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Abstract 
 

 Precise, scalable, and quantitative evaluation of whole slide images is crucial in 

neuropathology. We release a deep learning model for rapid object detection and precise 

information on the identification, locality, and counts of cored plaques and cerebral amyloid 

angiopathies (CAAs). We trained this object detector using a repurposed image-tile dataset 

without any human-drawn bounding boxes. We evaluated the detector on a new manually-

annotated dataset of whole slide images (WSIs) from three institutions, four staining procedures, 

and four human experts. The detector matched the cohort of neuropathology experts, achieving 

0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored plaques and 0.75 vs. 0.51 AP for 

CAAs at a 0.5 IOU threshold. It provided count and locality predictions that correlated with 

gold-standard CERAD-like WSI scoring (p=0.07± 0.10). The openly-available model can 

quickly score WSIs in minutes without a GPU on a standard workstation.    
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Introduction 

 Deep phenotyping of Alzheimer’s disease requires accurate evaluation of whole slide 

image (WSI) data1. For amyloid-ꞵ (Aꞵ) pathologies, such as plaques and cerebral amyloid 

angiopathy (CAA), quantifying Aꞵ burden phenotypes in the brain can aid in understanding 

disease mechanisms and progression2–4. However, in neuropathological practice, quantifying Aꞵ 

burden has primarily been semi-quantitative5 with variable interpretation6,7. Interpreting WSIs is 

a time-consuming task8 with pathologists regularly spending many hours a day assessing slides9. 

Deep learning has helped to address these challenges, providing quantitative and 

automated solutions to identifying and quantifying Aꞵ  burden7,10,11. Deep learning can augment 

neuropathologist expertise10 and combine multiple expert annotations into a robust and 

automated labeler7. For more localized tasks like object detection12 and semantic segmentation13, 

deep learning has also provided accurate and automated means of quantifying Aꞵ and tau 

neuropathologies14,15,16. However, such studies require significant human expert labor to create 

high-quality training datasets in the form of manually drawn bounding boxes or segmentations 

and categorical labels. Furthermore, the models typically require specialized dedicated and 

expensive hardware like graphic processing units (GPUs)17, without which the prediction task of 

quantifying pathologies can take hours for even a single WSI. Furthermore, as with many deep 

learning studies, generalizability to data from different institutions is difficult to guarantee11,18,19.  

Here, we present a fast You Only Look Once version three (YOLOv3) based model20 that 

rivals human-expert level detection of cored plaque and CAA pathologies. Moreover, we created 

this model from a dataset not intended for object detection, requiring much less human labor than 

a traditional object detection dataset. We evaluated the model on WSIs outside of its training 

corpus, which were diverse in both stain and institutional source. The model, released at 

https://github.com/keiserlab/amyloid-yolo-paper, can quickly score WSIs without a GPU, paving 

the way for more accessible and equitable deep learning applications in the research and clinical 

space. Furthermore, we showed that without a GPU, the model can still score WSIs in a matter of 

minutes, with speed improvements of at least eight times over various state-of-the-art deep 

learning approaches for quantifying neuropathologies10,16. To determine the model’s potential for 
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adoption of widespread scoring use, we evaluated it on WSIs with known CERAD-like scores5 

and found strong correspondence. The model enables scalable, reproducible, and precise 

detection for rapid clinical research applications.    

Results 

We built an object detector from a noisy and sparse dataset 

We repurposed a dataset from a previous study7 not meant for object detection training. 

The previous study had collected human annotations post hoc on a 256 x 256 pixel tile basis for 

tiles centered on approximate bounding boxes of cored and CAA pathologies derived from 

traditional and automated computer vision techniques (Methods). Consolidating this dataset into 

659 larger field-of-view (1536 x 1536 pixel) images devoid of human-drawn boxes, we 

reformatted the data to a form more suitable for object detection. This dataset had many 

limitations: 1) a single pathology often incorrectly spanned many approximate boxes, 

particularly for CAAs (Supplemental Figure 1); 2) the 1536 x 1536 fields lacked comprehensive 

annotations, resulting in a sparse label set prone to false negatives; 3) traditional watershed 

techniques defined each box, rather than human intelligence; 4) the dataset size was relatively 

small (659 images from 29 WSIs); and 5) due to limitations 1, 2, and 3 there was no reliable 

quantitative benchmark to assess model performance. For this study, we did not collect further 

human annotations for training, instead adapting the existing dataset to a more suitable form. 

Limitations 2-5 would have required more human annotation work. To solve limitation 1, we 

performed an iterative merging procedure such that overlapping label boxes of the same class 

were joined (Supplemental Figure 1; Methods).  

Once we merged the label data for use in the current study, we trained a YOLOv3 

network20 to identify cored plaque and CAA pathologies (Methods). We denote this initial model 

as model-1. Average precision (AP) for each class at varying intersection-over-union (IOU) 

thresholds typically exceeded 0.6 (Supplemental Figure 2); however, the model had some flaws. 

Visually, model-1 incorrectly labeled single instances with many overlapping boxes, especially 

for CAAs (Supplemental Figure 2). Hence, we trained a new model incorporating two 

enhancements. For the first, we joined overlapped output CAA predictions from model-1 to 
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consolidate the fragments (Methods). Secondly, we used our previously released consensus-of-

two convolutional neural network (CNN) model7 to filter out low-quality CAA detections. 

Finally, we merged output boxes of the same class, arriving at our final model, denoted model-2 

(Methods). Figure 1 shows model-2’s average precision over varying IOU thresholds 

(Supplemental Figure 3) and example image predictions. Although model-2's average precision 

over varying IOU thresholds (Figure 1) does not greatly differ from model-1's, model-2 

identified pathologies better by visual evaluation. This is sensible, as improved bounding box 

quality not only improved training but also increased the stringency of the validation benchmark. 

Consequently, we used model-2 for the remainder of the study. 

Fine-grained human expert annotations of pathologies were variable  

 To assess the model’s prospective capabilities, we needed a higher quality test dataset 

(one free from limitations 1-3) to derive reliable quantitative metrics. For this, four experts 

(anonymized as NP1-NP4) independently annotated an entirely new dataset from a new decedent 

cohort, drawing boxes around and classifying pathologies (Methods). These test data differed 

markedly from our training and validation data, which only had sparse and incomplete computer-

generated boxes with expert labels. This new dataset consisted of 200 1536 x 1536 pixel images 

spanning four different immunohistochemical stains for amyloid beta deposits. We found that the 

four neuropathology annotators did not always agree on this fine-grained task, with average 

agreement accuracy for cored = 0.43 ± 0.05 and CAA = 0.33 ± 0.11 at an IOU threshold = 0.50 

(Figure 2). Given this variability, we additionally created a “consensus annotation” benchmark 

set wherein each “positive” object and its box were independently supported by at least two out 

of the four annotators (Figure 2B; Methods).  

The model achieved human-expert-level precision  

 When we assessed the model against both individual-expert annotations and the 

consensus annotation datasets, we found it achieved expert-level precision at identifying both 

cored plaques and CAA pathologies on these new datasets despite never having been trained on 

manual bounding boxes (Figure 3). To cross-compare expert consistency across the annotations 

and thereby determine the achievable performance range from human variability, we treated each 

expert’s annotations as though they were model predictions and compared them against each 
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other. In this procedure, each annotator’s labels sequentially became a ground truth benchmark, 

against which we compared every other expert’s annotations; we subsequently calculated the 

average precision (shown as the blue-dotted line in Figure 3A). For most IOU thresholds (less 

than or equal to 0.70) and most benchmarks, the model operated within the range of human-

expert level performance. For CAAs, the model’s AP exceeded the average AP between human 

experts for four out of five benchmarks at IOU thresholds less than or equal to 0.60. For the 

strictest IOU thresholds ≥ 0.80, which require a more exact match between the predicted and 

label bounding box coordinates, the model fell short of human-expert performance (which itself 

was relatively low) for four out of five benchmarks. Of all the human experts, the model’s 

predictions most closely matched the annotations of NP1, who spent significantly more time 

annotating than any of the other annotators (Figure 3A). NP1 spent nearly three times as long as 

NP2 and about twice as long as NP3 and NP4.  

Model predictions correlated with clinical CERAD-like scores 

 We sought to test whether the model could quantify select amyloid-beta deposits, CAAs, 

and cored plaques on WSIs. Hence, we asked if an automated score calculated for entire WSIs 

based on the model’s detection of amyloid pathologies would reflect human-expert-based 

CERAD-like category scoring5. We used a testing holdout set of 63 WSIs labeled with this semi-

quantitative gold standard for pathology from a previous study10.  

We used our model to exhaustively detect and count pathologies within each of the 63 

WSIs. We found that the counts derived from the model predictions significantly correlated with 

CERAD-like severities (Figure 4). We performed a two-sided student’s t-test to determine if the 

model-derived count distributions differed significantly between the different CERAD-like 

categories. We found significant differences for all category pairs at an alpha of 0.05, except for 

the pair “none” and “sparse” (student’s t-test p-value = 0.30, power = 0.62). Power for all other 

comparisons exceeded 0.99.  

The model is much faster than existing approaches 

 Next, we evaluated the model’s practical usability as measured by its speed. Hence, we 

evaluated the 63 WSIs from our CERAD-like dataset using one NVIDIA Titan Xp GPU and 
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computed the model’s average speed per WSI. The model averaged one minute and forty 

seconds to score a single WSI. Consumer-grade GPUs are not universally available in pathology 

practices, so we tested model speed without GPU; the model averaged five minutes and thirty 

seconds per WSI on an Intel Xeon CPU (Supplemental Table 1).   

  We compared this YOLOv3 model’s evaluation time with two different deep-learning 

approaches for quantifying neuropathology burden (Table 1). First, we compared with our 

previously published approach of using a CNN sliding window to count plaque burden, which 

took three hours and four minutes per WSI on an NVIDIA GTX 1080 GPU10. Even without a 

GPU, this YOLOv3 model was 33 times faster than the older GPU-enabled sliding window 

approach. On average, when we used a GPU, the YOLOv3 model was 110 times faster than our 

previous approach21. Second, we compared the YOLOv3 model’s speed to a semantic 

segmentation method for tauopathies16. This different state-of-the-art approach to quantifying 

neuropathologies reported 45 minutes per WSI using a GPU; this YOLOv3 model was 8x-27x 

faster, depending on GPU usage. Exact runtimes will vary by hardware. 

Discussion    
We present a rapid object-detection model for identifying amyloid-beta cored plaques 

and cerebral amyloid angiopathy across a range of immunohistochemically stained slides. Three 

points of the study merit particular emphasis: 1) we developed a detector model from a dataset 

that did not require the same time and labor usually needed for building accurate object 

detectors; 2) the model matched human-expert performance; and 3) the model showed promise 

for usability without special GPU hardware for evaluation. Regarding the first point, we 

overcame one of the main problems with training object detectors through an iterative process: 

manual labeling and localization of high-quality bounding box data. The model still relied on 

accurate categorical labels in its training, but this is much less work than drawing a box and 

providing a categorical label, which is important for scalability. We hope our proof-of-concept 

encourages other deep learning studies to explore the prospect of bootstrapping from a more 

economical standpoint via more pragmatic proxy data, perhaps even by building more directly 

off of preliminary training data from conventional computer vision tools. We were encouraged to 
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see that the approach could identify the two pathologies with high precision, starting from only 

659 initially noisy and sparsely-annotated high-resolution training images.  

The final model achieved human-expert-level performance on prospective validation 

despite using a lower-quality training dataset devoid of human-derived bounding boxes. 

Although the study’s scope of four expert annotators and 200 prospectively annotated images 

does not ensure generalizability to all experts, pathologies, stains, areas, cases, and institutions, it 

was encouraging to see that the model most closely aligned with the annotator who spent the 

most time annotating (Figure 3). With expert-level precision on held-out data,  models such as 

these may readily be used as a secondary or preliminary labeler by neuropathologists, 

particularly to flag unusual cases. The current model’s effectiveness will depend strongly on 

whether an expert needs strict down-to-the-pixel bounding-box overlap between the prediction 

and the actual pathology because the model falls slightly below human-expert level performance 

at the strictest IOU thresholds. For annotation tasks demanding high locality, a pixel-by-pixel 

level of precision via semantic segmentation may be a more apt technical approach. 

Accordingly, several caveats apply to the study. First, although our prospective validation 

dataset was composed of cases across three different institutions, variable in stain, and annotated 

by four experts, it consisted of only two hundred 1536 x 1536 pixel images derived from 56 

WSIs. Therefore much of the model’s generalizability has yet to be explored. Likewise, 

performance on stains outside of the four used has yet to be determined, although we did not see 

much performance variation by stain except for 6E10 (Supplemental Figure 4). Furthermore, 

CAA pathology is diverse22, but this model does not differentiate between subtypes; we would 

be interested to explore CAA-subtype identification in a future study. Finally, we relied on 

author-reported runtime analyses for various comparative speed benchmarks against alternative 

computational methods when their code was unavailable. These assessments necessarily spanned 

1-2 generations of CPU and GPU hardware. However, given that a GPU is approximately two 

orders of magnitude faster at deep learning tasks than the contemporaneous CPU, we found the 

CPU-only speedup of the YOLOv3 model against GPU-enabled alternatives compelling. 

The model’s predicted amyloid-deposit counts correlated significantly with CERAD-like 

category scoring at the WSI level (Figure 4) without any training specifically for this purpose. A 

score of predicted-object counts struggled to significantly differentiate the “sparse” versus 
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“none” CERAD-like categories, perhaps due to the low sample sizes (n=6 and n=11) and 

resulting in a low power of 0.62. Nonetheless, we hope the model can quickly assess WSIs and 

provide a proxy for CERAD-like scoring, especially in detecting cases with higher plaque 

burden.  

We freely release the trained model, annotated dataset, and study source code for easy 

access and use. We provide an example environment (using conda) to standardize model 

deployment. Although we found the consensus-annotation benchmark seemed a more stable 

label dataset than any given individual expert’s annotations on average, consistent with the 

common notion of the “wisdom of the crowd,” we did not tune the model for specific expertise 

nor neuropathology focus areas. Consequently, interested researchers may wish to fine-tune or 

entirely retrain this model on more precisely formulated annotations to fit their needs. We hope 

that the model and dataset’s open-source release, enabling quick evaluation of WSIs even 

without a GPU, will facilitate the shareable and scalable application of deep learning in 

neuropathology.  

Methods 

Training and Validation Dataset Preparation  

The training of model versions one and two builds on the methods and dataset first 

presented in Wong et al.7 We provide a brief description of the methods used to build this 

dataset. We collected 29 WSIs of the temporal cortex from 3 different sites: 11 from the 

Alzheimer’s Disease Center at the University of California, Davis (UC Davis); 11 from the 

University of Pittsburgh; and seven from UT Southwestern (Supplemental Figure 5). Slides were 

derived from formalin-fixed paraffin-embedded sections and stained with an antibody directed 

against Aβ. UC Davis used the Aβ 4G8 antibody, the University of Pittsburgh used a NAB228 

antibody, and UT Southwestern used a 6E10 antibody. We imaged all WSIs on an Aperio AT2 at 

either 20X or 40X magnification at the different institutions. We resized all 40X images to 20X. 

For patient demographic data, please refer to Wong et al.7  
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We color-normalized the WSIs23. Each WSI was uniformly tiled to 1536 x 1536 pixel 

non-overlapping images. After tiling, we applied a hue saturation value (HSV) color filter and 

smoothing technique to detect candidate plaques using the python library openCV. We used 

different HSV ranges for the different stain types as follows: 4G8 HSV = (0, 40), (10, 255), (0, 

220); NAB228 HSV = (0, 100), (1, 255), (0, 250); and 6E10 HSV = (0, 40), (10, 255), (0, 220).  

Within each tiled 1536 x 1536 pixel image, each candidate pathology was bounding 

boxed via the watershed algorithm and then annotated by four neuropathology experts. Each 

expert performed a multi-class labeling task, selecting any or none of the classes: cored plaques, 

Diffuse, and CAA. After annotation, we applied a consensus-of-two strategy to obtain our final 

label set, such that a candidate plaque p was recorded as positive if any two experts marked p as 

positive for class c, else we recorded p as negative. We discarded the diffuse pathologies from 

our dataset and focused on the classes cored plaques and CAA. If any bounding box of class c 

overlapped with any other bounding box of class c, we merged the boxes into a single bounding 

box of class c, which was the minimal superset of the two bounding boxes. The result was 659 

1536 x 1536 pixel images that contained either a cored or CAA pathology.  

Training Model Version One 

 We split the 29-WSI dataset of 659 images into 70% training and 30% validation. We 

trained an initial YOLOv3 network from the image dataset for 200 epochs using a pre-trained 

Darknet, a batch size of eight, and a learning rate of 0.001. The file config/yolov3-custom.cfg at 

https://github.com/keiserlab/amyloid-yolo-paper contains full training hyperparameters. We 

selected the model weights from the epoch giving us the highest mean average precision over the 

validation set.  

Training Model Version Two 

 We ran model version one over the training set. We merged model output prediction 

boxes of the same class using the same data preprocessing procedure as the original bounding 

box merging. We combined the resulting merged predictions with the existing training labels to 

create a new training dataset. We then used the model published in Wong et al.7 to remove 

bounding boxes with predicted confidence < 0.5 for the relevant deposit to filter unlikely (false-
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positive) model-1 predictions. We trained a new model from this new training dataset, called 

model version two. The training parameters were the same as those used for training model 

version one.  

Selecting Images for Prospective Validation 

To assess our model on data it had never seen, we collected a new dataset of 56 WSIs 

that differed from those used for training and validation. These new WSIs came from three 

different institutions: UC Davis, UC Los Angeles (UCLA), and UC Irvine (UCI). UC Davis used 

a 4G8 stain, UCLA used both an ABeta40 and ABeta42 stain, and UCI used a 6E10 stain 

(Supplemental File 1). We imaged all WSIs on an Aperio AT2 (UC Davis), Aperio CS2 

(UCLA), and an Aperio Versa 200 (UCI) scanner at 20X or 40X magnification at the different 

institutions. For UCLA and UC Davis slides, each pixel corresponds to 0.5 microns. For UCI 

slides, each pixel corresponds to 0.274 microns. For each of the four stains, we selected the top 

12 WSIs with the highest count of human-annotated CAAs, resulting in 48 different WSIs. For 

each of these 48 slides, we selected three 1536 x 1536 pixel fields to be used for prospective 

validation as follows: 1) field with the largest count of CAA positive model predictions (from 

model version two); 2) field with the largest count of CAA positive human annotations; and 3) 

top two fields with the largest count of cored positive model predictions (from model version 

two). Additionally, for each of the four stains, we randomly selected two WSIs that were 

different from the original 48. We randomly picked two fields for each of these eight WSIs. This 

resulted in a total prospective validation set size of 200 images, each with 1536 x 1536 pixels. 

Annotating Prospective Validation Images 

 Four neuropathology experts independently annotated each of the 200 images used for 

prospective validation. These experts were different from the original five who helped to create 

our training and validation dataset in the prior study7, except for one expert (B.N.D.) who helped 

with labeling the training and validation set and the prospective validation images. We provided 

standardized annotation instructions to all experts (Supplemental File 1). We used the web 

platform called “SuperAnnotate”24 for obtaining bounding box labels. Each annotator had one 

month to complete the annotations.  
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Assessing Interrater Agreement 

We evaluated the interrater agreement accuracy between two annotators (denoted as 

“A1” and “A2” in this section) for prospective validation as follows. For the superset of all 

pathologies of class P (either cored or CAA) identified by A1 or A2 (with cardinality “total”), we 

determined if both annotators gave congruous labels for each plaque. Two label boxes form a 

congruous pair if they share the same class label and intersect with IOU threshold of at least 

0.50. We allowed each label pathology to be a part of at most one congruous pair (i.e., if multiple 

of A1’s labels overlapped with a single label from A2, only one of A1’s labels was part of the 

pair). We defined “overlaps” as the number of congruous pairs between A1 and A2. The final 

interrater accuracy between A1 and A2 derives from “overlaps” divided by “total” (Figure 2).    

Assessing Model Performance on the Prospective Validation Images 

 We used model version two to assess performance on the prospective validation images. 

For each of the 200 images, we derived final predictions by merging any predicted bounding 

boxes that overlapped with any others of the same class. For each CAA bounding box prediction, 

we center-cropped the box to derive a 256 x 256 pixel image and fed this image into a previously 

published CNN model (the consensus-of-two model first presented in Wong et al.7). If the 

consensus-of-two model gave a negative CAA prediction, then this prediction was removed.  

 For all model evaluations, if there were multiple detections for a single label, we counted 

the highest confidence detection as a true positive and the rest as false positives (keeping 

consistent with the precedent set forth by the PASCAL VOC challenge25). 

 To determine the ceiling performance that we could expect from our model, we assessed 

how well each expert annotator matched the other experts (blue shaded region in Figure 3A). For 

each expert annotator (denoted as “A” for this section), we first fixed A as the ground truth, 

compared the other annotators’ labels (not including A) to A’s ground truth, and derived the 

precision. We did not include the consensus “annotator” in this comparison. We averaged the 

resulting 12 different comparisons and precision scores for each IOU threshold and plotted the 

standard deviation around the average (Figure 3A). 
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Correlating Model-derived Plaque Counts with CERAD-like Scoring 

 For each of the 63 WSIs with CERAD-like scores available in Tang et al.10, we tiled the 

WSI into non-overlapping 1536 x 1536 pixel tiles. We ran model version two over all tiles to 

identify predicted pathologies. We merged any predicted bounding boxes that overlapped with 

any others of the same class and counted the number of predicted cored bounding boxes to 

compare with the clinical CERAD-like score.  

 We performed a two-sided student’s t-test between each CERAD-like category’s 

distribution of model-derived plaque counts. The null hypothesis was that the two distributions 

were no different, and the alternative hypothesis was that the two distributions were indeed 

different. Each point of any distribution was a single model-derived plaque count from one WSI. 

We used an alpha threshold of 0.05 to assign significance.  
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Figure Legends 

Figure 1: Model version two performance and example image predictions. Top: Average 

precisions (AP) over the validation set at various IOU thresholds. The AP at IOU=0.90 is 

undefined for CAA. Bottom: 16 example images from the validation set. Cored prediction: red, 

cored label: black “*”; CAA prediction: blue, CAA label: black “@”. Note that these training 

label data are sparse and do not contain every pathology (Methods).    

Figure 2: Fine-grained human bounding-box style annotations vary slightly.  (a) Interrater 

agreement accuracy among annotators, with a minimal IOU threshold of 0.50 used for counting 

two objects of the same class as an overlap (Methods). (b) Left column: example overlaid 

annotations from each of the four annotators (each a different color); Right column: 

corresponding consensus annotation.  

Figure 3: Model achieved human-expert level performance at identifying cored and CAA 

pathologies. (a) Average model precision scores for identifying cored pathologies (left) and 

CAA pathologies (middle). Y-axis: average precision, x-axis: IOU threshold that determines the 

minimal IOU required for a prediction to overlap with a label to be a true positive. Higher IOU 

thresholds are more stringent. The figure legend indicates which of the annotators is the ground 

truth benchmark for assessing the model. The black line indicates model AP against the 

consensus annotator benchmark (Figure 2B, right column). The blue dotted line is the average 

precision of comparing expert annotators to each other (Methods). The blue-shaded region is one 

standard deviation above and below the average-expert precision. Right: total hours each 

annotator spent annotating (x-axis) versus AP at IOU=0.50 of the model on the annotator’s 

benchmark (y-axis). “*” indicates cored performance, “@” indicates CAA performance.  (b) 

Model predictions overlaid against consensus annotation. Cored prediction: red, cored label: 

black “*”; CAA prediction: blue, CAA label: black “@”. The consensus annotation defines the 

labels. 

Figure 4: Model correlated with clinical CERAD-like scoring. Left: box plots for each 

CERAD-like category. Y-axis is the model-derived count of cored plaques, and the x-axis is the 

CERAD-like category. Scatter plot overlaid as blue dots (each dot corresponds to a unique WSI). 

Hollow black circles indicate outliers outside the third quartile plus 1.5x interquartile range. 
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*p<0.05, n.s. is not statistically significant. Right: p-values from a two-sided student’s t-test 

comparing model-derived count distributions between each CERAD-like category.   
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Figures 

Figure 1 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2023. ; https://doi.org/10.1101/2023.01.13.524019doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.524019
http://creativecommons.org/licenses/by/4.0/


Figure 2
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Figure 3 
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Tables 

 YOLOv3  
(Titan Xp GPU enabled) 

1 min 40 secs / WSI 

YOLOv3 
(Titan Xp GPU disabled) 

5 mins 30 secs / WSI 

Tang et al.10  
(GTX 1080 GPU enabled) 

184 minutes / WSI 

110x 33x 

Signaevsky et al.16  
(Titan Xp GPU enabled) 

45 minutes / WSI 
 

27x 8x 

Table 1: The model’s speed performance compared to other deep learning approaches for 

quantifying neuropathologies. Speed improvement is the average time of the comparison 

model divided by the average time of the YOLOv3 model. We note that the other studies used 

different WSIs and CPUs for benchmarking and that the segmentation model was for tau 

neuropathologies (although the images are similar in resolution and color space). Tang et al. used 

a different GPU (Nvidia GTX 1080). 
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