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Long-read sequencing technologies substantially overcome the limitations of short-reads but to
date have not been considered as feasible replacement at scale due to a combination of being
too expensive, not scalable enough, or too error-prone. Here, we develop an efficient and
scalable wet lab and computational protocol for Oxford Nanopore Technologies (ONT) long-read
sequencing that seeks to provide a genuine alternative to short-reads for large-scale genomics
projects. We applied our protocol to cell lines and brain tissue samples as part of a pilot project
for the NIH Center for Alzheimer’s and Related Dementias (CARD). Using a single PromethION
flow cell, we can detect SNPs with F1-score better than Illumina short-read sequencing. Small
indel calling remains difficult within homopolymers and tandem repeats, but is comparable to
Illumina calls elsewhere. Further, we can discover structural variants with F1-score comparable
to state-of-the-art methods involving Pacific Biosciences HiFi sequencing and trio information
(but at a lower cost and greater throughput). Using ONT-based phasing, we can then combine
and phase small and structural variants at megabase scales. Our protocol also produces highly
accurate, haplotype-specific methylation calls. Overall, this makes large-scale long-read
sequencing projects feasible; the protocol is currently being used to sequence thousands of
brain-based genomes as a part of the NIH CARD initiative. We provide the protocol and
software as open-source integrated pipelines for generating phased variant calls and
assemblies.
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Introduction

Most current large-scale genomics projects rely on reference mapping of short-reads to detect
and genotype variants, such as single nucleotide polymorphisms (SNPs), small insertions/
deletions (indels), or structural variations (SVs) (DePristo et al., 2011). For example, short-read
whole genome sequencing is routinely used in population-scale studies to discover variation in
human populations (100,000 Genomes Project Pilot Investigators et al., 2021; 1000 Genomes
Project Consortium et al., 2012), or to perform disease associations studies (Karczewski et al.,
2020), including in cancer (Huang et al., 2018; ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium, 2020).

However, a substantial part of the variation in the human genome is not accessible to short
reads (Sedlazeck, Lee, et al., 2018). This is because it is difficult to detect structural variants
that are comparable to or longer than an individual read length (Chen et al., 2016; Mahmoud et
al., 2019), resulting in missingness and error rates much higher than for small variant detection
(Zarate et al., 2020; Zook et al., 2020). In addition, variation inside the repetitive regions of the
genome is difficult to profile with short-reads (Wagner, Olson, Harris, Khan, et al., 2022; Wagner,
Olson, Harris, McDaniel, et al., 2022) due to reference mapping ambiguity and bias (Lee &
Schatz, 2012). Read-based phasing of heterozygous variants into long haplotypes is also
limited by read length (Martin et al., 2016). Previous studies mostly relied on reference
haplotype panels to phase known variants (Loh et al., 2016), but this method is not applicable to
rare and de novo mutations.

Long-read sequencing, such as those from Pacific Biosciences (PacBio) or Oxford Nanopore
Technologies (ONT), can overcome the limitations of short-reads and has been shown to
substantially improve structural variant calling performance (Jiang et al., 2020; Sedlazeck,
Rescheneder, et al., 2018) and small variant detection inside difficult-to-map parts of the
genome (Shafin et al., 2021). Long-read methods can also phase small and structural variants
into megabase-scale phase blocks (J.-H. Lin et al., 2022; Mahmoud et al., 2021; Shafin et al.,
2021).

In addition to variant calling, several studies have used long-read sequencing to generate
complete or nearly complete de novo genome assemblies (Logsdon et al., 2020; Rhie et al.,
2021). Notably, the Telomere-to-Telomere (T2T) Consortium produced the first complete de
novo assembly of a human genome, including centromeres and long segmental duplications
(Nurk et al., 2022). Recently, the Human Pangenome Reference Consortium (HPRC) released
47 nearly-complete haplotype-resolved human genomes with diverse genetic backgrounds (Liao
et al., 2022).

Despite these advances, cost and scalability have remained prohibitive barriers to the use of
long-read sequencing in population-scale studies. For example, recent projects that generated
high-quality genome assemblies, such as those from the Vertebrate Genomes Project (VGP),
T2T, and HPRC, all used an expensive combination of multiple sequencing technologies at high
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coverage, including PacBio HiFi, ultra-long ONT, Hi-C, and parental sequencing (Jarvis et al.,
2022).

Here, we show that it is possible to achieve state-of-the-art small and structural calling
performance using only ONT reads produced by a single flow cell at a cost comparable with
short-read experiments. First, we developed specialized ONT sequencing protocols that
balance read length and yield. Second, we combined these sequencing protocols with a novel
computational pipeline that produces haplotype-resolved de novo assemblies, along with
phased small variants, structural variants, and methylation calls.

Using the data from 14 post mortem human brain samples and three human cell lines, we show
that our pipeline generates SNP calls with an F1-score (harmonic mean of precision and recall)
comparable to or better than state-of-the-art Illumina-based methods. Further, the structural
variant calls derived from the diploid de novo assemblies outperform the current state-of-the-art
long-read methods and are highly consistent with de novo assemblies produced by the HPRC
consortium in genome regions outside of centromeres and segmental duplications.

Scalable long-read sequencing and associated informatics should enable the comprehensive
characterization of so far inaccessible regions, including those that have been shown to harbor
medically relevant mutations (Olson et al., 2022). To pursue this, we are applying the proposed
methodologies across thousands of human brain samples at the Center of Alzheimer and
Related Dementias (CARD) at the U.S. National Institutes of Health, with the plan to make this
data openly available for research within the AnVIL cloud platform (Schatz et al., 2022). In
addition, we make our sequencing and informatics pipelines openly available, the latter as a
complete, easily runnable open-source software package.

Results

Scalable Oxford Nanopore Technologies (ONT) sequencing of cell lines and brain tissue.
ONT sequencing was recently used by several studies to produce ultra-long reads (100kb+),
which are ideal as an ingredient for de novo assembly (Jain et al., 2018; Kolmogorov et al.,
2019; Koren et al., 2017; Rautiainen et al., 2022; Shafin et al., 2020). DNA preparation protocols
optimized for producing very long sequence lengths typically see lower sequencing yields;
therefore, multiple flow cells are used to achieve sufficient genomic coverage. In this work, we
optimized a DNA processing and library preparation protocol to yield high data output (>100 Gb,
corresponding to >33X coverage) in a scalable manner from a single PromethION flow-cell,
while still maintaining read lengths sufficient for de novo assembly and long-range phasing.

The DNA processing and library preparation protocol (Methods) are publicly available through
the protocols.io for the frontal cortex (J Billingsley et al., 2022) and cell-lines (J Billingsley,
2022). Overall, per sample, the DNA processing step yields ~10ug of sheared DNA. Together,
the DNA processing and library preparation take approximately 20 hours over two days to
process up to 16 samples in a single batch, and the PromethION whole genome sequencing
takes 72 hours (Figure 1).
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Figure 1. Single flow cell Oxford Nanopore Technologies (ONT) sequencing protocol. Left:
Overview of the sequencing protocol, indicating all processes from DNA extraction to sequencing. In brief,
the DNA is extracted using a Kingfisher Apex instrument using the Nanobind Tissue Big DNA kit. The
DNA is then sheared on a Megaruptor3 instrument, and libraries are constructed using an SQK-LSK 110
kit and sequenced on a PromethION for 72 hours. Right: (from left-to-right) Total sequenced bases /
haploid human genome coverage (assuming a 3.1GB genome) from PASS reads (with estimated
QV>=10) for each sample. The vertical dotted line marks the average yield across samples. Read length
N50 of PASS reads, i.e., the read length (y-axis) such that reads of this length or longer represent 50% of
the total sequence. The vertical dotted line marks the average N50 across samples. Distribution of PASS
read identities when aligned to T2T-CHM13 v2.0. The dots mark the median identity in each sample, and
the vertical dotted line is the average across samples.

Using our optimized protocol, we sequenced 17 human genomes, including three cell lines
(HG002, HG00733, HG02723) that have been extensively used in other benchmarking studies,
and 14 brain tissue samples that were obtained as a part of NABEC cohort (Gibbs et al., 2010).
Each dataset was sequenced using a single PromethION flow cell, yielding on average 116 Gb
of base-called reads (~37X coverage assuming 3.1Gb genome) with an estimated average
across bases read quality above Q10. The average read N50 was 31 kb (average maximum =
769 kb), which is lower overall than other long DNA preparation protocols (Shafin et al., 2020).
However, there is a substantial reduction in cost, improved scalability, and high consistency
(Figure 1; Supplementary table 1). We used the R9.4.1 pore version and the Guppy version
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6.1.2 in super accuracy mode for base and methylation calls, median read identity mapped to
GRCh38 was 96%.

Variant calling and methylation analysis pipeline overview.We adapted existing tools and
developed new methods for high-quality variant calling, haplotype-specific methylation profiling,
and diploid de novo assembly (Methods; Supplementary Figure 1). The pipeline begins by
generating a diploid de novo assembly using a combination of Shasta, which produces a
haploid assembly and Hapdup (https://github.com/KolmogorovLab/hapdup), which generates
locally phased diploid contigs. We then use the generated assemblies to call structural variants
(at least 50 bp in size) against a given reference genome using a new assembly-to-reference
pipeline called hapdiff (https://github.com/KolmogorovLab/hapdiff; Methods).

Ideally, small variants could also be recovered from diploid contigs, as has been successfully
done for HiFi-based assemblies (Liao et al., 2022; Wagner, Olson, Harris, McDaniel, et al.,
2022). Our Shasta-Hapdup assemblies had mean substitution error rates of ~8 per 100 kb,
which is similar or better compared to the previous ONT-based assemblies (Kolmogorov et al.,
2019; Shafin et al., 2020, 2021), but higher than current contig assemblies produced with
PacBio HiFi (<1 per 100kb) (Liao et al., 2022). Reference-based small variant calling methods
are less error-prone because they can better approximate the biases of ONT base calling errors
via supervised learning (Shafin et al., 2021). Thus, in our current pipeline we used an updated
version of the PEPPER-Margin-DeepVariant software (Shafin et al., 2021) to call small variants
against a reference.

Given a set of structural variants produced with de novo assemblies, and reference-based small
variant calls, our pipeline phases them into a harmonized variant call set using a newly
introduced functionality of the Margin tool. In addition, given the phased reference alignment
with methylation tags (produced by Guppy), we produce haplotype-specific calls of hypo- and
hyper-methylated regions of the genome.

We publish the complete open-source pipeline written in WDL in the Dockstore repository
(https://dockstore.org/organizations/NIHCARD; Methods) to encourage easy reuse. Our analysis
was run on the cloud using the Terra compute environment (Schatz et al., 2022). Analysis of a
single ONT human sample at 30-40x coverage took 22-25 wall-clock hours if run on the Terra
environment (2200-2500 CPU hours; estimated Google Cloud computing cost about 100$;
Supplementary Table 1).
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Figure 2. Small variant calling performance evaluation. (Left panels) Number of false positive (light
bars) and false negative (dark bars) calls made by PEPPER-Margin-DeepVariant (PMDV) using ONT
reads and DeepVariant using Illumina reads. Statistics computed against the Genome in a Bottle v4.2.1
benchmark for HG002; for other cell lines (HG00733, HG02723) calls generated by DeepVariant with HiFi
reads are used. Whole genome SNP counts are stratified by mappability in (A) and local context in (B);
INDEL counts by local context in (C). (Right panels) Number of true positive variant calls stratified by
different genomic intervals. F1-score is reported on top of each bar.

Small variant calling and benchmarking.We benchmarked the performance of small variant
(substitutions and indels shorter than 50 bp) calls produced by the updated PEPPER-Margin-
DeepVariant and compared them to Illumina-based calls produced by DeepVariant (Figure 2;
Supplementary Table 2). Comparisons are reported using false positives (FP) and false
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negative (FN) and F1 score (harmonic mean of precision and recall) metrics. First, we used the
Genome in a Bottle (GIAB) small variant benchmark (v4.2.1) that provides a curated set of small
variant calls for the HG002 genome. Inside the Tier1-confident regions, both ONT and
Illumina-based SNP calls were highly concordant with the GIAB benchmark (F1-scores 0.997
and 0.996, respectively). The residual error was however noticeably lower for ONT-based SNP
calls (FP + FN = 15,916), compared to Illumina-based calls (FP + FN = 23,203).

Since the GIAB benchmark is only available for the HG002 genome, we used small variant calls
from HiFi reads (produced by DeepVariant) as ground truth for the HG00733 and HG02723
genomes. The results were consistent with the GIAB benchmark analysis, confirming the
reduced SNP error rate of ONT-based methods, compared to Illumina within the Tier1
benchmark regions (Figure 2; Supplementary Table 2).

The difference in recall and precision between ONT and Illumina-based calls was dependent on
the genomic context (Figure 2). The major source of error in Illumina-based calls is due to false
negatives within regions of known low mappability. Inside those regions, ONT-based calls had
noticeably higher SNP F1-score (0.987) compared to Illumina (0.944). Conversely, Illumina
performance was better in homopolymers of size at least 7bp (SNP F1-score was 0.999 for
Illumina and 0.970 for ONT) and, to a lesser extent, within tandem repeats (SNP F1-score 0.997
for Illumina and 0.992 for ONT).

Small indels continue to be the major source of error for ONT-based variant calls (F1 score of
0.789 for ONT vs. 0.997 for Illumina inside the Tier1 GIAB regions) (Figure 2). The large
majority of indel errors in ONT calls occur within homopolymers and tandem duplications (F1
score of 0.676 for ONT vs. 0.997 for Illumina). Outside of homopolymer runs and tandem
repeats (approximately 35% of all indels), F1-scores for both ONT and Illumina were much more
comparable (F1-score 0.975 and 0.996, respectively). In exons (defined by the GIAB
benchmark and representing <0.1% of all indels) F1-scores were also more comparable (0.9230
for ONT and 0.9923 for Illumina; Supplementary Table 2). In addition, our analysis of R10
sequencing of the cell lines shown below highlights substantial improvements in the accuracy of
small indel calls.

De novo haplotype-resolved assembly using only ONT reads. Recent studies utilized
HiFi-based de novo assemblies to produce highly accurate and complete structural variant calls
(Liao et al., 2022; Wagner, Olson, Harris, McDaniel, et al., 2022). To profile the full spectrum of
heterozygous variants, diploid assembly is required; HiFi-based studies used either trio or Hi-C
information to produce phased assemblies. Although Shasta has a somewhat experimental
phased assembly mode designed to work with ultra-long (>= 100 kb) reads, the default modes
of current ONT assembly methods (such as Shasta or Flye) only generate haploid assemblies,
representing a random mosaic of the paternal and maternal haplotypes. We therefore
developed a pipeline called Hapdup that takes a haploid assembly as input and produces a
locally phased diploid assembly, sometimes also referred to as a dual assembly (Methods).
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Figure 3. Assemblies of 14 brain tissues and 3 cell lines generated by Shasta+Hapdup. (A) NG50
and NGA50 contiguity measured using QUAST. Sample 06_66 had the lowest contiguity due to the
decreased sequencing yield. (B) Assembly length. (C) Mean assemblies QV computed using yak. (D)
Contiguity of phased blocks, broken at phase switches. An increased value for HG02723 suggests an
increased heterozygosity rate. (A-D) Cell lines marked with asterisks. (E) Structural variation call
concordance with HiFi-based assemblies for various regions of the genome.

Using the Shasta + Hapdup combination, we generated de novo assemblies for 14 brain
samples and three cell lines (Figure 3; Supplementary Table 3). All assembly statistics were
highly consistent among the samples, with the mean haploid assembly size of 2.88 Gb; mean
NG50=22.0 Mb; mean NGA50=14.6 Mb (measured against the T2T-CHM13 2.0 reference).
Mean QV (34.22) was estimated from k-mer frequencies using yak. Mean NG50 of the phase
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blocks was ~2 Mb; switch error rate of cell line assemblies was 0.07-0.18% (Supplementary
Figure 2).
Compared to the trio-binned ONT HG002 assemblies produced from a recent long-read
benchmarking study (Jarvis et al., 2022), our assemblies had comparable contiguity and better
QV and phasing accuracy (Supplementary Figure 3). Compared to trio-binned HiFi HG002
assemblies, our assemblies had lower QV due to the residual error in ONT-based consensus.

We used Flagger (Liao et al., 2022) to detect potential errors in Shasta+Hapdup assemblies
(Methods; Supplementary Figures 12 and 13). Outside of centromeres and segmental
duplications, 0.69 - 1.98% of the assembled sequence was marked as unreliable by Flagger (for
autosomal contigs longer than 1 Mb; using HiFi reads for validation). In comparison, 0.12 -
0.27% was reported in the assemblies released by the HPRC (which integrated multiple
sequencing technologies including PacBio HiFi) - a lower, but comparable fraction. This
confirms high structural accuracy of our assemblies outside of major repeats, in agreement with
the structural variant analysis described below (Figure 3e). Segmental duplication assemblies
produced by Hapdup were less reliable, primarily due to the reduced read length of our
sequencing protocol (23.33 - 25.12% of segmental duplication sequence was reported
unreliable with HiFi reads; Supplementary Figures 12 and 13).

Figure 4. Structural variant evaluations using the GIAB HG002 benchmark. (Top) Recall, precision
and F1-scores computed for various tools and sequencing technologies with Genome in a Bottle Tier1
v0.6 benchmark as reference (defined on HG002). (Bottom) F1-score computed for various SV size bins.
The gray histogram shows the distribution of SV sizes in the reference set.
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Structural variant calling and benchmarking. To produce assembly-based SV calls, we
developed a package called hapdiff, which is a combination of minimap2 and a modified version
of SVIM-asm (Methods). In particular, we added functionality to group multiple indels inside a
single VNTR element.

We benchmarked Hapdup and HPRC assembly-based SV calls, as well as reference
mapping-based SV calls produced with Sniffles2 (Smolka et al., 2022) and CuteSV (Jiang et al.,
2020). We also included a comparison with short-read-based SV calls using Manta, one of the
top performers in the recent short-read SV studies (Zarate et al., 2020; Zook et al., 2020). We
benchmarked these sets of SV calls using Truvari (English et al., 2022) against the recent
manually curated structural variant benchmark produced by the Genome in a Bottle initiative for
the HG002 genome (Zook et al., 2020).

Hapdup-based SV calls (F1-score 0.967) improved over Sniffles2 (0.953) and CuteSV (0.938)
that were also run using the ONT data. HPRC-based assembly concordance was only slightly
higher (0.970), compared to Hapdup (Figure 4; Supplementary Table 4). Illumina-based SV calls
had substantially lower performance (F1-score 0.402), in particular missing many insertions
(Supplementary Figure 4). In addition, long insertions are often misclassified as translocations
by short-read methods (Sedlazeck, Rescheneder, et al., 2018).

The GIAB call set is limited to a set of high-confidence regions and lacks variant calls in many
complex loci. To investigate the quality of our SV calls further, we used the assemblies
generated by the HPRC as a benchmark on three cell lines and evaluated the concordance of
SV calls inside various regions of the human genome. While the HPRC assemblies are not
perfect, they do span nearly the entire genome. Using the T2T-CHM13 assembly as a
reference, we filtered out annotated centromere satellite repeats and segmental duplications.
The remaining regions contain 15,588 SVs in HG002 HPRC-based calls, a ~50% increase
compared to the GIAB SV (v0.6) Tier1 regions. Hapdup retained a high agreement with HiFi
assemblies on these regions (F1-score 0.95-0.97). In the regions with only satellite repeats
filtered out, therefore keeping segmental duplications, Hapdup had a reduced F1-score of 0.93,
and these regions contained 16,219 SVs total. Analysis with two other cell lines showed similar
trends (Figure 2e).

Supplementary Figure 5 Illustrates that using VNTR SV grouping improves the concordance
between SV sets produced by Hapdup and HPRC assemblies. Sniffles2 had comparable
F1-score against the HPRC-based SV calls inside GIAB Tier1 regions, but the concordance was
substantially reduced for the extended genomic intervals relative to the Shasta/HapDup calls
(Supplementary Figure 6). This may partly be explained by the ambiguities in SV representation
rather than truly erroneous calls, in particular representation of indels inside VNTRs. Analysis
using the TT-Mars tool that performs SV calls validation on the sequence level also confirmed
the high quality of Hapdup-based SV calls relative to other tools (Supplementary Figure 7).
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Figure 5. Combined, phased small and structural variants improve the profiling of complex
genomic regions. (Top) Variant phasing evaluation. Left plot shows the phased block NGx, reported by
Margin. HG02723 has an increased phase block length due to higher heterozygosity. Right plots show
SNP hamming and switch error computed against the small variants in HiFi-based assemblies.
Evaluations are also shown for a subset of SNPs that are within 100 bp of structural variants (Bottom) An
example of a Hapdup and hifiasm representations of complex clusters with small and structural variants at
chr1:55,544,500- 55,551,000 (in CHM13 reference), visualized using IGV. Top tracks show phased SNPs
and SVs produced by our pipeline and derived from HPRC assemblies (using dipcall). A few
inconsistencies between SNP positions are explained by ambiguities between read and contig alignments
around SV sites.

Improved representation of variants in challenging medically-relevant loci.We further
assessed the ability of our assemblies to represent and cover medically challenging genes
(Wagner, Olson, Harris, Khan, et al., 2022; Wagner, Olson, Harris, McDaniel, et al., 2022). Here
we assessed 389 genes that we previously postulated as highly complex and repetitive (e.g.,
LPA, SMN1, SMN2). We first measured the number of contigs observed per region to identify
the coverage, and we observed that 359 and 356 genes are covered by at least one contig from
the first haplotype and second haplotype, respectively (see Supplementary Table 4). Given that
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we cover these medically challenging genes, we next assessed the variant calling ability in
these genes. For this, we used the recent benchmark from GIAB (CMRG v1.0) for SNPs and
SVs. We were particularly interested in the ability of our method to recover indels and SVs. For
substitutions, our reference-based pipeline obtained a high accuracy (F1-score: 0.97). For
smaller insertions and deletions (<50bp), we obtained an accuracy of 0.68 in these repetitive
challenging genes. Next, we assessed the SV performance. Given the limited set of genes in
this benchmark, we only could assess the performance based on 252 SVs. Our assemblies
achieved a high accuracy (F1-score: 0.91); notably, SV calling using hapdiff achieved higher
F1-score compared to SV calls made using dipcall (F1-score: 0.88). Sniffles2 had a similar
F1-score on this benchmark (0.91; Supplementary Table 4).

Harmonized phased representation of small and structural variants. Structural and small
variant calls were merged using bcftools concat, then harmonized and phased with Margin to
produce a complete representation of the sample variants (Methods). Mean phase block NG50
was 1.08 Mb among the brain samples (Figure 5). HG002 and HG0073 cell lines had similar
statistics, but HG02723 had noticeably higher phase block length (NG50 2.83 Mb). This
individual has a higher proportion of African ancestry, and as a result, fewer apparent blocks of
autozygosity that prevent phasing.

We evaluated phasing accuracy of the cell line calls against the small variant calls produced
from HPRC-based assemblies using the “whatshap compare” module. Switch error (ratio of
adjacent SNPs in a wrong phase) was 0.04-0.09%, comparable to assemblies produced with a
combination of HiFi and Trio / Hi-C (Cheng et al., 2021, 2022). Hamming error (ratio of all SNPs
inside a phased block in a wrong phase) was also low (2.1-2.6%), albeit slightly higher
compared to Trio / Hi-C-based assemblies.

Notably, the original phasing approach that only considers small variants had substantially
higher switch error rates (0.17-0.21%; Supplementary Table 2). This highlights that considering
SVs improves phasing quality, consistent with other recent studies (J.-H. Lin et al., 2022). The
switch error around SVs (within 100 bp from boundaries) was 1-1.26%, which was an
improvement over 2-2.4% rate of the SV-unaware method (Figure 5; Supplementary Table 2),
but nevertheless elevated compared to the rest of the genome. More than half of SVs coincide
with difficult-to-map VNTR regions, which may explain the reduced performance.

A harmonized, phased view of all variants can facilitate the characterization of complex regions
that contain multiple small and structural variants on both haplotypes. Figure 5 presents an
example of such a region in the HG002 genome; our variant representation of this region
provides an integrated view of variation that is consistent with the HPRC assemblies. These
cases are not rare; overall, our assemblies had 3,149-5,554 SVs co-located with other SVs
(Supplementary Figure 8).

Advantages of using the T2T-CHM13 reference genome. In our evaluations, we used both
GRCh38 and T2T-CHM13 references to call small and structural variants. T2T-CHM13 contains
approximately 200 Mb of sequence that is missing, misrepresented, or simulated in GRCh38,

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.01.12.523790doi: bioRxiv preprint 

https://paperpile.com/c/F25rVS/e0av+GENq
https://paperpile.com/c/F25rVS/V35d
https://doi.org/10.1101/2023.01.12.523790
http://creativecommons.org/licenses/by/4.0/


allowing the mapping and calling of more variants, particularly in sequences rich in repetitive
content. Reflecting this, in three cell lines, PEPPER-Margin-DeepVariant called 1.19 - 1.29
million variants in T2T-CHM13 sequence non-syntenic to GRCh38, compared to 0.26-0.28
million variants in GRCh38 sequence non-syntenic to T2T-CHM13 (Supplementary Figure 9).

To evaluate the small variant consistency, we lifted over GIAB confident regions from GRCh38
to T2T-CHM13. Our ONT-based small variant calls had high F1-score similarity (0.9951) with the
calls produced using DeepVariant and HiFi data against the T2T-CHM13 reference. The F1
similarity was slightly below the concordance between ONT calls and HiFi calls using the
GRCh38 reference (F1-score 0.9976), which is likely explained by a few liftover artifacts
(Supplementary table 2).

Analysis of rare structural variants in brain genomes.We next analyzed the distribution of
structural variants in the 14 brain samples, which have not been previously sequenced with
long-reads. The analyzed samples represent control cases from the NABEC cohort (age range,
68 - 95 years), which at the time of death did not show signs of neurodegenerative disorders.
On average, 19,255 SVs were identified in the most confident regions of the genome (Figure
6A; Supplementary Figure 10; Supplementary Table 6). The SVs were matched to three SV
catalogs to annotate their frequency in the population. In each sample, about 304 (1.6%) SVs
were absent from the public SV catalogs or matched with rare variants. Among those rare
variants, about 14 per sample are located around genes, including ~4 on average overlapping
coding regions (Figure 6A, right).

Despite being control samples, we found 3 SVs in total amongst the SVs coinciding with coding
regions that overlapped coding sequences of genes that are predicted to be intolerant to
loss-of-function variants or to be haplo-insufficient. One such example is a 4.2 Kbp
heterozygous deletion of a transcription start site and exon of RBFOX1, a gene that may be
involved in spinocerebellar ataxia type 2, a rare neurological condition (Supplementary Figure
11).

Our brain genome assemblies contained contiguous assemblies of highly polymorphic loci. To
investigate such loci, we looked at the major histocompatibility complex (MHC) and
immunoglobulin heavy chain (IGH) loci, which were both assembled in single haplotype-specific
contigs in all our samples. Reference-based characterization of these regions is difficult
because of high heterozygosity and repetitiveness. We instead constructed pangenome graphs
(using minigraph) that represent all structural variants (Liao et al., 2022). The MHC pangenome
graph was built from 28 brain and 6 cell line haplotypes and consists of 1,294 nodes reflecting
SVs larger than 50 bp; we also built a “lower resolution” graph with 640 nodes containing SVs
over 100 bp (Figure 6B). An IGH pangenome was built from 28 brain haplotypes and contained
268 nodes with SVs larger than 50 bp (Figure 6C). Cell lines are typically derived from B-cell
lymphocytes and contain extensive somatic rearrangements in this locus and are therefore not
suitable for the germline variant comparison.
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(A)

(B) MHC locus, 34 haplotypes, SVs >= 100 bp

(C) IGH locus, 28 haplotypes, SVs >= 50 bp

Figure 6. Structural variant landscape summary. (A) The number of structural variants across
samples. In the left panel, structural variants were annotated with three SV catalogs (the gnomAD-SV
database, a long-read-based SV catalog, and the HPRC v1.0 SV catalog). SVs are matched if they have
at least 10% genomic overlap. SVs close to centromeres, telomeres, or within segmental duplications
were removed. The colors highlight the maximum frequency across these catalogs, the lighter blue
showing “rare” SVs (with an allele frequency below 1%) in the catalogs, or unmatched. SVs may be
unmatched, either because they are novel or due to the difficulties in the database comparison. The right
panel shows the number of rare structural variants in protein-coding genes, grouped by their impact on
the gene structure. (B) MHC pangenome built from 28 brain and 6 cell line haplotypes, containing 640
nodes, SVs over 100bp are shown. (C) IGH pangenome built from 28 brain haplotypes containing 268
nodes. In contrast, cell lines are typically derived from B-cell lymphocytes and contain extensive somatic
rearrangements in this locus.
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Haplotype-resolved methylation calls. ONT sequencing also allows the identification of base
modifications. Here, we produced phased 5-methylcytosine calls aligned to the GRCh38 and
T2T-CHM13 references. Initial methylation calls were produced de novo using Remora
(https://github.com/nanoporetech/remora).

For the HG002 genome, our methylation calls covered 28.83 million CpG sites (98.8% of total
GRCh38 CpG sites) and had a high correlation to calls made using the standard whole genome
bisulfite sequencing (WGBS) in regions covered by both technologies (R=0.949, RMSE=11.314;
Figure 7a). We calculated correlations between all other samples and HG002 WGBS data to
understand the level of ‘background’ methylation between all samples; these correlations
ranged between 0.84-0.86 (Supplementary Table 5). HG002 WGBS calls were collected from
the ONT open data repository (https://labs.epi2me.io/gm24385-5mc).

A unique feature of ONT-based methylation calls, compared to WGBS is haplotype-level
resolution (Figure 7c). To explore this, we identified haplotype-specific differentially methylated
regions in gene promoter regions and regions flanking structural variants. Here we consider
gene promoters that have a difference in average methylation between haplotypes that are
more than three deviations away from the absolute median difference.

Differential haplotype methylation patterns were found in 4.73% (690) of autosomal
protein-coding gene promoters in HG002. Similarly, HG00733 and HG02723 had 4.43% (662)
and 3.57% (519) gene promoters differentially methylated, respectively. The brain samples had
2.8% - 3.8% of promoters differentially methylated. Differential haplotype methylation for the
UCSC GRCh38 CpG islands track ranged from 6% - 7.6% (1651 - 2109) across brains and cell
lines. Structural variants also showed differential haplotype methylation patterns in 5.7% - 6.2%
(532 - 731) of deletions in cell lines and 4.6%-5.8% (454 -554) of deletions in brain samples.
Figure 7D shows an example of gene DLG associated protein 2 (DLGAP2) in SH-04-08 sample
with a 1,379 bp heterozygous insertion that coincides with haplotype-specific methylation.
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Figure 7. Haplotype-specific methylation profiling. (A) Heatmap of concordance between Bisulfite
whole genome sequencing and ONT Remora Methylation calls in HG002 at sites shared by both
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technologies covered by at least 5 reads. The lower coverage of ONT data causes striping in the heatmap
at specific frequencies. (B) Read depth of Bisulfite and ONT samples, this plot shows that less ONT
coverage is able to obtain the same methylation information as bisulfite with more than twice the
coverage. CpG sites are one position apart in the sense and antisense DNA strands due to C-G base
pairing. Since this read coverage is counted per CpG location the actual coverage was doubled to
account for the neighboring strand locations and estimate actual genome wide coverage. (C) A positive
control plot showing the expected differential methylation pattern in the SNRPN (Small Nuclear
Ribonucleoprotein Polypeptide N) of phased ONT reads for brain sample SH-04-08. Red CpG sites are
methylated and blue sites are unmethylated. Above the reads is a plot of methylation frequency and gene
locations, visualized using modbamtools (D) IGV visualization of phased methylated ONT reads and the
phased assemblies of brain sample SH-04-08 at the gene DLGAP2 locus that shows a 1,379 base pair
insertion that is differentially methylated across haplotypes.

Comparing nanopore sequencing of cell lines using R9 and R10 pore versions. During the
preparation of this manuscript, a newer version of the nanopore sequencing protocol (R10.4.1
kit V14) became commercially available. To evaluate the benefits of the newer protocol, we
re-sequenced HG002, HG00733 and HG02723 cell lines and compared the results with the R9
protocol. Using sample preparation procedures similar to the described above, we generated
110-121 Gb of reads with N50 ~29 kb using single flow cells (Table 1). The median read identity
was 99%, an improvement compared to 96% using R9 sequencing. We slightly modified the
computational pipeline by providing a specialized R10 model for DeepVariant and configuration
file for Shasta, but no other changes were required.

Assemblies and variant calls using R10 showed better or similar performance in almost all
benchmark categories (Table 2). Notably, Shasta+Hapdup assembly QV improved from 34.3 to
42.8, resulting in substantial improvements in assembly-based SNP calls (recall and precision
>0.985). The improved assembly quality also resulted in slight improvements in SV calls against
GIAB benchmark and HPRC calls. Although HG002 assembly NG50 decreased from 21.4 Mb to
14.9 Mb, this had no effect on the structural variant calling performance. Further optimizations in
Shasta assembly parameters will likely improve R10 assemblies contiguity.

As expected, the R10 protocol resulted in substantial improvements in reference-based indel
calls. Inside GIAB Tier1 regions, F1-score improved from 0.79 to 0.87 (R9 and R10,
respectively). Notably, outside of homoploymers and tandem repeats, R10 indel calls also
improved substantially and were similar to Illumina calls (F1-scores 0.997 and 0.996,
respectively). Similarly, indel F1-scores in exons improved from 0.923 to 0.985 (R9 and R10,
respectively). Reference-based SNP calls were comparable between R9 and R10.

Overall, the R10 pore version represents a clear improvement over R9 and we expect the
CARD initiative to use the R10 pore for sequencing of new cohorts. Notably, our wet-lab and
computational methods required little adjustments and R9 and R10 benchmarks were overall
highly concordant. The specialized R10 version of the WDL workflow is available in the “r10”
branch of the main repository.
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Dataset Total yield (Gb) Coverage Read N50 (kb) Median GRCh38 identity

HG002 R9.4.1 125.0 40.2 27.9 0.9544

HG002 R10 Kit V14 121.0 38.9 29.4 0.9879

HG00733 R9.4.1 120.2 38.7 29.1 0.9518

HG00733 R10 Kit V14 110.0 35.4 30.8 0.9866

HG02723 R9.4.1 107.3 34.5 31.4 0.9518

HG02723 R10 Kit V14 113.2 36.4 32.2 0.9869

Table 1. Sequencing statistics of PASS reads from R9 and R10 Kit V14 sequencing of three cell lines
using single PromethION flow cells.

Benchmark HG002 R9 HG002 R10 kit V14

Assembly benchmarks

Asm. size 2.896 Gb 2.927 Gb

Asm. NG50 21.4 Mb 14.9 Mb

Asm. phase block N50 1.010 Mb 0.99 Mb

Asm. SNP switch 0.00165 0.0015

Asm. QV 34.3 42.8

Asm. SNP recall / precision 0.9795 / 0.9528 0.9851 / 0.9856

Small variant calls benchmarks (recall / precision)

SNP (GIAB Tier 1) 0.997 / 0.9982 0.9979 / 0.998

Indel (GIAB Tier 1) 0.7217 / 0.8715 0.8495 / 0.8991

Indel (no homopol. or tandem repeats) 0.9609 / 0.9807 0.9970 / 0.9969

Indel (RefSeq CDS) 0.9121 / 0.9342 0.9948 / 0.9748

Structural variant benchmarks (recall / precision)

SV (GIAB Tier1) 0.9782 / 0.9557 0.975 / 0.9595

SV (HPRC non-Cen non-SD) 0.9689 / 0.9685 0.9764 / 0.9835

SV (HPRC only SD) 0.4921 / 0.6064 0.5277 / 0.6355

Table 2. Comparison of R9 and R10 sequencing of the HG002 cell line. Substantial improvements in
different categories are highlighted in bold. Benchmarks were performed using the methods described
above in the manuscript.
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Discussion

In this work, we designed an ONT sequencing protocol that produces over 100Gb of ONT reads
using a single PromethION flow cell. We developed new workflows and adapted and updated
existing tools, combined into an end-to-end pipeline implemented in WDL, which is freely
available to use and adapt without restriction. Using the sequencing data from 3 human cell
lines and 14 post-mortem brain tissue samples, we showed that our pipeline produces
state-of-the-art SNP, structural variant and methylation calls at a cost comparable to short-read
sequencing. This makes large-scale long-read sequencing projects feasible; the protocol is
currently being used to sequence thousands of brain genomes as a part of the NIH CARD
initiative.

We developed a new Hapdup method that generates de novo diploid assemblies from ONT
sequencing only. We showed that outside of centromeres and segmental duplications, our
assemblies are structurally highly concordant with the HPRC de novo assemblies that were
produced from the more expensive combination of multiple sequencing technologies. Our
assembly-based structural variant calls were highly accurate and complete, showing
improvement over the current short-read and long-read methods. The assembly representation
allowed us to construct pangenomes of the MHC and IGH regions that are highly polymorphic
and are otherwise difficult to analyze with linear references. Multiple new approaches have been
recently developed to to genotype SVs within larger collections of short-read samples using
similarly constructed pangenomes, thus providing means to ascertain their frequencies in larger
populations (Ebler et al., 2022; Sirén et al., 2021).

Our SNP calls produced with PEPPER-Margin-DeepVariant were comparable to or better than
short-read-based methods. As expected, the most noticeable improvement was associated with
the regions of low short-read mappability. Consistent with previous studies, we showed that
using T2T-CHM13 as a reference genome increased the number of small variants that could be
profiled. We also added a new functionality to Margin that can phase small and structural variant
calls into megabase-scale haplotypes and reduces phasing switch error. Our methylation calls
were highly concordant with the standard bisulfite sequencing, but in addition had
haplotype-specific resolution, highlighted by our analysis of differentially methylated promoters.

Although an improvement over the previous ONT benchmarks, small indels inside
homopolymers and low-complexity repeats remain the major source of the residual errors. This
constitutes approximately two-thirds of all small indels in a human genome, but a minor fraction
of overall variation in protein-coding sequence. Our evaluation of the R10 sequencing protocol
showed substantial improvements in indel accuracy compared to the R9 protocol, in particular
inside protein-coding regions. However, residual errors in long homopolymer and tandem repeat
regions remain a challenge. In addition, ONT basecalling software remains one of the
computational bottlenecks.

Our de novo diploid assemblies had high structural quality through most of the human genome,
but did not reconstruct many long segmental duplications. This is primarily due to the reduced
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read length, compared to standard ONT protocols (most unassembled segmental duplications
are longer than our read’s N50). However, it may be possible to reconstruct some of the missing
duplications using a haplotype clustering approach (Vollger et al., 2019). In the current version
of the pipeline, we called structural variants using de novo assemblies, but small variants were
called using reference mapping. Further optimizations of ONT read error rate and improvements
in our genotyping algorithms will allow for a more elegant solution to call phased small variants
directly from diploid assemblies. We are also planning to integrate assemblies and methylation
data better, which will allow methylation profiling of long sample-specific insertions.

Our analysis of structural variation calls highlighted that different methods may represent the
same genomic variation differently, for example, by splitting or merging multiple indels in close
proximity, or shifting alignment coordinates inside VNTRs. This results in difficulties in variant
comparison across multiple samples or methods (English et al., 2022). De novo assemblies
implicitly encode the genomic variation, and new pangenome graph methods (Liao et al., 2022)
aim to provide an alternative representation of small and structural variations. However,
reference mapping is still required for matching the variant calls against the existing databases
(Chowdhury et al., 2022; Kirsche et al., 2021). Further improvements in structural variant
representation and comparison models will be critical for the next large-scale, long-read
genomic studies.

Methods

Sample collection. For the NABEC brain samples, frozen tissue was sampled from the frontal
cortex for 14 neurologically normal individuals. All samples were obtained from the Banner Sun
Health Research Institute (https://www.bannerhealth.com/services/research/
locations/sun-health-institute/programs/body-donation/tissue). All individuals were of European
ancestry and had no clinical history of neurological or cerebrovascular disease, or a diagnosis of
cognitive impairment during life. Demographics, tissue source and cause of death for each
subject are shown in Supplementary Table 1. Average age at time of death was 85.2 years of
age (range, 68 - 95 years) and 8 were male and 6 were female.

For the cell lines, high molecular weight (HMW) DNA was extracted from the following cultured
cell lines purchased from Coriell (https://www.coriell.org/): HG002 (Ashkenazi Jewish ancestry,
cat. no. GM24385), HG02723 (African ancestry, cat. no. HG02723) and HG00733 (American
ancestry, cat. no. HG00733). For these three cell-lines, cell culture was performed using
Epstein–Barr virus (EBV)-transformed B lymphocyte culture from the cell-lines in RPMI-1640
media with 2 mM L-glutamine and 15 % fetal bovine serum at 37 °C.

DNA processing. The frontal cortex (J Billingsley et al., 2022) and cell-lines (J Billingsley, 2022)
protocols are explained in detail and are both publicly available on protocols.io. In brief, for the
frontal cortex samples ~40mg of frozen tissue was homogenized with a Tissueruptor instrument
(Qiagen). HMW DNA was then extracted using a Kingfisher Apex instrument (Thermofisher)
with a custom script and Nanobind Tissue Big DNA kit, which uses 3mm Nanobind disks
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(Circulomics/ PacBio, US). The HMW DNA was sheared to a target size of 30kb with the DNA
Fluid + needles at speed 45 for two cycles on a Megaruptor3 instrument (Diagenode).

The cell-line HMW DNA was extracted manually from 4x106 of cells using a Nanobind Tissue
Big DNA kit (Circulomics/PacBio, US). An enrichment of short DNA fragments was observed for
the Coriell cell-lines post DNA extraction. Therefore, to yield data comparable to the brain
sequencing, using the Short Read Eliminator kit (SS-100-101-01) from Circulomics/Pacbio, a
size selection step was included to deplete DNA fragments up to 25kb. Finally, the HMW DNA
was then sheared to a target size of 30kb with the DNA Fluid + needles at speed 45 for two
cycles (Diagenode). For all samples, DNA length was assessed by running 1ul on a genomic
screentape on the TapeStation 4200 (Agilent). DNA concentration was assessed using the
dsDNA BR assay on a Qubit fluorometer (Thermo Fisher).

Library preparation. Libraries were constructed using an SQK-LSK 110 kit (ONT). To ensure
minimal DNA loss during library preparation, and to retain long DNA fragments, the following
modifications were made to the standard SQK-LSK 110 (ONT) protocol; 1) 4.5 ug of DNA was
used as starting input. This is higher than the recommended amount due to the fact that around
60-75% of the starting material is lost during library preparation. Therefore, starting with 4.5ug
DNA input ensured we could do three loads of 400ng with the final library, 2) to reach the 4.5ug
DNA input the starting DNA volume was usually higher than the recommended 47ul. In this
case, the volume of AMPure XP beads was modified to match the input DNA volume, i.e. if 58ul
of DNA was added then 70ul was added of AMPure XP beads, 3) during DNA repair and
end-prep, 75% ethanol was used for washing rather than 70% (per ONT, anything between
70-80% is acceptable), 4) at step 16 of DNA repair and end-prep, the original elution time was 2
minutes at room temperature. This was modified to 3 minutes at 37°C with light shaking on a
Thermomixer instrument (Eppendorf) at 450rpm, 5) during Adapter ligation and clean-up, 45uL
of AMPure XP beads were used 6) SFB was used, and finally 7) in step 16 of the Adapter
ligation and clean-up, the final elution conditions were changed to 20 minutes at 37°C.

PromethION sequencing. PromethION sequencing was performed as per manufacturer's
guidelines (ONT, FLO-PRO002) with minor adjustments, such as 400ng of the library was
loaded onto each primed R9.4.1 flow cell to maximize data output. Over the three-day run, most
samples only required one additional load (usually around 48 hours). However, some runs hit a
pore occupancy of ~2000 earlier, which was usually due to the variability across PromethION
flow cells. In these cases, two reloads were required, which usually meant one reload every 24
hours.

PEPPE-Margin-DeepVariant updates.We improved the variant calling speed and accuracy of
PEPPER-Margin- DeepVariant by adding features that allow skipping the re-genotyping of
candidate variants that are passed to DeepVariant. PEPPER first finds candidate variants and
then genotypes them with a smaller recurrent neural network. The variants that are above a
certain confidence threshold can be skipped from re-genotyping with a larger convolutional
neural network used in DeepVariant. The detailed description of the updated methods is
provided at the repository (https://github.com/kishwarshafin/pepper/blob/r0.8/docs/
misc/pepper_methods.md). We used PEPPER-Margin-DeepVarian package r0.8 with default
parameters for ONT reads.
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Small variant benchmarking.We used the Genome in a Bottle (GIAB) small variant
benchmark to evaluate the performance on the HG002 genome, using benchmark v4.2.1 inside
the confident intervals defined in “HG002_GRCh38_1_22_v4.2.1_benchmark_
noinconsistent.bed”. SNP recall and precision of ONT and Illumina variant calls were computed
using hap.py v0.3.14 (https://github.com/Illumina/hap.py). Since the GIAB benchmark is only
available for HG002, we also used variant calls produced with DeepVariant using HiFi reads as
ground truth for HG002, HG00733, and HG02723. On HG002, both GIAB and DeepVariant call
sets resulted in very similar statistics (Supplementary Table 2). We used the confident regions
defined for HG002 for the other cell lines, which explains the slight decreases in recall and
precision for both ONT and Illumina for HG00733 and HG02723.

To benchmark phase switch and hamming error rates, we used small variant calls produced
from HPRC assemblies using dipcall v0.3 as ground truth. Error rates were then computed
using “whatshap compare” v1.5 (Martin et al., 2016) module.

Hapdup pipeline and assembly-based structural variant calling. Hapdup takes as input (i) a
set of haploid contigs produced by any long-read assembler, such as Shasta or Flye and (ii)
alignment of the original long-reads against the assembly produced by minimap2 (Li, 2018).
Such assembly only contains ~50% of the heterozygous variants, and our goal is to convert it
into a locally phased diploid assembly that contains the complete set of structural variants in the
genome.

Because de novo assemblies may leave some repetitive parts of the genome unassembled,
reads originating from these unassembled repeat copies may misalign to their paralogs (if they
happen to be assembled). Because the copies of long repeats often are not exact, misaligned
reads may create artificial “haplotypes”, in addition to the (correctly mapped) paternal and
maternal alleles. It is important to filter out misaligned reads to ensure that the subsequent
diploid phasing is correct. Hapdup filters out reads with either (i) large unaligned parts or (ii) high
alignment error. Afterwards, PEPPER is used to call SNPs, SNPs are phased using Margin, and
reads are haplotagged according to their phases.

Next, Hapdup runs two instances of the Flye polisher, using only the aligned reads from either
first or second phase. The polisher algorithm separates the input alignment into small chunks,
and each chunk is polished reference-free using the maximum likelihood approach (Y. Lin et al.,
2016). To recover a large heterozygous variant, it is important that reads containing the variant
are consistently aligned, which may be difficult in VNTR regions. To ensure the correct splitting
of the original alignment, we added new functionality to the polishing algorithm that identifies
regions with indels with inconsistent coordinates between reads, and ensures that the
problematic regions are contained inside a single mini-alignment.

The polishing procedure can recover indels and substitution variants, but was not designed to
detect structural variants that are created by genomic rearrangements (for example, inversions).
Instead, Hapdup detects genomic rearrangement signatures from the read alignments, infers
their phases, and applies the rearrangement to the corresponding set of contigs.
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Hapdup outputs phased haplotypes in two different formats. First, it generates a “dual”
assembly, that has the same contiguity as the original haploid set of contigs, but may contain
occasional phase switches if phase blocks are shorter than contigs. Alternatively, Hapdup can
split the contigs at the regions that lack proper phasing (indicated by Margin), so that every
contig represents a contiguous paternal or maternal haplotype.

We used Shasta v0.10.0 with config “Nanopore-CARD-Jan2022.conf” and Hapdup v0.11
assemblies. Assemblies were also evaluated using QUAST v5.2.0 (Mikheenko et al., 2018),
yak (https://github.com/lh3/yak), asmgene (a part of paftools v2.24-r1152-dirty; (Cheng et al.,
2021, 2022). We called SNPs from assemblies using dipcall v0.3 and confirmed a low switch
error rate of 0.07-0.18% using the “whatshap compare” v1.5 (Martin et al., 2016) module.

Misassembly detection using Flagger. To detect misassemblies in the Shasta+Hapdup and
HPRC assemblies, we ran Flagger v0.2.0 (Liao et al., 2022). In summary, Flagger takes the
read alignment to a diploid/dual assembly, computes read depth of coverage, fits a Gaussian
Mixture Model to the coverage distribution and identifies the best coverage thresholds for
partitioning the assembly into 4 main components; erroneous, falsely duplicated, haploid
(correctly assembled) and collapsed. To compute read depth of coverage along the assemblies,
we aligned both HiFi and ONT reads to each LCL assembly including both haplotypes as the
reference. We used the alignment WDL available in the Flagger repository on Dockstore
(https://dockstore.org/my-workflows/github.com/mobinasri/flagger/LongReadAlignerScattered).
The workflow parameters were set as follows: preset = “map-pb” / “map-ont”; aligner =
“winnowmap”; options = “--cs --eqx -Y -L -I8g -p0.1”; kmerSize = 15.

To fix probable phasing issues in the read alignments, we applied Secphase (v0.2.0) on both
ONT and HiFi alignments before running Flagger. Secphase calculates a marker consistency
score for each alignment and selects the top alignment among all primary and secondary
alignments of a single read. If the selected alignment is secondary, the primary tag will be
assigned to this alignment. The marker consistency score is based on a multiple sequence
alignment of all the blocks one read is aligned to (Liao et al., 2022).

While running Winnowmap, we changed the parameter -p from 0.8 (default value) to 0.1 to
include more secondary alignments per read. Therefore, Secphase will potentially have
additional alignment candidates to select from. A new parameter, --primMarginRandom, was
added to Secphase in the latest version 0.2.0. This parameter allows Secphase to randomly
select one alignment if the difference between scores of the original primary alignment and the
highest secondary alignment is lower than this given threshold. This parameter was useful in
retrieving alignments in highly homozygous regions. This change was made because we
observed that one haplotype would have all of the reads mapped to it while the other haplotype
would be almost free of any alignment due to a small number of errors in the unmapped
haplotype; however, after running Secphase with this change those alignments became equally
distributed between the two haplotypes. For HiFi data we used ‘--hifi’ preset, which has
--primMarginRandom 50 as default and for ONT we used ‘--ont’ preset with
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--primMarginRandom 10 as default. Supplementary Figure 14 shows an example of how
changing -p and using Secphase could improve the alignment to the diploid assembly.

For running Secphase, we used the workflow available in the Secphase repository on
Dockstore. (https://dockstore.org/my-workflows/github.com/mobinasri/secphase/Secphase). The
workflow parameters were set as follows: secphaseOptions = “--ont” / “--hifi”;
secphaseDockerImage = "mobinasri/secphase:v0.2.0". The output of this workflow will be a log
file, outLog, containing the name of the reads whose alignments have to be relocalized. This log
file will be passed to the next workflow FlaggerPreprocess.

Prior to running Flagger, we ran the FlaggerPreprocess workflow, which is used for applying the
alignment modifications suggested by Secphase, removing highly divergent alignments, calling
variants (presumably caused by assembly errors or mismapping), removing alignments with
alternative alleles in those variants, and calculating read coverage along the assembly both
before and after removing alternative-contained alignments. To give a summary of alignment
removal, FlaggerPreprocess has a step that extracts high-quality SNPs, iterates over each
alignment and if an alignment contains the alternative allele of those SNPs it will be removed
since this is frequently the result of mismapping. If assemblies are not assembled/polished with
the reads of high base-level accuracy like HiFi or Illumina reads, this step will make a lot of
regions free of any alignment. The workflow provides two coverage files, one including all of the
alignments and the other one after excluding alternative-contained alignments. Our main goal
here is using the coverage file that is derived from all of the alignments. We also used the
filtered version of the HiFi alignments.

For running the preprocessing steps, we used the workflow available in the Flagger repository
(https://dockstore.org/my-workflows/github.com/mobinasri/flagger/FlaggerPreprocess)
The workflow parameters were set as following: minReadLength = 5000; minAlignmentLength =
5000; maxDivergence = 0.02; variantCaller = “dv” for HiFi; maxDivergence = 0.09, variantCaller
= “pmdv” for ONT.

Flagger also needs a list of bed files pointing to the regions that are prone to have coverage
biases. ONT and HiFi coverage biases in some Human Satellites. Based on those observations,
Flagger repository provides a list of bed files for HiFi and ONT. Two bed files are related to the
regions which may have increasing (mostly HSat2/3) and decreasing (mostly HSat1) biases in
HiFi coverage, and one bed file is for decreasing (mostly HSat1) bias in ONT coverage. These
bed files in the CHM13 coordinates are available in the Flagger github repository
(https://github.com/mobinasri/flagger/tree/main/misc/biased_regions). Coverage biases may not
exist in all datasets but Flagger increases the degree of freedom of its model to avoid
misflagging if such biases exist.

To project the blocks from CHM13 coordinates to the assembly coordinates, we used another
workflow provided by Flagger
(https://dockstore.org/my-workflows/github.com/mobinasri/flagger/ProjectBlocksForFlagger).
This workflow takes a list of bed files along with the alignment of each haplotype assembly to
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the CHM13 reference and outputs the projections of those bed files to each haplotype. This
workflow also takes three other bed files for sex chromosomes, centromeric regions and
segmental duplications. Each one of them will be projected similarly and their projection will be
used in running the FlaggerStats workflow to stratify the Flagger results by these annotations.

For running the Flagger core pipeline, we used the workflow available in the Flagger repository
on Dockstore (https://dockstore.org/my-workflows/github.com/mobinasri/flagger/Flagger). The
coverage files and the projection of the biased bed files produced by FlaggerPreprocess and
ProjectBlocksForFlagger will be the inputs to the Flagger workflow. It will output a bed file that
partitions each diploid assembly into 4 main components; erroneous, falsely duplicated, haploid
(correctly assembled) and collapsed. Any component other than haploid indicates a type of
misassembly.

The workflow parameters were set as follows. For HiFi: biasedRegionBedArray =
[${HiFi_High_Coverage_BED_PAT}, ${HiFi_High_Coverage_BED_MAT},
${HiFi_Low_Coverage_BED_PAT}, ${HiFi_Low_Coverage_BED_MAT}];
biasedRegionNameArray = [“hifi_high_pat”, “hifi_high_mat”, “hifi_low_pat”, “hifi_low_mat”];
biasedRegionFactorArray = [1.25, 1.25, 0.75, 0.75]. For ONT: biasedRegionBedArray =
[${ONT_Low_Coverage_BED_PAT}, ${ONT_Low_Coverage_BED_MAT}];
biasedRegionNameArray = [“ont_low_pat”, “ont_low_mat”]; biasedRegionFactorArray = [0.75,
0.75];

The output bed file of Flagger with the projected annotations (including sex, centromere and
SD) was then given to the FlaggerStats workflow to produce tables of statistics
(https://dockstore.org/my-workflows/github.com/mobinasri/flagger/FlaggerStats).

Structural variant calling and benchmarking. To produce structural variant calls from diploid
assemblies, we developed a tool called hapdiff, which is based on a modified version of
SVIM-asm (Heller & Vingron, 2020). The package incorporates minimap2 with predefined
alignment parameters, which were optimized for alignment of regions containing long structural
variants (“-ax asm20 -B 2 -E 3,1 -O 6,100”). Having a fixed set of alignment parameters is also
critical for reproducibility. Second, we added the functionality to group the variants inside the
same VNTR together, if the annotation is provided. As illustrated in Supplementary Figure 5,
VNTR grouping substantially improves the agreement between Hapdup and HPRC assemblies.
This highlights the challenge of ensuring alignment consistency inside VNTR regions.

Sniffles2 was run using default parameters, with a VNTR annotation file provided. CuteSV was
run with parameters recommended for ONT datasets (--max_cluster_bias_INS 100
--diff_ratio_merging_INS 0.3 --max_cluster_bias_DEL 100 --diff_ratio_merging_DEL 0.3)

We used hapdiff v.0.7. Multiple sets of structural variants were compared using Truvari v3.3.0
with added “-r 2000” parameter that controls the maximum linear distance between two variants.
We also tested Truvari with default parameters and found that it has only a small effect on the
resulting F1 scores and affected different tools similarly (Supplementary Table 4).
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Harmonized phased representation of small and structural variants. Modifications to
Margin were made to support joint phasing of small and structural variants. The underlying
phasing algorithm remained the same: allele support from reads is modeled by (i) selecting a
configurable number of basepairs up- and downstream from the variant site from the reference,
modifying this sequence to reflect each proposed allele, (ii) selecting a read subsequence
based on the pairwise alignment to the extracted reference subsequence, and (iii) aligning each
read subsequence to all alleles at each locus to generate emission probabilities for the HMM.

When experimenting with real data, we found that the proposed breakpoints for SVs would not
always match the exact read alignment determined by the aligner. To account for this, we
modified Margin to have two parameters for the distance up- and downstream from the variant
for subsequence extraction: one for small variants (referenceExpansionForSmallVariants) and
one for structural variants (referenceExpansionForStructuralVariants). A third parameter
(indelSizeForSVHandling) was introduced to distinguish between small and structural variants
with a configured value of 50bp. The small variant reference expansion value was left
unchanged at 12bp. After experimentation on HG002’s chr20, we found that the reference
expansion for structural variants had the greatest effect on accuracy at 64bp. Larger expansions
did not yield notable phasing improvements but had increased runtime, while smaller
expansions reduced phasing accuracy.

We used Margin (commit bb1e16a) with the config file “allParams.phase_vcf.ont.sv.json” to
generate the final phased vcf files.

Methylation calling.We produced phased 5-methylcytosine calls aligned to GRCh38 and
T2T-CHM13 references. Initial methylation calls were produced de novo using Remora
(https://github.com/nanoporetech/remora) incorporated in Guppy 6.1.2; afterward reads were
aligned and phased using PEPPER-Margin-DeepVariant (Shafin et al., 2021) and annotated
with modbamtools v0.4.8 (Razaghi et al., 2022) and modbam2bed v0.6.3
(https://github.com/epi2me-labs/modbam2bed). Regional haplotype methylation in gene
promoters and SVs were calculated using “modbamtools calcMeth”.

Pipeline implementation. The pipeline was implemented using the Workflow Description
Language (WDL), and the corresponding tools are available as Docker containers. This
implementation improves reproducibility and can automatically scale to different server or cloud
environments. We ran our analysis using the Terra platform, running Cromwell
(https://cromwell.readthedocs.io/) and using Google Cloud Platform as a backend. The pipeline
could also be run on a local machine with a WDL server installed. We used the pipeline version
f8ec6f2 (github commit).

Code availability. The complete pipeline implemented in WDL is available at
https://github.com/nanoporegenomics/card_nanopore_wf. Hapdup is available as a standalone
tool at: https://github.com/KolmogorovLab/hapdup. Hapdiff is available at:
https://github.com/KolmogorovLab/hapdiff.
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Data availability. The cell line data (HG002, HG0073 and HG02723) and openly available
through the Terra workspace: https://anvil.terra.bio/#workspaces/anvil-datastorage/
ANVIL_NIA_CARD_Coriell_Cell_Lines_Open. Human brain sequencing datasets are under
controlled access and require a dbGap application (phs001300.v4). Afterwards, the data will be
available through the restricted Terra workspace: https://anvil.terra.bio/#workspaces/
anvil-datastorage/ANVIL_NIA_CARD_LR_WGS_NABEC_GRU
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Supplementary Tables

(see attached Excel spreadsheets)

Supplementary Table 1. Information about the ONT sequencing runs and computational
pipeline performance.

Supplementary Table 2. Additional information about benchmarking small variant calls.

Supplementary Table 3. Assembly statistics and benchmarks.

Supplementary table 4. Structural variant benchmarks

Supplementary table 5. Methylation analysis statistics

Supplementary table 6: Analysis of rare SVs in brain samples
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Supplementary Figures

Supplementary Figure 1. Overview of variant calling and methylation analysis pipeline.
Raw ONT sequencing reads are basecalled by Guppy 6.1.2, which simultaneously produces
methylation tags. A diploid, de-novo phased assembly is produced using a combination of
Shasta and HapDup. These assemblies are used to call structural variants with HapDiff. Small
variants are called against a reference genome with Pepper-Margin-DeepVariant. The phased
alignment file generated by Margin is used to produce haplotype-resolved methylation calls.
Small and structural variants are jointly phased by Margin, producing a single harmonized vcf.
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Supplementary Figure 2. Assemblies switch and hamming errors computed using “whatshap
compare”. SNPs were called using dipcall and benchmarked against small variant calls in HPRC
assemblies.

Supplementary Figure 3. Assembly metrics comparison against HG002 assemblies produced
in Jarvis et. al (2022). Our assemblies are highlighted in green. Flye (ONT+Trio) were produced
using standard ONT reads at 60x coverage and Illumina parental information; Flye (ONT UL +
Trio) is similar, but using ultra-long ONT extraction. HiCanu and hifiasm used 34x HiFi reads
and Illumina parental sequencing. DipAsm used 34x HiFi reads and 60x Hi-C reads. Original
evaluations from Jarvis et al. are shown. See Supplementary Table 3 for more detail.
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Supplementary Figure 4. Comparison of structural variants using GIAB HG002 benchmark,
including Illumina-based calls produced with Manta.

Supplementary Figure 5. F1-score for SV inside clusters of different sizes. The HiFi calls for
HG002 genome were used as reference, and calls within 2 kbp were clustered using single
linkage clustering. The number of true positive calls in each category is shown as text. When
VNTR grouping is enabled, all insertions and deletions within the same haplotype in a single
VNTR are combined into a single call. A substantial portion of the reduced Sniffles2
concordance is explained by the differences in representation of SV clusters by the
assembly-based and mapping-based approaches.
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Supplementary Figure 6. Comparison of Hapdup and Sniffles2 F1-scores against HiFi
assemblies.

Supplementary Figure 7. TT-Mars evaluation of Hapdup and Sniffles2 calls. Structural
variant calls from Hapdup and Sniffles2 were compared to the assemblies from the HPRC for
HG002 (top), HG00733 (middle), and HG02723 (bottom) with TT-Mars. The calls were either
validated by the alignment (green), not validated (orange), or couldn’t be annotated by TT-Mars
(blue). We evaluated all SVs across the genome (left), as well as the subset of SVs that don’t
overlap centromeres or segmental duplications larger than 10 Kbp (right).
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Supplementary Figure 8. Number of SVs inside clusters of size at least 2. SVs are clustered
with single linkage clustering within 2kb. Multiple indels within a single VNTR element are
considered as single SVs in this analysis.

Supplementary Figure 9. Comparison of small variant calling using GRCh38 and
T2T-CHM13 references.
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Supplementary Figure 10. Lenient structural variant catalog. Similar to Figure 7A but
including SVs close to centromeres, telomeres, or within segmental duplications were removed.
(A) Number of structural variants across samples. In the left panel, structural variants were
annotated with three SV catalogs (the gnomAD-SV database, a long-read-based SV catalog,
and the HPRC v1.0 SV catalog). SVs are matched if they have at least 10% genomic overlap.
The colors highlight the maximum frequency across these catalogs, the lighter blue showing
“rare” SVs (with an allele frequency below 1%) in the catalogs, or unmatched. SVs may be
unmatched, either because they are novel or due to the difficulties in the database comparison.
The right panel shows the number of rare structural variants in protein-coding genes, grouped
by their impact on the gene structure.
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Supplementary Figure 11. IGV view of a 4.2 Kbp heterozygous deletion of a transcription start
site and exon of RBFOX1. The coverage histogram (dark grey) shows the drop in read
coverage. The alignment of about half of the reads, labelled by strand (red/blue), support the
deletion. The GENCODE track, ENCODE candidate cis-regulatory elements, and conservation
tracks are shown at the bottom.
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Supplementary Figure 12. Flagger results based on HiFi alignments to cell line CARD and
HPRC-Y1 assemblies. The y-axis of each panel indicates the unreliability percentages which
are the total number of bases flagged as misassembly divided by the total assembly length and
multiplied by one hundred
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Supplementary Figure 13. Flagger results based on ONT alignments to cell line CARD
and HPRC-Y1 assemblies. The y-axis of each panel indicates the unreliability percentages
which are the total number of bases flagged as misassembly divided by the total assembly
length and multiplied by one hundred.
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Supplementary Figure 14. Adopting Flagger to ONT reads. Changing -p0.8 to -p0.1
increased the number of secondary alignments and filled some alignment gaps. Secphase with
-r50 could not fill more of the alignment gaps with secondary alignments. The parameter -r50
was added to randomly assign reads in highly homozygous regions.
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Supplementary Figure 15. Flagger results based on ONT alignments to cell line CARD
and HPRC-Y1 assemblies after removing alternative-contained alignments. The y axis of
each panel indicates the unreliability percentages which are the total number of bases flagged
as misassembly divided by the total assembly length and multiplied by one hundred
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