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ABSTRACT

Antimicrobial resistance was estimated to be associated with 4.95 million deaths worldwide in 2019. It is possible to frame
the antimicrobial resistance problem as a feedback-control problem. If we could optimize this feedback-control problem and
translate our findings to the clinic, we could slow, prevent or reverse the development of high-level drug resistance. Prior work
on this topic has relied on systems where the exact dynamics and parameters were known a priori. In this study, we extend this
work using a reinforcement learning (RL) approach capable of learning effective drug cycling policies in a system defined by
empirically measured fitness landscapes. Crucially, we show that is possible to learn effective drug cycling policies despite the
problems of noisy, limited, or delayed measurement. Given access to a panel of 15 β -lactam antibiotics with which to treat
the simulated E. coli population, we demonstrate that RL agents outperform two naive treatment paradigms at minimizing
the population fitness over time. We also show that RL agents approach the performance of the optimal drug cycling policy.
Even when stochastic noise is introduced to the measurements of population fitness, we show that RL agents are capable
of maintaining evolving populations at lower growth rates compared to controls. We further tested our approach in arbitrary
fitness landscapes of up to 1024 genotypes. We show that minimization of population fitness using drug cycles is not limited by
increasing genome size. Our work represents a proof-of-concept for using AI to control complex evolutionary processes.
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Introduction1

Drug resistant pathogens are a wide-spread and deadly phenomenon that were responsible for nearly 5 million deaths worldwide2

in 20191. Current projections suggest the global burden of antimicrobial resistance could climb to 10 million deaths per year by3

20502. In the US alone, 3 million cases of antimicrobial resistant infections are observed each year3. The increasing prevalence4

of pan-drug resistance has prompted the CDC to declare that we have entered a “post-antibiotic era”3. Despite this evident5

public health crisis, development of novel antibiotics has all but ceased due to the poor return on investment currently associated6

with this class of drugs4. Novel approaches to therapy design that explicitly take into account the adaptive nature of microbial7

cell populations while leveraging existing treatment options are desperately needed.8

Evolutionary medicine is a rapidly growing discipline that aims to develop treatment strategies that explicitly account9

for the capacity of pathogens and cancer to evolve5–11. Such treatment strategies, termed “evolutionary therapies”, typically10

cycle between drugs or drug doses to take advantage of predictable patterns of disease evolution. Evolutionary therapies are11

often developed by applying optimization methods to a mathematical or simulation-based model of the evolving system under12

study12–22. For example, in castrate-resistant prostate cancer, researchers developed an on-off drug cycling protocol that allows13

drug-sensitive cancer cells to regrow following a course of treatment. Clinical trials have shown this therapy prevents the14

emergence of a resistant phenotype and enables superior long-term tumor control and patient survival compared to conventional15

strategies23, 24.16

Current methods for the development of evolutionary therapies require an enormous amount of data on the evolving system.17

For example, many researchers have optimized treatment by using genotype-phenotype maps to define evolutionary dynamics18

and model the evolving cell population16, 25–33. For instance, Nichol et al modeled empirical drug fitness landscapes measured19

in E. Coli as a Markov chain to show that different sequences of antibiotics can promote or hinder resistance. In order to20

determine optimal drug sequences, they first constrained their system such that the population under selection evolved to a21

terminal evolutionary state prior to drug switching. Further, defining the Markov chain framework required exact knowledge of22

the high-dimensional genotype-phenotype map under many different drugs16. Most published methods for optimization of23

these models requires a complete understanding of the underlying system dynamics15, 16, 34–36. Such detailed knowledge is24

currently unobtainable in the clinical setting. Approaches that can approximate these optimal policies given only a fraction of25

the available information would fill a key unmet need in evolutionary medicine.26

We hypothesize that reinforcement learning algorithms can develop effective drug cycling policies given only experi-27

mentally measurable information about the evolving pathogen. Reinforcement learning (RL) is a well-studied sub-field of28

machine learning that has been successfully used in applications ranging from board games and video games to manufacturing29

automation34, 37–39. Broadly, RL methods train artificial intelligence agents to select actions that maximize a reward function.30

Importantly, RL methods are particularly suited for optimization problems where little is known about the dynamics of the31

underlying system. While previous theoretical work has studied evolutionary therapy with alternating antibiotics, none have ad-32

dressed the problems of noisy, limited, or delayed measurement that would be expected in any real-world applications.12–14, 16, 17
33

Further, RL and related optimal control methods have been previously applied for the development of clinical optimization34

protocols in oncology and anesthesiology21, 40–45.35

index drug code drug
1 AMP Ampicillin
2 AM Amoxicillin
3 CEC Cefaclor
4 CTX Cefotaxime
5 ZOX Ceftizoxime
6 CXM Cefuroxime
7 CRO Ceftriaxone
8 AMC Amoxicillin + Clavulanic acid
9 CAZ Ceftazidime

10 CTT Cefotetan
11 SAM Ampicillin + Sulbactam
12 CPR Cefprozil
13 CPD Cefpodoxime
14 TZP Pipercillin + Tazobactam
15 FEP Cefepime

Table 1. Reference codes for drugs under study

In this study, we developed a novel approach to discover-36

ing evolutionary therapies using a well studied set of empirical37

fitness landscapes as a model system26. We explored "perfect38

information" optimization methods such as dynamic program-39

ming in addition to RL methods that can learn policies given40

only limited information about a system. We show that it41

is possible to learn effective drug cycling treatments given42

extremely limited information about the evolving population,43

even in situations where the measurements reaching the RL44

agent are extremely noisy and the information density is low.45

1 Methods46

As a model system, we simulated an evolving population of47

Escherichia coli (E. coli) using the well-studied fitness land-48

scape paradigm, where each genotype is associated with a49

certain fitness under selection16, 26, 29. We relied on a previ-50

ously described 4-allele landscape of the E. coli β -lacatamase51

gene where each possible combination of mutations had a52

measured impact on the sensitivity of an E. coli population to53
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one of 15 β -lactam antibiotics26. We then defined 15 different fitness regimes on the same underlying genotype space, each54

representing the selective effect of one of 15 β -lactam antibiotics (Table 1)26. We used this well-studied E. coli model system55

because it is one of the few microbial cell populations for which a combinatorially complete genotype-phenotype mapping56

has been measured26, 29. We extended this paradigm to procedurally generated landscapes with larger numbers of alleles as57

a sensitivity analysis (described in the supplemental methods). By simulating an evolving E. coli cell population using the58

described fitness landscape paradigm, we were able to define an optimization problem on which to train RL agents (Fig 1).59

Figure 1. Schematic of artificial intelligence system for controlling evolving cell populations. A: E. coli population evolving on fitness landscapes
under the strong selection, weak mutation evolutionary regime. At each time step, a reward signal r and a measure of system state s are sent to the replay
memory structure. B: Replay memory array stores (s, a, r, s’) tuples where s’ is state s+1. These are then used to batch train the neural network. C: Deep
Neural network estimates the value of each action given information about the environment’s state. The action with the largest estimated value is then applied
to the evolving cell population.

1.1 Simulation of Evolution Using Fitness Landscapes60

We use a previously described fitness-landscape based model of evolution16, 27. In brief, we begin by modeling an evolving61

asexual haploid population with N mutational sites. Each site can have one of two alleles (0 or 1). We can therefore represent62

the genotype of a population using an N-length binary sequence, for a total of 2N possible genotypes. We can model theoretical63

drug interventions by defining fitness as a function of genotype. These “drugs” can then be represented using N-dimensional64

hyper-cubic graphs (Fig 1A). Further, if we assume that evolution under drug treatment follows the strong selection and weak65

mutation (SSWM) paradigm, we can then compute the probability of mutation between adjacent genotypes and represent each66

landscape as a Markov chain as described by Nichol et al.16. With sufficiently small population size, we can then assume that67

the population evolves to fixation prior to transitioning to another genotype. At each time step, we sampled from the probability68

distribution defined by the Markov chain to simulate the evolutionary course of a single population.69

1.2 Optimization approaches70

We applied two related optimization approaches to identify effective drug cycling policies in this setting. First, we extended the71

Markov chain framework to formulate a complete Markov Decision Process (MDP). An MDP is a discrete-time framework for72

modeling optimal decision-making34. Critically, the system under study must be partially under the control of the decision-73

making agent. MDPs can be solved using dynamic programming to generate optimal policies for the defined control problem34.74

The dynamic programming algorithm requires perfect information (e.g. the complete transition matrix and instantaneous state75

from the MDP) in order to yield optimal policies. Next, we trained agents with imperfect information using reinforcement76

learning to approximate a clinical scenario where perfect information is not available. Notably, the state set, action set, and77

reward assignment were shared between the perfect and imperfect information conditions. The action set corresponded to the78

drugs available to the optimization process. We considered this system to have a finite time horizon (20 evolutionary steps in the79

base case). We chose a finite time horizon rather than an infinite time horizon assumption in order to more faithfully represent80

clinical disease courses. For our purposes, we assume that one evolutionary time step is the equivalent of one day of evolution.81
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1.2.1 Perfect Information82

The state set S represents all potential genotypes (16 total in our base case) that the evolving population can explore. The83

action set A corresponds to the 15 available β -lactam antibiotics. Finally, we define the reward set (R) and the set of transition84

probabilities (P) as a function of the current genotype s as well as the chosen action, a (eq 1):85

R = 1− f (s|a) for s ∈ S and a ∈ A,and,
P = f (st+1|st ,at) for s ∈ S and a ∈ A.

(1)

We solved the defined MDP using backwards induction, a dynamic programming approach designed to solve MDPs with finite86

time horizons46, to generate an optimal drug cycling policy for each evolutionary episode. Backwards induction is used to87

estimate a value function V (s) which estimates the discounted reward of being in each state s. Optimal policies Π(s) are then88

inferred from the value function. Throughout the remainder of the paper we will refer to this optimal drug cycling policy as the89

“MDP” condition.90

1.2.2 Imperfect Information91

In order to assess the viability of developing optimal drug therapies from potentially clinically available information, we92

trained a Deep Q learner to interact with the evolving E. coli system described above. Deep Q learning is a well-studied and93

characterized method of reinforcement learning, and is particularly suited to situations where very little a priori knowledge94

about the environment is available34, 47. To simulate imperfect information, we used two different training inputs to model a95

gradient of information loss. In the first condition, termed RL-genotype, the instantaneous genotype of the population was96

provided as the key training input at each time point. For this condition, the neural architecture was composed of an input layer,97

two 1d convolutional layers, a max pooling layer, a dense layer with 28 neurons, and an output layer with a linear activation98

function.99

In the second condition, termed RL-fit, instantaneous population fitness of the population was provided as the key training100

input at each time point. The neural architecture of RL-fit was composed of a neural network with an input layer, two dense101

hidden layers with 64 and 28 neurons, and an output layer with a linear activation function. RL-fit takes population fitness at102

time t and one-hot encoded action at time t−1 as inputs and outputs Q-values. Q-values are estimates of the future value of a103

given action. Q-value estimates are improved by minimizing the temporal difference between Q-values computed by the current104

model and a target model, which has weights and biases that are only updated rarely. We used mean squared error (MSE) as the105

loss function.106

We further explored the effect of information content on learned policy effectiveness by introducing a noise parameter. With107

noise active, fitness values s ∈ S that were used as training inputs were first adjusted according to:108

st = st +w ∈ W ∼N (µ,0.05×σ
2). (2)

For the noise experiment, µ was set to 0 such that σ2 = 0 would introduce no noise. We then varied σ2 (referred to as ’noise109

parameter’) from 0 (no noise) to 100 (profound loss of signal fidelity). Finally, we evaluated the performance of RL-genotype110

learners that were trained on delayed information to explore the viability of using outdated sequencing information to inform111

drug selection (described in the supplemental methods).112

All code and data needed to define and implement the evolutionary simulation and reinforcement learning framework can be113

found at https://github.com/DavisWeaver/evo_dm. The software can be installed in your local python environment using ’pip114

install git+https://github.com/DavisWeaver/evo_dm.git’. We also provide all the code needed to reproduce the figures from the115

paper at https://github.com/DavisWeaver/rl_cycling.116

2 Results117

In this study, we explored the viability of developing effective drug cycling policies for antibiotic treatment given less and118

less information about the evolving system. To this end, we developed a reinforcement learning framework to design policies119

that limit the growth of an evolving E. coli population in silico. We evaluated this system in a well-studied E. coli system for120

which empirical fitness landscapes for 15 antibiotics are available in the literature26. A given RL agent could select from any of121

these 15 drugs when designing a policy to minimize population fitness. We defined three experimental conditions. In the first,122

we solved a Markov decision process formulation of the optimization problem under study. In doing so, we generated true123

optimal drug cycling policies given perfect information of the underlying system (described in Section 1.1). In the second, RL124

agents were trained using the current genotype of the simulated E. coli population under selection (RL-genotype). Stepping125
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Figure 2. Performance of RL agents in a simulated E. coli system. A: Line plot showing the effectiveness (as measured by average population fitness)
of the average learned policy as training time increases on the x-axis for RL agents trained using fitness (red) or genotype (blue). B: Boxplot showing the
effectiveness of 10 fully trained RL-fit replicates as a function of noise. Each data point corresponds to one of 500 episodes per replicate (5000 total episodes).
The width of the distribution provides information about the episode by episode variability in RL-fit performance. C: Density plot summarizing the
performance of the two experimental conditions (measured by average population fitness) relative to the three control conditions. D: Signal to noise ratio
associated with different noise parameters. Increasing noise parameter decreases the fidelity of the signal that reaches the reinforcement learner.

further down the information gradient, RL agents were trained using only observed fitness of the E. coli population (RL-fit).126

Finally, we introduced noise into these measures of observed fitness to simulate real-world conditions where only imprecise127

proxy measures of the true underlying state may be available. Each experimental condition was evaluated based on its ability to128

minimize the fitness of the population under study in 20 time-step episodes. We compared these conditions to two negative129

controls; a drug cycling policy that selects drugs completely at random (which we will refer to as “random”), and all possible130

two-drug cycles (i.e AMP-AM-AMP-AM-AMP). We tested 100 replicates of RL-fit and RL-genotype against each of these131

conditions. Each replicate was trained for 500 episodes of 20 evolutionary steps (10,000 total observations of system behavior).132

We chose 500 episodes as the training time after extensive hyper-parameter tuning showed decreased or equal effectiveness133

with additional training.134

Comparison of RL drug cycling policies to negative controls.135

drug sequence replicate condition
CTX,AMC,CTX,CPR,CTX,CPR,CTX,CPR,CTX,CPR 53 RL-fit
CTX,CPR,CPR,CPR,CTX,CPR,CPR,CPR,CTX,SAM 53 RL-genotype

CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC,CTX,CPR 23 RL-fit
CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC 23 RL-genotype
CTX,AMC,CTX,AMC,CTX,CPR,CTX,AMC,CTX,CPR 96 RL-fit
CTX,SAM,CTX,SAM,CTX,CPR,CTX,CPR,CTX,CPR 96 RL-genotype

Table 2. Example drug sequences. Here, we show the first 10 selected drugs for
representative episodes of the three top-performing replicates.

We found that both RL136

conditions dramatically re-137

duced fitness relative to the138

random policy. In both cases,139

the RL conditions learned ef-140

fective drug cycling policies141

after about 100 episodes of142

training and then fine-tuned143

them with minimal improve-144

ment through episode 500145

(Fig 2A). As expected, RL-146

genotype learned a more ef-147

fective drug cycling policy on average compared to RL-fit. RL-genotype had access to the instaneous state (genotype) of the148
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Figure 3. Drug cycling policies learned by RL-genotype and RL-fit. A: Heatmap depicting the learned policy for 100 replicates (on the x-axis) of the
RL-genotype and 100 replicates of RL-fit. Far left column (enlarged) corresponds to the optimal policy derived from the MDP condition. The Y-axis describes
the β -lactam antibiotics each RL agent could choose from while the color corresponds to the probability that the learned policy selected a given antibiotic.
Bottom heatmap shows the median fitness benefit observed under the policy learned by a given replicate. B: Heatmap showing the average learned policy for
RL-fit and RL-genotype. RL-genotype learns a more consistent mapping of state to action compared to RL-fit.

evolving population, while RL-fit was only trained using a proxy measure (population fitness). We define population fitness as149

the instantaneous growth rate of the E. coli population in exponential phase. In 98/100 replicates, we observed a measurable150

decrease in population fitness under the learned RL-fit policy versus a random drug cycling policy (Fig S1A). Further, we found151

that the average RL-fit replicate outperformed all possible two-drug cycling policies (Fig 2C). RL-genotype outperformed152

both negative controls in all 100 replicates (Fig 2C). In some replicates, RL-genotype achieved similar performance compared153

to the MDP policy (Fig S1D). In addition, the distribution of performance for RL-genotype policies nearly overlapped with154

MDP performance (Fig 2C). Introduction of additional noise to the training process for RL-fit led to degraded performance.155

However, even with a large noise modifier, RL-fit still outperformed the random drug cycling condition. With a noise modifier156

of 40, RL-fit achieved an average population fitness of 1.41 compared to 1.88 for the random drug cycling condition (Fig 2D).157

Overview of learned drug cycling policies for RL-fit and RL-genotype.158

We evaluated the learned drug cycling policies of RL-fit and RL-genotype for the 15 β -lactam antibiotics under study.159

Represented drug sequences for these conditions can be found in Table 2. We compared these to the true optimal drug cycling160

policy as a reference. For this system, we show that the optimal drug cycling policy relies heavily on Cefotaxime, Ampicillin +161

Sulbactam, and Ampicillin (Fig 3A). Cefotaxime was used as treatment in more than 50% of time-steps, with Ampicillin +162

Sulbactam and Ampicillin used next most frequently. The optimal drug cycling policy used Cefprozil, Pipercillin + Tazobactam,163

and Cefaclor infrequently. The remaining drugs were not used at all. The different RL-fit replicates largely converged on a164

similar policy. They relied heavily on Cefotaxime and Amoxicillin + Clavulanic acid. However, they relied infrequently on165

Cefprozil. RL-genotype replicates also converged on a relatively conserved policy. Further, RL-genotype replicates showed a166

much more consistent mapping of state to action compared to RL-fit (Fig 3B). All optimization paradigms identified complex167

drug cycles that use 3 or more drugs to treat the evolving cell population. None of the tested two-drug combinations compete168

with policies learned by RL-genotype, and are generally out-performed by RL-fit. We show that policies that do not rely on169

Cefotaxime are suboptimal in this system. The three replicates that showed the least benefit compared to the random drug170

cycling case did not use Cefotaxime at all (Fig 3B). The importance of Cefotaxime is likely explained by the topography of the171

CTX drug landscape (Fig S5). More than half of the available genotypes in the CTX landscape lie in fitness valleys, providing172

ample opportunities to combine CTX with other drugs and "trap" the evolving population in low-fitness genotypes.173

Evolutionary trajectories observed under RL-Genotype, RL-fit, and MDP drug policies.174
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Figure 4. Movement of simulated E. coli population through the genomic landscape. Top row: Heatmap depicting the joint probability distribution
for each state transition under the different experimental conditions. The second two show the difference in state transition probability compared to the MDP
condition. Bottom row: Graph depicting the fitness landscape, beginning with the wild type (bottom) all the way to the quadruple mutant (top). Size of arrow
depicts the frequency with which a state transition was observed under the labeled experimental condition. The color of each node corresponds with the
expected value (to the learner) of being in that state. As above, the second two plots correspond to the observed difference between RL-Fit or RL-genotype and
the MDP condition.

Next, we compared the evolutionary paths taken by the simulated E. coli population under the MDP, RL-fit, RL-genotype,175

and random policy paradigms. The edge weights (corresponding to the probability of observed state transitions) of the176

RL-genotype and MDP landscapes show a 0.96 pearson correlation (Fig S2). In contrast, the edge weights of the RL-fit and177

MDP landscapes show a 0.82 pearson correlation (Fig S2). During the course of training the MDP condition, the backwards178

induction algorithm generated a value function V (s,a) for all s ∈ S and a ∈ A. In Figure S2D, we use this value function to179

show that certain genotypes (namely 1, 5, 6, and 13) were more advantageous to the evolving population than to the learner.180

These states were frequented much more often under the random drug cycling condition compared to any of the experimental181

conditions (Fig S2D). We also show that other genotypes (namely 12 and 11) were particularly advantageous for the learner182

compared to the evolving population. These states were frequented much more often under the experimental conditions183

compared to the random drug cycling condition (Fig S2D).184

We also show that certain state transitions occur more frequently than others, independent of experimental conditions.185

For example, the population nearly always transitioned from genotype 5 to genotype 7 (Fig 4). This transition highlights the186

way these learned policies use drug landscapes to guide evolution. Genotype 5 (0100) is a fitness peak in most of the drug187

landscapes used in the learned policies, and is therefore a very disadvantageous state for the controlling agent. CTX, the most188

commonly used drug in all effective policies, has a slightly higher peak at genotype 7 (0110), which forces the population away189

from genotype 5 (Fig S3). As another example, the evolving population very rarely transitioned from state 1 to state 9 in the190

RL-fit condition. This state transition occurred commonly in the MDP and RL-genotype conditions (Fig 4). This difference is191

explained by the policies shown in Fig 3B. Under the RL-genotype policy, CTX was selected every time the population was in192

state 1 (the initial condition). The CTX landscape topography allows transition to 3 of the 4 single mutants, including state 9193

(1000) (Fig S5). Under the RL-fit policy, CTX and AMC were used in about equal proportion when the population is in state 1.194

Unlike the CTX landscape, the AMC landscape topography does not permit evolution from state 1 to state 9 (Fig S5)).195
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Figure 5. MDP value function closely matches opportunity landscape for drugs commonly used under MDP policy. Panels A and B show the
16-genotype fitness landscape under study, starting with the wild type at the top, progressing throw the single mutants, double mutants, triple mutants, and
finally the quadruple mutant at the bottom. A: Opportunity landscape for the 5 drugs most commonly used under the MDP policy (CTX, CPR, AMP, SAM,
and TZP). B: Observed state transitions under the MDP policy. The node color corresponds to the value function estimated by solving the MDP. Lower values
correspond to states the MDP policy attempts to avoid while higher values correspond to states the MDP policy attempts to steer the population. C: Scatter Plot
showing the distribution of fitness with respect to genotype for the 15 β -lactam antibiotics under study. The drug selected by RL-genotype in a given genotype
is highlighted in light blue. In cases where the MDP selected a different drug than RL-genotype, that drug is highlighted in orange. D: Number of genotypes
with fitness above or below 1 for each drug under study. Drugs that are used by both the MDP and RL-genotype are highlighted in orange. Drugs that are used
by only the MDP are highlighted in green. Drugs that are used by only RL-genotype are highlighted in blue.

Characteristics of selected drug policies196

To better understand why certain drugs were used so frequently by RL-genotype, RL-fit, and the MDP policies, we197

developed the concept of an “opportunity landscape”. We computed each opportunity landscape by taking the minimum fitness198

value for each genotype from a given set of fitness landscapes. This simplified framework gives a sense of a potential best case199

scenario if the drugs in a given combination are used optimally. For example, the MDP policy relied heavily on CTX, CPR,200

AMP, SAM, and TZP to control the simulated E. coli population. The resultant opportunity landscape (Fig 5A) contains only201

a single fitness peak, with 15/16 of the genotypes in or near fitness valleys. In Fig 5B, we show the actual state transitions202

observed during evolution under the MDP policy. We also color the nodes based on the value function estimated by solving the203

MDP. As expected, the value function estimated by the MDP aligns closely with the topography of the opportunity landscape.204

There is only one genotype that the value function scores as being very poor for the learner, corresponding to the single peak in205

the opportunity fitness landscape (Fig 5). Interestingly, the opportunity landscape predicted that the population would evolve206

to the single fitness peak and fix. In contrast, the observed state transitions suggest that the MDP policy was able to guide207

the population away from that single fitness peak. A more detailed discussion of opportunity landscapes can be found in the208

supplemental materials.209

We also show that both the MDP and RL-genotype conditions select the drug with the lowest fitness for most genotypes (Fig210
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Figure 6. Reinforcement learners learn improved policies, independent of landscape size. A: Line plot describing the relationship between the
number of alleles modeled and the average fitness observed under different policy regimes. The total number of states in a landscape is given by 2N . Each point
represents the average fitness of a population under control of an agent trained on the set of landscapes for 500 episodes. The same set of landscapes was used
for each condition. B: Line plot describing the relationship between measurement delay and the observed fitness under different policy regimes. Delay only
affects the RL_genotype policy (not the MDP or random conditions). RL_genotype still learned effective policies with a measurement delay of one time step.
Performance decayed substantially with additional measurement delays. C: Average number of drugs used by final policy under three experimental conditions
(RL-fit, RL-genotype, MDP) as a function of N. D: Heatmap showing the value function learned by solving the MDP for the N = 10 landscapes. Y-axis
corresponds to numerically encoded genotype and X-axis corresponds to the time step within a given episode. Bright cells correspond to genotypes that were
advantageous to the agent while dark cells correspond to genotypes that were disadvantageous to the agent. The value space is rugged, with many peaks and
valleys.

5C). There are a few notable exceptions to this rule, which highlight RL-genotype’s capacity for rational treatment planning. A211

greedy policy that selects the lowest drug-fitness combination for every genotype would select Amoxicillin (AM) when the212

population is identified as being in genotype 5. The AM drug landscape then strongly favors transition back to the wild-type213

genotype (state 1). From state 1, most available drugs encourage evolution back to the genotype 5 fitness peak. As we see in Fig214

5B, state 5 is by far the least advantageous for the learner. The greedy policy therefore creates an extremely disadvantageous215

cycle of evolution. In fact, none of the tested policies rely heavily on AM in state 5 (Fig 3B), instead taking a fitness penalty216

to select Cefotaxime (CTX). The CTX drug landscape encourages evolution to the double mutant, which has access to the217

highest value areas of the landscape. Finally, we rank drug landscapes based on the number of genotypes with a fitness value <218

1 (Fig 5D). Based on the defined reward function, these genotypes would be considered advantageous to the learner. We show219

that drugs identified as useful by the optimal policy or RL-genotype tend to have more advantageous genotypes in their drug220

landscape. The only two highly permissive landscapes (CPD, CPR) that aren’t used have extremely similar topography to CTX,221

which most policies were built around.222

Impact of landscape size and measurement delay223

To understand the impact of larger fitness landscapes on the ability of our method to develop effective policies, we simulated224

random correlated landscapes of size N alleles, from N = 4 to N = 10, representing a range of 16 to 1024 genotypes. Using a225

previously described technique, we tuned the correlation between landscapes to generate a range of collateral resistance and226

collateral sensitivity profiles27. We found that reinforcement learners trained on fitness and genotype were able to outperform227
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the random cycling control across a wide range of landscapes sizes (Fig. 6A). RL-genotype policies consistently outperformed228

RL-fit policies, which outperformed random drug cycling policies. Further, the MDP-derived optimal policy achieved similar229

performance on larger landscapes compared to smaller ones, suggesting that increasing genome size does not make drug cycling230

for evolutionary control less feasible. As we saw in the empirical landscapes condition, the RL-genotype and MDP policies231

make use of many available drugs to steer the population, while the RL-fit condition tends to identify a different policy optima232

that relies on 2 or 3 drugs (Fig 6D). Finally, we investigated the state values for the largest landscape (N = 10), finding that the233

state value space, and therefore policy space, is rugged, with many peaks and valleys (Fig. 6C).234

Time delays between when information is sampled from a system and when action is taken based on that information may235

be unavoidable in real-world applications. To understand how the practical limitation of time delays impacts our approach, we236

next tested the effect of measurement delays on the ability of reinforcement learners to generate effective policies. In this study,237

the delay parameter d controlled the "age" of the information available to the learner. With a delay of 0 (d = 0) time steps, the238

learner had completely up to date information about system state. If d = 5, the learner was using genotype information from239

time t to inform an action taken on time t +5. We tested a set of delay parameters d ∈ 0,5. For this experiment, we tested only240

the RL-genotype condition against the random and MDP conditions, arguing that growth rate estimates are much easier to241

obtain compared to sequencing, and thus measurement delays are less likely to be a practical limitation for the RL-fit condition.242

We did not include a delay for the MDP condition, preferring to leave it as a perfect information comparison group. We found243

that when d <= 1, average performance of the RL-genotype condition was equivalent to that observed in the base case. If244

d > 1, the performance of RL-genotype decreased to worse than or similar to the random condition (Fig. 6B).245

3 Discussion246

The evolution of widespread microbial drug resistance is driving a growing public health crisis around the world. In this study,247

we show a proof of concept for how existing drugs could be leveraged to control microbial populations without increasing drug248

resistance. To that end, we tested optimization approaches given decreasing amounts of information about an evolving system249

of E. coli, and showed that it is possible to learn highly effective drug cycling policies given only empirically measurable250

information. To accomplish this, we developed a novel reinforcement learning approach to control an evolving population of E.251

coli in silico. We focused on 15 empirically measured fitness landscapes pertaining to different clinically available β -lactam252

antibiotics (Table 1). In this setting, RL agents selected treatments that, on average, controlled population fitness much more253

effectively than either of the two negative controls. We showed that RL agents with access to the instantaneous genotype of254

the population over time approach the MDP-derived optimal policy for these landscapes. Critically, RL agents were capable255

of developing effective drug cycling protocols even when the measures of fitness used for training were first adjusted by a256

noise parameter. This suggests that even imperfect measurements of an imperfect measure of population state (the kind of257

measurements we are able to make in clinical settings) may be sufficient to develop effective control policies. We also show that258

RL or MDP-derived policies consistently outperform simple alternating drug cycling policies. Next, we performed a sensitivity259

analysis to show how RL agents can outperform random controls even with varying landscape size and measurement delay up260

to one day. Finally, we introduced the concept of the "Opportunity Landscape", which can provide powerful intuition into the261

viability of various drug combinations.262

Our work expands a rich literature on the subject of evolutionary control through formal optimization approaches.263

Our group and others have developed and optimized perfect information systems to generate effective drug cycling poli-264

cies12, 13, 15, 17, 18. Further, a limited number of studies have used RL-based methods for the development of clinical optimization265

protocols21, 40–43, 45. These studies have been limited so far to simulated systems, including a recent study that introduced266

Celludose, a RL framework capable of controlling evolving bacterial populations in a stochastic simulated system44.267

Much like the studies noted above, we show that AI or MDP-based policies for drug selection or drug dosing dramatically268

outperform sensible controls in the treatment of an evolving cell population. We extend this literature in three key ways. To269

our knowledge, ours is the first optimization protocol capable of learning effective drug cycling policies using only observed270

population fitness (a clinically tractable measure) as the key training input. Importantly, the reinforcement learners have no prior271

knowledge of the underlying model of evolution. Second, we grounded our work with empirically measured fitness landscapes272

from a broad set of clinically relevant drugs, which will facilitate more natural extension to the bench. Third, we tested our273

approach in fitness landscapes of up to 1024 genotypes, by far the largest state space that has been evaluated in the treatment274

optimization literature. We show that minimization of population fitness using drug cycles is not limited by increasing genome275

size.276

There are several limitations to this work which bear mention. We assume that selection under drug therapy represents a277

strong-selection and weak mutation regime in order to compute transition matrices for our models. While this is likely true278

in most cases, it is possible that other selection regimes emerge in cases of real world pharmacokinetics or spatial regimes279

where the drug concentration fluctuates dramatically48, 49. In addition, we chose to keep drug concentration constant throughout280

are analysis, largely owing to the lack of robust empirical data linking genotype to phenotype under dose varying conditions281
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(sometimes called a fitness seascape)50. As more empirical fitness seascape data becomes available, a natural extension would282

be to explore the efficacy of the RL system in controlling a population by varying both drug and dose.283

While we present the most extensive genotype-phenotype modeling work to date on this subject, we still only modeled284

the effect of mutations at up to 10 genotypic positions. The real E. coli genome is approximately 5×106 base pairs51. The285

evolutionary landscape for living organisms is staggeringly large, and not tractable to model in silico. It is possible that empirical286

measures of fitness like growth rate or cell count may not provide a robust enough signal of the underlying evolutionary state287

on real genomes. In vitro implementations of reinforcement learning-based drug cycle optimization systems are needed to288

address this potential shortcoming. Another potential alternative would be to use the comparatively low-dimensional phenotype289

landscape of drug resistance52.290

In this work, we present a novel reinforcement-learning framework capable of controlling an evolving population of E. coli291

in silico. We show that RL agents stably learn multi-drug combinations that were state specific and reliably out-performed a292

random drug cycling policy as well as all possible two-drug cycling policies. We also highlight key features of the types of drug293

landscapes that are useful for the design of evolutionary control policies. Our work represents an important proof-of-concept294

for AI-based evolutionary control, an emerging field with the potential to revolutionize clinical medicine.295

Acknowledgements296

This work was made possible by the National Institute of Health (5R37CA244613-03, 5T32GM007250-46, and T32CA094186)297

and American Cancer Society (RSG-20-096-01). Figure 1 was created with BioRender.com.298

11/23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.01.12.523765doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523765
http://creativecommons.org/licenses/by-nc/4.0/


References299

1. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399,300

629–655, DOI: 10.1016/S0140-6736(21)02724-0 (2022). Publisher: Elsevier.301

2. Walsh, T. R., Gales, A. C., Laxminarayan, R. & Dodd, P. C. Antimicrobial Resistance: Addressing a Global Threat to302

Humanity. PLOS Medicine 20, e1004264, DOI: 10.1371/journal.pmed.1004264 (2023). Publisher: Public Library of303

Science.304

3. Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States, 2019. Tech. Rep.,305

Centers for Disease Control and Prevention (U.S.) (2019). DOI: 10.15620/cdc:82532.306

4. Plackett, B. Why big pharma has abandoned antibiotics. Nature 586, DOI: 10.1038/d41586-020-02884-3 (2020).307

5. Stearns, S. C. Evolutionary medicine: Its scope, interest and potential. Proc. Royal Soc. B: Biol. Sci. 279, 4305–4321,308

DOI: 10.1098/rspb.2012.1326 (2012).309

6. Grunspan, D. Z., Nesse, R. M., Barnes, M. E. & Brownell, S. E. Core principles of evolutionary medicine. Evol. Medicine,310

Public Heal. 2018, 13–23, DOI: 10.1093/emph/eox025 (2018).311

7. Perry, G. H. Evolutionary medicine. eLife 10, e69398, DOI: 10.7554/eLife.69398 (2021).312

8. Andersson, D. I. et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 44,313

171–188 (2020). Publisher: Oxford University Press.314

9. Manrubia, S. et al. From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary315

dynamics. Phys. Life Rev. 38, 55–106, DOI: 10.1016/j.plrev.2021.03.004 (2021).316

10. Stracy, M. et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 375,317

889–894, DOI: 10.1126/science.abg9868 (2022). Publisher: American Association for the Advancement of Science.318

11. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351,319

aad3292 (2016). Publisher: American Association for the Advancement of Science.320

12. Yoon, N., Vander Velde, R., Marusyk, A. & Scott, J. G. Optimal Therapy Scheduling Based on a Pair of Collaterally321

Sensitive Drugs. Bull. Math. Biol. 80, 1776–1809, DOI: 10.1007/s11538-018-0434-2 (2018).322

13. Maltas, J. & Wood, K. B. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic323

resistance. PLoS biology 17, e3000515, DOI: 10.1371/journal.pbio.3000515 (2019).324

14. Maltas, J. & Wood, K. B. Dynamic collateral sensitivity profiles highlight challenges and opportunities for optimizing325

antibiotic sequences. bioRxiv (2021).326

15. Gluzman, M., Scott, J. G. & Vladimirsky, A. Optimizing adaptive cancer therapy: dynamic programming and evolutionary327

game theory. Proc. Royal Soc. B: Biol. Sci. 287, 20192454, DOI: 10.1098/rspb.2019.2454 (2020). Publisher: Royal328

Society.329

16. Nichol, D. et al. Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance.330

PLOS Comput. Biol. 11, e1004493, DOI: 10.1371/journal.pcbi.1004493 (2015). Publisher: Public Library of Science.331

17. Yoon, N., Krishnan, N. & Scott, J. Theoretical modeling of collaterally sensitive drug cycles: shaping heterogeneity to332

allow adaptive therapy. J. Math. Biol. 83, 47, DOI: 10.1007/s00285-021-01671-6 (2021).333

18. Iram, S. et al. Controlling the speed and trajectory of evolution with counterdiabatic driving. Nat. Phys. 17, 135–334

142, DOI: 10.1038/s41567-020-0989-3 (2021). Bandiera_abtest: a Cg_type: Nature Research Journals Number: 1335

Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Biophysics;Statistical physics;Theoretical336

physics Subject_term_id: biophysics;statistical-physics;theoretical-physics.337

19. Maltas, J., Singleton, K. R., Wood, K. C. & Wood, K. B. Drug dependence in cancer is exploitable by optimally constructed338

treatment holidays. bioRxiv (2022).339

20. Chakrabarti, S. & Michor, F. Pharmacokinetics and drug interactions determine optimum combination strategies in340

computational models of cancer evolution. Cancer Res. 77, 3908–3921, DOI: 10.1158/0008-5472.CAN-16-2871 (2017).341

21. Newton, P. K. & Ma, Y. Nonlinear adaptive control of competitive release and chemotherapeutic resistance. Phys. Rev. E342

99, 022404, DOI: 10.1103/PhysRevE.99.022404 (2019).343

22. Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug344

resistance. Proc. Natl. Acad. Sci. 111, 14494–14499, DOI: 10.1073/pnas.1409800111 (2014). Publisher: Proceedings of345

the National Academy of Sciences.346

12/23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.01.12.523765doi: bioRxiv preprint 

10.1016/S0140-6736(21)02724-0
10.1371/journal.pmed.1004264
10.15620/cdc:82532
10.1038/d41586-020-02884-3
10.1098/rspb.2012.1326
10.1093/emph/eox025
10.7554/eLife.69398
10.1016/j.plrev.2021.03.004
10.1126/science.abg9868
10.1007/s11538-018-0434-2
10.1371/journal.pbio.3000515
10.1098/rspb.2019.2454
10.1371/journal.pcbi.1004493
10.1007/s00285-021-01671-6
10.1038/s41567-020-0989-3
10.1158/0008-5472.CAN-16-2871
10.1103/PhysRevE.99.022404
10.1073/pnas.1409800111
https://doi.org/10.1101/2023.01.12.523765
http://creativecommons.org/licenses/by-nc/4.0/


23. Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic347

castrate-resistant prostate cancer. Nat. Commun. 8, DOI: 10.1038/s41467-017-01968-5 (2017).348
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Supplemental Materials418

In the following please find the supplemental materials for the manuscript entitled: "Reinforcement Learning informs optimal419

treatment strategies to limit antibiotic resistance"420

1.1 Procedurally generated drug landscapes421

The 4 curated amino acid substitutions used to generate fitness landscapes in this study likely represent the most important422

mutations in the evolution of drug resistance to β -lactam antibiotics in this model system. However, there may be other423

"off-landscape" mutations in genes such as drug efflux pumps that also significantly impact resistance. Furthermore, other424

organisms or drug combinations may demand much larger landscapes to effectively predict evolution53, 54. To evaluate the425

feasibility of reinforcement learning based drug cycle optimization in larger state spaces, we generated correlated landscapes426

with arbitrary N (where N is the number of alleles), following a procedure adapted from previous work27. We first generated an427

index landscape L by sampling a vector of length 2N (where N is the number of alleles) from a uniform distribution with range428

(−1,1). We then introduced epistasis by applying a gaussian noise vector (with µ = 0 and σ = 0.5) to each element of the429

vector. This process is traditionally referred to as a "rough Mt Fuji." Next, we generated a set of n correlated landscapes Lc430

with correlations to the original landscape ranging from −1 (perfectly anti-correlated) to 1 (perfectly correlated). Briefly, we431

generate a Gaussian random vector (with zero mean and variance) of length 2N . We subtract from this vector its projection onto432

the original landscape vector L, making our new vector orthogonal to L. It then follows that any vector Lc is a linear combination433

of L and our new orthogonal vector. In practice, anti-correlated drug landscapes display striking collateral sensitivity, while434

correlated drug landscapes display collateral resistance. From the set of correlated landscapes Lc, we selected a subset of435

landscapes demonstrating the full range of correlations to ensure that collateral sensitivity and collateral resistance were both436

present.437

1.2 Measurement Delay438

In this sensitivity analysis, we aimed to assess the viability of RL-based drug cycling policies in a setting where actions are439

taken based on "out-of-date" information. For example, if DNA sequencing takes multiple days to process, drugs applied based440

on that data would be reacting to a version of the population that no longer exists. We therefore defined a delay parameter d441

which controlled the number of time steps removed the action was from the measurement of environmental state. Put another442

way, st−d informed at . If d = 0 (as in our base case), st informed at .443

We limited this analysis to the RL-genotype condition. Our rationale was that fitness or growth rate measurements are much444

easier to obtain and such delays wouldn’t be as common, even in complex in vitro settings. We hypothesized that out-of-date445

state vectors would lack sufficient information content to effectively inform the reinforcement learning agents.446

1.3 Hyperparameter tuning447

We varied key hyperparameters one at a time in order to identify optimal values to promote learning in this setting. Parameter448

ranges and the selected value are shown in Table S1. Due to the long run-times of the training process, we were unable to make449

use of more formal hyper-parameter optimization approaches. Future work will increase the efficiency of training reinforcement450

learners in this setting, opening up a number of interesting follow-on studies.451

Table S1. Key Hyperparameters for reinforcement learner

Parameter Value Range

gamma 0.99 0-1

learning rate 0.0001 0.000001-0.1

minibatch size 60 20-500

update target model frequency 310 100-1000
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1.4 Additional performance data for RL agents452

As mentioned in the main text, we tested both the RL-fit and RL-genotype conditions 100 times each. In Fig S1, we show453

the perfomance of all 100 RL-fit and RL-genotype replicates. In 98/100 replicates, RL-fit outperformed the random drug454

cycling case (Fig S1A). The very best RL-fit replicates still fell short of the MDP-derived optimal policy (Fig S1B). In all 100455

replicates, RL-genotype outperformed the random drug cycling case (Fig S1C). RL-genotype performance approached the456

performance of the optimal policy (Fig S1D).457

Figure S1. Performance of RL-fit and RL-genotype for each replicate. A: Fitness observed under RL-fit policy compared to random drug cycling
condition. B: Fitness observed under RL-fit policy compared to fitness observed under optimal policy. C: Fitness observed under RL-genotype policy
compared to random drug cycling condition. D: Fitness observed under RL-genotype policy compared to fitness observed under optimal policy.
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1.5 Additional evolutionary trajectory data458

We compared the state transition frequencies observed under different policy regimes, where a state transition is defined as the459

population evolving from genotype sa to genotype sb. We also show the frequency with which each state was visited under460

different conditions. Policy performance is closely tied to the frequency with which state 5 (a high fitness genotpye in nearly all461

drugs) is visited. (Fig S2).462

Figure S2. Comparison of evolutionary trajectories seen under different regimes A-C: Selected Pairwise comparisons of state transition frequency
under different experimental conditions. State transition frequency is nearly identical for the RL-genotype and MDP conditions (R=0.96). In contrast,
state-transition-frequency for the RL-fit and MDP conditions are related but less strongly correlated (R=0.82). As expected, state transition frequency were
least similar between the RL-fit and random conditions (R=0.78). D: Bar chart comparing the frequency that states are observed under different experimental
conditions. The value of each state (to the learner) is highlighted for each state by the bottom heatmap. High value states are observed more frequently in
RL-fit, RL-genotype, and MDP conditions compared to the random condition.
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1.6 Opportunity Landscapes463

We define an opportunity landscape to be the most optimistic combination of n landscapes, formed by taking the minimum464

possible fitness at each genotypic position. This construct can help us better understand how the learner uses different465

combinations of drugs to maintain the evolving population at extremely low fitness values.466

Figure S3. Opportunity Landscape for MDP-derived policy. Opportunity landscape is an optimistic combination of 5 empirically measured drug
landscapes. Just 1/16 genotypes is near a fitness peak on the opportunity landscape, helping to explain the extremely low fitness observed in the simulated E.
coli population when the MDP-derived policy is applied.

Fig. S3 describes the opportunity landscape discovered by the MDP condition. As noted in the main text, the MDP primarily467

uses 5 drugs (CTX, CPR, AMP, SAM, and TZP) in combination to trap the evolving population of E. coli at extremely low468

fitness genotypes. In the combined opportunity landscape, just one genotype (0100) had a high fitness in all 5 drugs. As469

expected, the opportunity landscape closely matches the value function estimated by the MDP (Fig 4).470
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Figure S4. Opportunity landscape for most common policy identified in the RL-genotype condition. As in the MDP-derived policy, just 1/16
genotypes is near a fitness peak in the opportunity landscape.
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Figure S5. Opportunity landscape for the most common policy identified in the RL-fit condition. The most common RL-fit policy relies on AMC
and CTX to control the E. coli population. Assuming the most optimistic combination of these two drug landscapes, 4/16 genotypes are near a fitness peak.

The opportunity landscape for the RL-genotype is almost identical to the opportunity landscape observed for the MDP471

policy (Fig S4). Interestingly, RL-genotype only uses 3 of the 5 drugs in the MDP policy; CPR, CTX, and SAM. RL-fit472

discovered policies that typically only used two drugs. The most effective RL-fit policies relied heavily on AMC and CTX. We473

present the resulting opportunity landscape in Fig S5. As expected, there are more genotypes with high fitness values under this474

two-drug paradigm compared to the 4 or 5 drug policies discovered by RL-genotype and the MDP, respectively.475
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1.7 MDP policy476

As mentioned in the main text, we computed the MDP policy by formulating a Markov decision process of the strong selection,477

weak mutation model of evolution under study. We then solved the MDP using backward induction, an algorithm designed to478

identify an optimal policy for a finite time discrete MDP. The identified policy is a function of current state and current time479

step, making it even more specific than the policies identified by the reinforcement learning conditions. We show the time and480

state-specific MDP policy in Fig S6. Near the end of an episode (steps 19 and 20), we see a switch to a greedy policy that481

simply selects the drug with the minimum fitness for a given genotype.482

Figure S6. MDP-derived optimal policy for the empirical drug landscapes condition. The X-axis corresponds to numerically encoded genotype
while the y-axis corresponds to time step within a given episode. Fill color corresponds to which drug the MDP-derived policy selects for each
genotype-time step combination.

We also varied the discount rate (γ), between 0 and 1 during the hyperparameter tuning process. In Fig S7, we show the483

effect of gamma on the avergage fitness achieved by the MDP policy. While gamma didn’t have a large effect, likely due to the484

relatively short length (20 time steps) of each episode, we show that increasing γ led to increased performance of the computed485

MDP policy. We also show that increasing gamma led to increased use of CTX (drug 4).486

21/23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.01.12.523765doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523765
http://creativecommons.org/licenses/by-nc/4.0/


Figure S7. Effect of variation in gamma on optimal policy performance and composition. We show that greedy policies (low γ) are slightly less
effective compared to non-greedy policies. In panel B, we show how the actual policy changes as γ ranges from 0-0.9999
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1.8 Additional Analyses487

As noted in Fig 2C in the main text, we evaluated the performance of all A-B-A-B two-drug cycles to use as a comparison488

group for RL-fit and RL-genotype. In Fig S8A, we examine these combinations in greater depth. We also show the landscape489

correlation between the two drugs in every combination. We show that anti-correlated landscapes tend to make more effective490

combinations, likely due to collateral sensitivity. Highly correlated landscapes tend to make ineffective drug combinations,491

likely due to collateral resistance.492

Finally, we evaluated the effect of starting population genotype on the performance of each two-drug combination. We493

found that the starting genotype of the population had no effect on the overall distribution of performance for these two-drug494

combinations (Fig S8).495

Figure S8. In the left panel, we show the fitness observed under every possible A-B-A-B two drug regime. The heatmap shows the correlation
between the two landscapes in a pair, a measure of the expected collateral sensitivity or resistance. In the right panel, we show the effect of starting
genotype on the performance of two-drug policies.
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