identification models,80–82 with further improvements 

expected.83  

While alternatives to graph-based alignment which leverage multiple reference 

sequences have also been developed, such as alignment using multiple linear 

references in tandem,84,85 their performance has not been assessed using HBV 
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sequencing data. Furthermore, an added benefit of graph-based approaches is that 

differences observed between the embedded paths/reference sequences can be utilized 

during variant calling to identify loci of genetic variation, in addition to mutations inferred 

from the alignment of sequencing data directly. The ability to leverage graph topology 

was demonstrated in our use of path depth to infer the genotype of HBV sequences 

aligned to the reference graph. Alternative graph-based prediction methods, including 

models for HBV subgenotype prediction or recombination detection, are worth further 

exploration. Whether metrics linked to graph topology or complexity, including path 

depth, can be used to better characterize the viral genetics of CHB quasispecies, either 

within specific regions or across the genome,86,87 or the genetic diversity of HBV 

generally, remains unexplored. For example, we observe the distribution of path depth 

within the phylogenetically representative HBV reference graph approximates a 

universal gene frequency distribution typical of many bacterial species (Figure S2),34 

despite there being no distinction between a core and accessory genome for HBV. 

Future efforts should investigate the utility and potential clinical importance of these 

graph-derived measures of genetic complexity for HBV and other microbial pathogens of 

public health importance. For example, graph-to-graph comparisons could enable the 

analysis of genetic sequence data in ways that Euclidean data structures cannot. 

Graph-based approaches are being increasingly used to investigate highly genetically 

diverse microbial pathogens and regions of the human genome. In this study, we 

demonstrate the limitations of using linear HBV reference sequences to derive 

consensus sequences for CHB samples. Furthermore, we hope to mitigate issues of 

HBV reference ambiguity by making this HBV reference graph publicly available, which 

will also promote the use of graph-based advances in genetic analyses to improve our 

understanding of CHB genetics. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.11.523611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


  

Declaration of interests 

None 

 

Acknowledgments 

Funding for this work was provided via 2R01AI148049 along with a COVID-19 

supplement under the same grant number (D.L.T., P.D., G.L.W) and Burroughs-

Wellcome Fund, MD-GEM training grant (D.D.). Support was also provided by the 

National Human Genome Research Institute (NHGRI) grant R35HG011944 (G.L.W.). 

 

Data and code availability 

The longitudinal HBV sequencing data utilized in this study is available as an NCBI 

BioProject under the accession PRJNA479693. Simulated HBV sequencing data and the 

HBV reference graph have been deposited on Zenodo and can be accessed using the 

following doi: 10.5281/zenodo.6646207.  

Code used to construct and index the HBV reference graph, align sequencing data to 

the graph, and infer a consensus sequence can be accessed at 

https://github.com/dduchen/HBV_reference_graph_manuscript. 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.11.523611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


REFERENCES 

1. WHO. Preventing Perinatal Hepatitis B Virus Transmission�: A Guide for 
Introducing and Strengthening Hepatitis B Birth Dose Vaccination. (2015). 

2. Asselah, T., Loureiro, D., Boyer, N. & Mansouri, A. Targets and future direct-
acting antiviral approaches to achieve hepatitis B virus cure. Lancet 
Gastroenterol. Hepatol. 4, 883–892 (2019). 

3. Zhang, Z. et al. Host Genetic Determinants of Hepatitis B Virus Infection. Front. 
Genet. 10, 1–24 (2019). 

4. Trépo, C., Chan, H. L. Y. & Lok, A. Hepatitis B virus infection. Lancet 384, 2053–
2063 (2014). 

5. Podlaha, O. et al. Large-scale viral genome analysis identifies novel clinical 
associations between hepatitis B virus and chronically infected patients. Sci. Rep. 
9, 10529 (2019). 

6. Akahane, Y. et al. Chronic active hepatitis with hepatitis B virus DNA and antibody 
against e antigen in the serum. Disturbed synthesis and secretion of e antigen 
from hepatocytes due to a point mutation in the precore region. Gastroenterology 
(1990) doi:10.1016/0016-5085(90)90632-B. 

7. Günther, S. et al. Type, prevalence, and significance of core promoter/enhancer II 
mutations in hepatitis B viruses from immunosuppressed patients with severe liver 
disease. J. Virol. (1996). 

8. Günther, S., Piwon, N. & Will, H. Wild-type levels of pregenomic RNA and 
replication but reduced pre-C RNA and e-antigen synthesis of hepatitis B virus 
with C(1653)→T, A(1762)→T and G(1764)→A mutations in the core promoter. J. 
Gen. Virol. (1998) doi:10.1099/0022-1317-79-2-375. 

9. Nguyen, M. H. & Keeffe, E. B. Are hepatitis B e antigen (HBeAg)-positive chronic 
hepatitis B and HBeAg-negative chronic hepatitis B distinct diseases? Clin. Infect. 
Dis. 47, 1312–4 (2008). 

10. Cao, G.-W. Clinical relevance and public health significance of hepatitis B virus 
genomic variations. World J. Gastroenterol. 15, 5761–9 (2009). 

11. McNaughton, A. L. et al. Insights From Deep Sequencing of the HBV Genome—
Unique, Tiny, and Misunderstood. Gastroenterology 156, 384–399 (2018). 

12. Toan, N. L. et al. Impact of the hepatitis B virus genotype and genotype mixtures 
on the course of liver disease in Vietnam. Hepatology 43, 1375–1384 (2006). 

13. Lin, C.-L. et al. High prevalence of occult hepatitis B virus infection in Taiwanese 
intravenous drug users. J. Med. Virol. 79, 1674–1678 (2007). 

14. Shen, L. et al. Molecular epidemiological study of hepatitis B virus genotypes in 
Southwest, China. J. Med. Virol. 86, 1307–1313 (2014). 

15. Liu, B., Yang, J., Yan, L., Zhuang, H. & Li, T. Novel HBV recombinants between 
genotypes B and C in 3′-terminal reverse transcriptase (RT) sequences are 
associated with enhanced viral DNA load, higher RT point mutation rates and 
place of birth among Chinese patients. Infect. Genet. Evol. 57, 26–35 (2018). 

16. Huy, T. T. T., Ngoc, T. T. & Abe, K. New Complex Recombinant Genotype of 
Hepatitis B Virus Identified in Vietnam. J. Virol. 82, 5657–5663 (2008). 

17. Tatematsu, K. et al. A Genetic Variant of Hepatitis B Virus Divergent from Known 
Human and Ape Genotypes Isolated from a Japanese Patient and Provisionally 
Assigned to New Genotype J. J. Virol. 83, 10538–10547 (2009). 

18. Guirgis, B. S. S., Abbas, R. O. & Azzazy, H. M. E. Hepatitis B virus genotyping: 
Current methods and clinical implications. Int. J. Infect. Dis. 14, e941–e953 
(2010). 

19. Shi, W. et al. Hepatitis B virus subgenotyping: History, effects of recombination, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.11.523611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


misclassifications, and corrections. Infect. Genet. Evol. 16, 355–361 (2013). 
20. Domingo, E., Sheldon, J. & Perales, C. Viral Quasispecies Evolution. Microbiol. 

Mol. Biol. Rev. 76, 159–216 (2012). 
21. Poirier, E. Z. & Vignuzzi, M. Virus population dynamics during infection. Curr. 

Opin. Virol. 23, 82–87 (2017). 
22. Zhou, T.-C. et al. Evolution of full-length genomes of HBV quasispecies in sera of 

patients with a coexistence of HBsAg and anti-HBs antibodies. Sci. Rep. 7, 661 
(2017). 

23. Yang, Z.-T. et al. Characterization of Full-Length Genomes of Hepatitis B Virus 
Quasispecies in Sera of Patients at Different Phases of Infection. J. Clin. 
Microbiol. 53, 2203–2214 (2015). 

24. Domingo, E. & Perales, C. Viral quasispecies. PLOS Genet. 15, e1008271 (2019). 
25. Cao, L. et al. Coexistence of Hepatitis B Virus Quasispecies Enhances Viral 

Replication and the Ability To Induce Host Antibody and Cellular Immune 
Responses. J. Virol. 88, 8656–8666 (2014). 

26. Zhang, A. Y. et al. Deep sequencing analysis of quasispecies in the HBV pre-S 
region and its association with hepatocellular carcinoma. J. Gastroenterol. 52, 
1064–1074 (2017). 

27. Cheng, Y. et al. Cumulative viral evolutionary changes in chronic hepatitis B virus 
infection precedes hepatitis B e antigen seroconversion. Gut 62, 1347–1355 
(2013). 

28. Chen, L. et al. Increased intrahepatic quasispecies heterogeneity correlates with 
off-treatment sustained response to nucleos(t)ide analogues in e antigen-positive 
chronic hepatitis B patients. Clin. Microbiol. Infect. 22, 201–207 (2016). 

29. Liu, F. et al. Evolutionary patterns of hepatitis B virus quasispecies under different 
selective pressures: correlation with antiviral efficacy. Gut 60, 1269–1277 (2011). 

30. Ngui, S. L. & Teo, C. G. Hepatitis B virus genomic heterogeneity: Variation 
between quasispecies may confound molecular epidemiological analyses of 
transmission incidents. J. Viral Hepat. 4, 309–315 (1997). 

31. Garrison, E. et al. Variation graph toolkit improves read mapping by representing 
genetic variation in the reference. Nat. Biotechnol. 36, 875–881 (2018). 

32. Liu, W.-C. et al. Aligning to the sample-specific reference sequence to optimize 
the accuracy of next-generation sequencing analysis for hepatitis B virus. Hepatol. 
Int. 10, 147–157 (2016). 

33. Valiente-Mullor, C. et al. One is not enough: On the effects of reference genome 
for the mapping and subsequent analyses of short-reads. PLOS Comput. Biol. 17, 
e1008678 (2021). 

34. Colquhoun, R. M. et al. Pandora: nucleotide-resolution bacterial pan-genomics 
with reference graphs. Genome Biol. 22, 267 (2021). 

35. Rick, J. A., Brock, C. D., Lewanski, A. L., Golcher-Benavides, J. & Wagner, C. E. 
Reference genome choice and filtering thresholds jointly influence phylogenomic 
analyses. bioRxiv 2022.03.10.483737 (2022) doi:10.1101/2022.03.10.483737. 

36. McNaughton, A. L., Revill, P. A., Littlejohn, M., Matthews, P. C. & Ansari, M. A. 
Analysis of genomic-length HBV sequences to determine genotype and 
subgenotype reference sequences. J. Gen. Virol. 101, 271–283 (2020). 

37. Eizenga, J. M. et al. Pangenome Graphs. Annu. Rev. Genomics Hum. Genet. 21, 
annurev-genom-120219-080406 (2020). 

38. Eizenga, J. M. et al. Succinct dynamic variation graphs. 1–6 (2020). 
39. Dilthey, A., Cox, C., Iqbal, Z., Nelson, M. R. & McVean, G. Improved genome 

inference in the MHC using a population reference graph. Nat. Genet. 47, 682–
688 (2015). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.11.523611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


40. Moshiri, N. et al. The ViReflow pipeline enables user friendly large scale viral 
consensus genome reconstruction. Sci. Rep. 12, 5077 (2022). 

41. Quick, J. et al. Multiplex PCR method for MinION and Illumina sequencing of Zika 
and other virus genomes directly from clinical samples. Nat. Protoc. 12, 1261–
1276 (2017). 

42. Bui, T. T. T. et al. Molecular characterization of hepatitis B virus in Vietnam. BMC 
Infect. Dis. 17, 601 (2017). 

43. McNaughton, A. L. et al. Illumina and Nanopore methods for whole genome 
sequencing of hepatitis B virus (HBV). Sci. Rep. 9, 7081 (2019). 

44. Cheng, Y. et al. Multifactorial heterogeneity of virus-specific T cells and 
association with the progression of human chronic hepatitis B infection. Sci. 
Immunol. 4, eaau6905 (2019). 

45. Martin, M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet.journal 17, 10 (2011). 

46. Andrews, S. FastQC. Babraham Bioinforma. (2010). 
47. Gourlé, H., Karlsson-Lindsjö, O., Hayer, J. & Bongcam-Rudloff, E. Simulating 

Illumina metagenomic data with InSilicoSeq. Bioinformatics 35, 521–522 (2019). 
48. Marco-Sola, S., Moure, J. C., Moreto, M. & Espinosa, A. Fast gap-affine pairwise 

alignment using the wavefront algorithm. Bioinformatics 37, 456–463 (2021). 
49. Garrison, E. & Guarracino, A. Unbiased pangenome graphs. bioRxiv 14–19 

(2022) doi:10.1101/2022.02.14.4804. 
50. Sirén, J. et al. Pangenomics enables genotyping of known structural variants in 

5202 diverse genomes. Science (80-. ). 374, (2021). 
51. Sirén, J., Garrison, E., Novak, A. M., Paten, B. & Durbin, R. Haplotype-aware 

graph indexes. Bioinformatics 36, 400–407 (2018). 
52. Hall, M. Rasusa: Randomly subsample sequencing reads to a specified coverage. 

J. Open Source Softw. 7, 3941 (2022). 
53. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 

25, 2078–9 (2009). 
54. Velkov, S., Ott, J., Protzer, U. & Michler, T. The Global Hepatitis B Virus 

Genotype Distribution Approximated from Available Genotyping Data. Genes 
(Basel). 9, 495 (2018). 

55. Sugauchi, F. et al. Hepatitis B Virus of Genotype B with or without Recombination 
with Genotype C over the Precore Region plus the Core Gene. J. Virol. 76, 5985–
5992 (2002). 

56. Paradis, E. pegas: an R package for population genetics with an integrated-
modular approach. Bioinformatics 26, 419–20 (2010). 

57. Li, H. Aligning sequence reads, clone sequences and assembly contigs with 
BWA-MEM. arXiv (2013). 

58. Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-
sample quality control for high-throughput sequencing data. Bioinformatics 32, 
292–4 (2016). 

59. Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive 
visualization of de novo genome assemblies: Fig. 1. Bioinformatics 31, 3350–
3352 (2015). 

60. Holley, G. & Melsted, P. Bifrost: highly parallel construction and indexing of 
colored and compacted de Bruijn graphs. Genome Biol. 21, 249 (2020). 

61. Grubaugh, N. D. et al. An amplicon-based sequencing framework for accurately 
measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 20, 8 
(2019). 

62. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, 1–4 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.11.523611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


(2021). 
63. Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. (2014). 
64. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate 

Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014). 
65. Wilm, A. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for 

uncovering cell-population heterogeneity from high-throughput sequencing 
datasets. Nucleic Acids Res. 40, 11189–11201 (2012). 

66. Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation 
using MinHash. Genome Biol. 17, 132 (2016). 

67. Solis-Reyes, S., Avino, M., Poon, A. & Kari, L. An open-source k-mer based 
machine learning tool for fast and accurate subtyping of HIV-1 genomes. PLoS 
One 13, 1–21 (2018). 

68. Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-
mer based tool for identifying viral sequences from assembled metagenomic data. 
Microbiome 5, 69 (2017). 

69. Baaijens, J. ., El Aabidine, A. Z., Rivals, E. & Schönhuth, A. De novo assembly of 
viral quasispecies using overlap graphs. Genome Res. 27, 835–848 (2017). 

70. Baaijens, J. A., Stougie, L. & Schönhuth, A. Strain-aware assembly of genomes 
from mixed samples using flow variation graphs. bioRxiv 645721 (2020) 
doi:10.1101/645721. 

71. Dezordi, F. Z. et al. ViralFlow: A Versatile Automated Workflow for SARS-CoV-2 
Genome Assembly, Lineage Assignment, Mutations and Intrahost Variant 
Detection. Viruses 14, 217 (2022). 

72. Liu, Y. et al. Rescuing low frequency variants within intra-host viral populations 
directly from Oxford Nanopore sequencing data. Nat. Commun. 13, 1321 (2022). 

73. Zhu, Y. O. et al. Single-virion sequencing of lamivudine-treated HBV populations 
reveal population evolution dynamics and demographic history. BMC Genomics 
18, 1–12 (2017). 

74. Betz-Stablein, B. D. et al. Single-Molecule Sequencing Reveals Complex Genome 
Variation of Hepatitis B Virus during 15 Years of Chronic Infection following Liver 
Transplantation. J. Virol. 90, 7171–7183 (2016). 

75. Saravanan, K. A. et al. Role of genomics in combating COVID-19 pandemic. 
Gene 823, 146387 (2022). 

76. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data – 
from vision to reality. Eurosurveillance 22, 2–4 (2017). 

77. Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. 
Bioinformatics 34, 4121–4123 (2018). 

78. Armstrong, G. L. et al. Pathogen Genomics in Public Health. N. Engl. J. Med. 381, 
2569–2580 (2019). 

79. Rick, J. A., Brock, C. D., Lewanski, A. L., Golcher-Benavides, J. & Wagner, C. E. 
Reference genome choice and filtering thresholds jointly influence phylogenomic 
analyses. bioRxiv 2022.03.10.483737 (2022) doi:10.1101/2022.03.10.483737. 

80. Jain, C., Tavakoli, N. & Aluru, S. A variant selection framework for genome 
graphs. bioRxiv 1–8 (2021) doi:10.1101/2021.02.02.429378. 

81. Pritt, J., Chen, N.-C. & Langmead, B. FORGe: prioritizing variants for graph 
genomes. Genome Biol. 19, 220 (2018). 

82. Monsu, M. & Comin, M. Fast alignment of reads to a variation graph with 
application to SNP detection. J. Integr. Bioinform. 18, (2021). 

83. Baaijens, J. A. et al. Computational graph pangenomics: a tutorial on data 
structures and their applications. Nat. Comput. 6, (2022). 

84. Chen, N., Paulin, L. F., Sedlazeck, F. J., Koren, S. & Adam, M. Improved 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.11.523611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


sequence mapping using a complete reference genome and lift-over. bioRxiv 
(2022) doi:10.1101/2022.04.27.489683. 

85. Chen, N.-C., Solomon, B., Mun, T., Iyer, S. & Langmead, B. Reference flow: 
reducing reference bias using multiple population genomes. Genome Biol. 22, 8 
(2021). 

86. Ibragimov, R., Malek, M., Guo, J. & Baumbach, J. GEDEVO: An evolutionary 
graph edit distance algorithm for biological network alignment. OpenAccess Ser. 
Informatics 34, 68–79 (2013). 

87. Qiu, Y. & Kingsford, C. The Effect of Genome Graph Expressiveness on the 
Discrepancy Between Genome Graph Distance and String Set Distance. bioRxiv 
(2022) doi:10.1101/2022.02.18.481102.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.11.523611doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


Figure 1: Alignment and depth of coverage across the HBV genome for simulated HBV sequencing data. On the left, points reflect 
the proportion of successfully aligned simulated reads, colored by either the genotype of the reference or whether graph-based 
alignment was performed. The Y axis reflects the proportion of successfully aligned reads. Labels indicate the reference sequence 
genotype or graph used in the alignment and the proportion of reads aligned. On the right, the X axis reflects genome position, with 
gene regions provided as colored bars along the base of the figure. C=core, P=polymerase, S=Surface, X=X. The top right panel 
reflects the average nucleotide diversity across the genome, with the Y axis reflecting the average pairwise nucleotide diversity (0-1). 
For the bottom right panel, the Y axis reflects depth of coverage across the HBV genome obtained when using reference sequences 
of different HBV genotypes, using the same genotype-specific color scheme as the left panel. Significant drops in coverage are 
indicated with the grey vertical lines. 

.
C

C
-B

Y
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted January 12, 2023. 
; 

https://doi.org/10.1101/2023.01.11.523611
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2023.01.11.523611
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 2: Proportion of successfully aligned CHB sequencing data for sample 
SRR7471513. Points reflect the proportion of successfully aligned sequences, colored 
by either the genotype for linear reference-based alignment or if sequences were aligned 
to the HBV reference graph. The Y axis reflects the proportion of successfully aligned 
reads. The X axis indicates which longitudinally collected CHB sample was used. Labels 
reflect the genotype of the reference or whether the reference graph was used for the 
highest and lowest observed aligned proportions. 
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Figure 3: Genetic distance comparisons of consensus sequences and de novo 
assembled HBV haplotypes with CHB sequencing data from sample SRR7471513. 
Points reflect the Mash distance estimated between each consensus sequence 
generated from the 44 HBV reference sequences or the HBV reference graph. The Y 
axis reflects the Mash distance estimated between each LoFreq-derived consensus 
sequence and the X axis reflects the Mash distance estimated between each iVar-
derived consensus sequence. The color of each point reflects the genotype of the 
reference used to generate a consensus, or if the consensus was derived via graph-
based alignment or reflects sample-specific HBV haplotypes. Points for graph-derived 
consensus sequences, including VG-based variant calling (‘VG alignment consensus’), 
graph-based surjection (‘Best reference path’), and the de novo assembled viral strains 
(‘HBV Haplotypes (>1%)’) are enlarged. 
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Genotype Whole-genome 
alignment (N) 

Short-read 
alignment (N) 

A 259 7 
B 687 17 
C 1094 19 
D 549 9 
E 145 2 
F 80 2 
G 3 1 
H 11 1 
I 9 1 

Table 1: Sequence-to-graph alignment genotype prediction. Whole genome sequences 
or simulated high throughput (i.e., short-read) sequencing data consistently aligned best 
to graph-embedded paths of the correct HBV genotype. The number of each aligned 
sequences or datasets from the respective HBV genotype are listed. 
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