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Abstract
Plants rely on Nucleotide-binding, Leucine-rich repeat Receptors (NLRs) for pathogen
recognition. Highly variable NLRs (hvNLRs) show remarkable intraspecies diversity, while their
low variability paralogs (non-hvNLRs) are conserved between ecotypes. At a population level,
hvNLRs provide new pathogen recognition specificities, but the association between allelic
diversity and genomic and epigenomic features has not been established. Our investigation of
NLRs in Arabidopsis Col-0 has revealed that hvNLRs show higher expression, less gene body
cytosine methylation, and closer proximity to transposable elements than non-hvNLRs. hvNLRs
show elevated synonymous and nonsynonymous nucleotide diversity and are in chromatin states
associated with an increased probability of mutation. Diversifying selection maintains variability
at a subset of codons of hvNLRs, while purifying selection maintains conservation at
non-hvNLRs. How these features are established and maintained, and whether they contribute to
the observed diversity of hvNLRs is key to understanding the evolution of plant innate immune
receptors.

Introduction

Plants, lacking the adaptive immune systems of vertebrates, use germline-encoded innate
immune receptors to defend against rapidly evolving pathogens. Despite their inability to create
antibodies through somatic hypermutation and recombination, plants are protected against
pathogens due to population-level receptor diversity. Nucleotide-binding, Leucine-rich repeat
Receptors (NLRs) are the intracellular sensors of the plant immune system, detecting
pathogen-secreted, disease-promoting effector proteins. After binding of a pathogen target to the
LRR domain, NLRs initiate defense responses through oligomerization of the central
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nucleotide-binding domain, leading to transcriptional reprogramming, hormone induction, and
hypersensitive cell death response (Ngou, Ding and Jones, 2022). Plant NLRs are differentiated
into three anciently diverged classes based on their N-terminal domains: Resistance To Powdery
Mildew 8-NLR (RNL), Coiled-Coil-NLR (CNL), or Toll/Interleukin-1 Receptor-NLR (TNL)
that are responsible for the downstream signaling.

NLRs exhibit remarkable levels of intraspecies allelic diversity (Van de Weyer et al.,
2019), due to both the genomic processes that generate variation and selection that promotes its
maintenance (Karasov, Horton and Bergelson, 2014; Barragan and Weigel, 2021; Märkle, Saur
and Stam, 2022). NLRs are organized into clusters more often than other genes, which can
asymmetrically drive NLR expansion and diversification through unequal crossing over and gene
conversion (Michelmore and Meyers, 1998; Lee and Chae, 2020) as well as accumulation of
point mutations (Kuang et al., 2004). Point mutations are a major source of within-species NLR
diversity, but have been difficult to fully resolve through short-read sequencing approaches. The
NLR gene family includes the most polymorphic loci and contains the highest frequency of
major effect mutations in the Arabidopsis genome (Gan et al., 2011). There is evidence for
balancing selection maintaining polymorphisms and presence-absence variation at several NLR
loci through frequency-dependent selection, spatial and temporal fluctuations in pathogen
pressure, and heterozygote advantage (Thrall et al., 2012; Karasov et al., 2014; MacQueen et al.,
2019). Diversifying selection has also been observed at NLR loci as an excess of
nonsynonymous to synonymous substitutions (Bakker et al., 2006). The NLR gene and protein
sequences within a species represent a snapshot of the ongoing interplay between mutation and
selection, but disentangling their relative contributions remains challenging.

Mutation rates are unlikely to evolve on a gene by gene basis in response to selection
given the barrier imposed by genetic drift (Lynch, 2010). However, selection on genic mutation
rates is sufficiently strong when acting on mechanisms that couple mutation rate to expression
states and epigenomic features, affecting the mutation rates of many genes simultaneously
(Martincorena and Luscombe, 2013). The mutation rate of Arabidopsis is heterogeneous across
the genome, consistent with expected effects of selection on mechanisms linking mutation rates
to epigenomic features (Monroe et al., 2022; Staunton, Peters and Seoighe, 2023). Several
mechanisms have been described, including cytosine methylation which is positively correlated
with mutation probability and known to increase the likelihood of spontaneous deamination (Cao
et al., 2011; Weng et al., 2019) while H3K4me1, which is negatively correlated with mutation
probability and a target of several DNA repair proteins (Quiroz et al., 2022). Description of
genomic features associated with diversity in NLRs will help to understand the role of mutation
bias in NLR evolution.

Recent advances in enrichment-based long-read sequencing of NLRs (Jupe et al., 2013)
as well as long-read pan-genomes (Jiao and Schneeberger, 2020) allowed for re-examination of
NLR variation within species (Barragan and Weigel, 2021). In Arabidopsis datasets, it has been
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shown that NLRs are enriched in regions of synteny diversity and that NLR repertoires across
species could not be easily anchored to a reference genome (Van de Weyer et al., 2019).
Phylogenetic analysis independent of reference-based assignment of pan-NLRomes from 62
Arabidopsis thaliana accessions (Van de Weyer et al., 2019) and 54 Brachypodium distachyon
(Gordon et al., 2017) lines allowed for amino acid diversity quantification and delineation of
highly variable NLRs (hvNLRs) from their low-variability paralogs (non-hvNLRs) (Prigozhin
and Krasileva, 2021). At the population level, hvNLRs show rapid rates of diversification and
are hypothesized to act as reservoirs of diversity for recognition of pathogen effectors.
Comparison of hv and non-hvNLR gene sets allows for investigation of epigenomic, sequence,
and regulatory features (hereafter genomic features) and signatures of selection associated with
NLR diversification.

In this paper, we report that hvNLRs show a higher transcription level, less gene body
CG methylation, and closer proximity to transposable elements (TEs) than non-hvNLRs.
Elevated gene-wide nucleotide diversity, a higher likelihood of mutation, and diversifying
selection at a subset of sites promote the high amino acid diversity of hvNLRs, while
non-hvNLRs are subject to purifying selection. These findings will serve as a starting point for
investigation of the mechanisms that promote and maintain diversity generation in a subset of
plant immune receptors.

Results

Figure 1: hvNLRs are defined by high amino acid diversity. Distribution of mean per gene Shannon
entropy across the Arabidopsis NLRome in bits. Described NLRs are annotated.

Shannon entropy, a measure of variability derived from information theory, provides an
unbiased metric of amino acid diversity of a protein within a population (Asti et al., 2016; Wang
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et al., 2017). Here, the Shannon entropy is the sum of the frequency of each amino acid times the
logarithm of that frequency at each position in a protein sequence alignment, so sites with low
variability have low entropy and highly diverse sites have high entropy. When applied to NLRs,
this measure is predictive of highly variable effector binding sites (Prigozhin and Krasileva,
2021). Based on the bimodal distribution of Shannon entropy in NLRome, we defined hvNLRs
as proteins with 10 or more amino acid positions with Shannon entropy greater than 1.5 bits
(Supplemental Fig. 1) (Prigozhin and Krasileva, 2021). To examine the relationships between
population level diversity and genomic features of a single accession, we plotted Shannon
entropy by sequence in Col-0 (Fig. 1). As expected, there are functional hvNLRs and
non-hvNLRs, with known direct recognition of effectors corresponding to hvNLRs and known
indirect recognition to non-hvNLRs. hvNLRs also overlap with dangerous mix genes.
Categorizing NLRs into low and high entropy groups allows for binary comparison of features
and gene set enrichment analysis to compare NLRs to the rest of the genome.

Figure 2: Expression, methylation, and proximity to transposable elements (TEs) distinguish hv and
non-hv NLRs. A: average gene expression log2(Transcripts per Million (TPM)), B: average % CG
methylation per gene, and C: distance to the nearest TE (kbp) with normalized mean percentile rank
density plots of hv and non-hvNLRs.* indicates a p-value <0.05 and ≥ 0.01; ** indicates a p-value <.01
and ≥0.001; *** indicates a p-value <0.001.

To compare the expression and methylation status of hv and non-hvNLRs within an
individual plant, we examined available paired whole genome bisulfite and RNA sequencing
generated from the same rosette leaf (Williams et al., 2022). We found that hvNLRs are
expressed significantly higher than non-hvNLRs (Fig. 2A, unpaired Wilcoxon rank-sum test,
p=7.9e-05). When we ranked all protein coding Arabidopsis genes based on their expression
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level, we observed that hvNLRs are enriched in the most expressed genes in each leaf sample
(singscore rank-based sample scoring, p < 0.005 for hvNLRs in each biological replicate)
(Foroutan et al., 2018).

In addition, hvNLRs have significantly lower gene body CG methylation than
non-hvNLRs (Fig. 2B, unpaired Wilcoxon rank-sum test, p=4.3e-04), and hvNLRs are enriched
in the CG hypomethylated genes across the genome (Fig. 2B, permutation test for difference in
means, p= 0.003, n=10,000 replicates). Gene set analysis of methylation can be biased due to the
uneven distribution of CG sites within each gene (Geeleher et al., 2013). We repeated our
permutation test to compare hvNLRs to a set of non-NLR genes with similar measured CG sites
per gene to correct for this bias. Still, hvNLRs were significantly more hypomethylated than the
rest of the genome (p < 0.05 each biological replicate, n=10,000). We noticed two hvNLRs,
RPP4 and RPP7, with higher CG methylation than the average for hvNLRs (Fig. 2B). Upon
further inspection, we also found CHH and CHG context methylation within the gene bodies of
RPP4 and RPP7 (Supplemental Fig. 2), which we rarely observed in other NLRs. Multi-context
gene body methylation (CG, CHH, and CHG) is typically used to silence nearby or overlapping
transposable elements (Quadrana et al., 2016). This indicates that their elevated CG methylation
is likely due to multi-context silencing related to a recent TE insertion.

We also found that hvNLRs are much more likely to be near TEs (Fig. 2C, unpaired
Wilcoxon rank-sum test, p = 1.7e-06), and hvNLRs are enriched in the genes closest to TEs
(permutation test for difference in medians, p=0, n=10,000 replicates). In Col-0, hvNLRs have a
median TE distance of 0 kbp, meaning the TEs are within the UTR or intronic sequences, while
non-hvNLRs have a median TE distance of 2.07 kbp. Highly variable status of NLRs is
predictive of TEs within the genic sequence (Fisher’s exact test, p=3.6e-05). It has been
previously observed that TEs are associated with plant immune genes (Kawakatsu et al., 2016),
but this analysis suggests that the signal is driven by hvNLRs.
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Figure 3: Cluster membership, NLR type, and phylogenetic distance do not account for genomic
differences between hv and non-hvNLRs. A: Comparison of expression, distance to nearest TEs,
and CG gene body methylation of hv and non-hvNLRs by cluster membership and N-term
domain type. B: Features mapped onto a phylogeny of NLRs in A. thaliana Col-0. NLRs without
log2(TPM) or %CG methylation data were determined to be unmappable (see methods).

NLRs are found in clusters more frequently than other genes (Lee and Chae, 2020).
However, highly variable status of NLRs is not dependent on cluster membership (Fisher’s exact
test, p=0.18) and hv and non-hvNLRs maintain their distinct expression and TE-association
patterns when comparing exclusively clustered hv and non-hvNLRs (Fig. 3A, unpaired
Wilcoxon rank-sum tests, corrected for multiple hypothesis testing). Expression and TE distance
patterns are also independent of the CNL and TNL N-terminal domain clades (Fig. 3A). CG
methylation, however, is not significantly different between clustered hv and non-hvNLRs and
between TNLs (Fig. 3A). CG methylation is the weakest association with hv status of the three
examined features (Fig 2B), and further analysis with more accessions will reveal if cluster or hv
status is more predictive of CG methylation. hvNLRs are distributed over the phylogeny of
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NLRs, and maintain distinct genomic features despite close phylogenetic relationships with
non-hvNLRs (Fig. 3B). Overall, we conclude expression and TE distance cannot be explained by
cluster status, phylogenetic proximity, or NLR class.

Figure 4: hvNLRs show higher Tajima’s D and nucleotide diversity than non-hvNLRs. A. D and
𝜋 calculated across the coding sequence (CDS), coiled-coil (CC), Toll/Interleukin-1 (TIR),
nucleotide-binding (NBARC) and leucine rich repeat (LRR) domains. Within each box,
horizontal black lines denote median values; boxes range from the 25th to 75th percentile of each
group’s distribution of values; whiskers extend no further than 1.5x the interquantile range of the
hinge. Data beyond the end of the whiskers are outlying points and are plotted individually. B.
CDS 𝜋 vs. D. Gray lines represent the kernel density estimation of statistics computed on all
coding sequences of Arabidopsis. Dashed lines represent the 95th percentile of the empirical
distribution.

The high level of amino acid diversity in hvNLRs and associated difference in genomic
features might be due to differences in mutational processes and/or selection. In order to
investigate the contribution of balancing selection to the observed amino acid diversity at
hvNLRs, we calculated Tajima’s D (D) and nucleotide diversity per site (𝜋) in each domain and
across the gene body of hv and non-hvNLRs. hvNLRs have higher D than non-hvNLRs across
the coding sequence and all individual domains (Fig. 4A; unpaired Wilcoxon rank-sum test,
corrected for multiple comparisons). Reflecting their differences in amino acid diversity,
hvNLRs have higher 𝜋 than non-hvNLRs across all domains and the coding sequence (Fig. 4A;
unpaired Wilcoxon rank-sum test, corrected for multiple comparisons). The difference in 𝜋 and
D between the two groups is not driven exclusively by variation in the LRR region, with the
highest values reported for the hvNLR NBARC domains.
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Due to the demographic history of Arabidopsis, the empirical distribution of summary
statistics departs from the neutral model (Nordborg et al., 2005; Alonso-Blanco et al., 2016). We
calculated the genome-wide values of D and 𝜋 to test for selection, using whole genome SNP
information from the accessions used to create the pan-NLRome (Alonso-Blanco et al., 2016)
(Supplemental Fig. 3). Both hv and non-hvNLRs have higher average 𝜋 than the empirical
distribution (Fig. 4B; permutation test for difference in means, p = 0; p=0, n=10,000 replicates),
and there are significantly more NLRs in the top 5% of the empirical distribution than expected
by chance (permutation test for number in the top 5%, p=0, n=10,000 replicates). This
corroborates previously reported significantly high levels of nucleotide diversity of NLRs.
(Bakker et al., 2006; Van de Weyer et al., 2019)

hvNLRs have a higher D and non-hvNLRs have a lower D than the genome average (Fig.
4B; permutation test for difference in means, p = 0.0009; p=0, n=10,000 replicates). There are no
hvNLRs in either tail of the empirical distribution of D, which is not significantly different from
the 0.43 expected by chance. There are, however, an excess of non-hvNLRs in the bottom 5% of
the distribution of D (permutation test for number in the bottom 5%, p=0, n=10,000 replicates),
indicating that purifying selection may be reducing diversity at non-hvNLRs. Defining individual
genes under balancing selection to be the top 5% of the empirical distribution of 𝜋 and D values
(Bakker et al., 2006; Gladieux et al., 2022), we identified one non-hvNLR under balancing
selection, AT5G47260 (Fig. 4B). However, one gene is not significantly different from the
number of NLRs expected to be in the top 5% of both distributions by random chance.

To further investigate the nature of the high nucleotide diversity of NLRs, we compared
nucleotide diversity at synonymous and non-synonymous sites (𝜋S;𝜋N). hvNLRs have greater 𝜋S

and 𝜋N than non-hvNLRs (Fig 5A; unpaired wilcoxon rank sum test, p=5.6e-13, p=1.2e-15).
However, the ratio of non-synonymous to synonymous nucleotide diversity (𝜋N/𝜋S), an
intraspecies measurement of selection, is not significantly different between the two groups,
indicating possible role of different mutational processes (Fig 5B; unpaired wilcoxon rank sum
test, p=0.24). Average 𝜋N/𝜋S is < 1 for both groups across the gene and in the LRR region,
indicating purifying selection as an excess of synonymous polymorphisms relative to
non-synonymous polymorphisms (Fig. 5B; Supplementary Fig. 4).

Since elevated 𝜋N and 𝜋S with no difference in 𝜋N/𝜋S could be caused by an increase in
mutation rate of hvNLRs, we compared the predicted SNVs and indels per base pair based on
epigenomic states (mutation probability score) (Monroe et al., 2022). The mutation probability is
35% higher for hvNLRs (Fig 5C; unpaired wilcoxon rank sum test, p=3.0e-05).
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Figure 5: hvNLR nucleotide diversity is associated with a high likelihood of mutation and
codons under diversifying selection. A. Average nonsynonymous pairwise nucleotide diversity
per site (𝜋N) and average synonymous pairwise nucleotide diversity per site (𝜋S). B. 𝜋S vs 𝜋N of
the coding sequence of NLRs with per group linear regressions. C.Mutation probability score of
hv and non-hvNLRs. D. Percentage of codons under positive selection determined by MEME
(episodic), and FEL (pervasive).

Gene-wide 𝜋N/𝜋S is a conservative metric for testing positive selection because positive
selection may only be acting at a few codon sites (Kosakovsky Pond and Frost, 2005). Therefore,
we used maximum-likelihood based site models to test for positive, diversifying selection. Use
of these dN/dS-based models on intraspecies data is problematic because the nucleotide
differences do not represent substitutions fixed by selection, but rather polymorphisms
segregating within a population (Kryazhimskiy and Plotkin, 2008). We mitigated this effect by
restricting our analysis to internal branches of the protein phylogeny, which encompass at least
one ancestral sequence that is visible to selection (Pond et al., 2006; Avanzato et al., 2019).
hvNLRs have a higher proportion of codons under pervasive and episodic diversifying selection
than non-hvNLRs, indicating that diversifying selection at a subset of sites is maintaining
diversity at hvNLRs (Fig. 5D, unpaired wilcoxon rank sum test). Given the polymorphism data,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.01.12.523861doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523861
http://creativecommons.org/licenses/by/4.0/


summary statistics, and mutational likelihood, hvNLR amino acid diversity appears to be driven
by both a higher likelihood of mutation and positive, diversifying selection, while non-hvNLR
conservation is maintained by purifying selection.

Figure 6: Neighboring NLRs retain distinct genomic and epigenomic features. A.Methylation, RNAseq
coverage, and TE proximity of neighboring non-hvNLR AT5G43730 and hvNLR AT5G43740. B. and C.
Tajima’s D and nucleotide diversity across the coding sequence of AT5G43730 and AT5G43740. Statistics
were calculated on 300bp windows with a step size of 75bp, and plotted at the nucleotide midpoint.

As described previously, hv and non-hvNLRs can co-exist as neighboring genes. We
chose non-hvNLR AT5G43730 and hvNLR AT5G43740, two CNLs of similar length 1.8kb
apart, to examine the genomic features and signatures of selection of neighboring NLRs (Fig. 6).
The hvNLR is highly expressed, hypomethylated, and has a TE within its 5’ UTR sequence (Fig.
6A). The non-hvNLR shows signatures of purifying selection with a gene-wide Tajima’s D value
of -1.9, while the hvNLR has a gene-wide Tajima’s D of -0.24 (Fig. 6B, 6C). The hvNLR has
higher 𝜋, 𝜋N, and 𝜋S, but the two genes have similar 𝜋N/𝜋Svalues (0.48 and 0.41) (Fig. 6B, 6C).
Despite neighboring genomic positions, AT5G43730 and AT5G43740 show distinct genomic
features and signatures of selection reflective of their species-level amino acid diversity (Fig. 6B,
6C). Therefore, we conclude that genomic features that distinguish hvNLR and non-hvNLRs are
not driven by broader genome states, but may instead be related to function and evolutionary
speed.
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Discussion

The high allelic diversity of NLRs has long been appreciated, though the mechanisms
that generate and maintain this diversity have remained difficult to disentangle. Taking advantage
of Shannon entropy and available long read sequencing datasets, we can delineate rapidly and
slowly diversifying NLRs and begin to investigate these mechanisms through gene set
comparison. Our results show that rapidly evolving NLRs have distinct genomic features from
their conserved paralogs and the rest of the genome. Specifically, we found that hvNLRs are
more expressed, less methylated, and closer to TEs than non-hvNLRs. Interestingly, hvNLRs are
enriched across the genome in highly expressed genes, hypomethylated genes, and genes closest
to TEs, while non-hvNLRs are uniformly dispersed among other genes.

Since we observed distinct genomic features between hv and non-hvNLRs, we
investigated the possibility of increased mutation rate in hvNLRs through examination of
nucleotide diversity and mutation probability. Synonymous substitutions are under reduced
selection compared to nonsynonymous substitutions because they do not alter the amino acid
sequence, but are not invisible to selection due to codon bias, GC biased gene conversion, and
RNA folding stability (Martincorena, Seshasayee and Luscombe, 2012; James, Castellano and
Eyre-Walker, 2017; Wei, 2020). 𝜋S is therefore an imperfect predictor of mutation rate, but an
elevated mutation rate of hvNLRs could result in increased 𝜋S and 𝜋N relative to non-hvNLRs,
but not influence the 𝜋N/𝜋S ratio, as we report here (Bromham, Cowman and Lanfear, 2013). We
also find that hvNLRs are maintained in chromatin states associated with a higher mutation
probability per base pair relative to non-hvNLRs, leading to the hypothesis that locally high
mutation rate at hvNLRs contributes to the observed amino acid diversity. However, high depth
quantification of de novo mutations at NLRs before selection is required to evaluate this
hypothesis.

The distinct genomic features between the two NLR groups may point to mechanisms of
increased mutation rate. Transcription is a source of genomic instability through the exposure of
vulnerable single-stranded DNA, which is countered by targeting DNA repair machinery to
actively transcribed genes through the stalling RNA polymerase or histone marks associated with
actively transcribed genes (Oztas et al., 2018; Quiroz et al., 2022). If the high transcription of
hvNLRs is not accompanied by targeted DNA repair, this would result in an increased
probability of mutation (Staunton, Peters and Seoighe, 2023). Methylated cytosines increase the
likelihood of mutation by increasing the frequency of spontaneous deamination of cytosines
(Xia, Han and Zhao, 2012; Weng et al., 2019; Monroe et al., 2022). However, in Arabidopsis,
gene body CG methylation is found preferentially in the exons of conserved, constitutively
transcribed housekeeping genes, and gene body CG methylation is associated with lower
polymorphism than unmethylated genes across accessions (Gaut et al., 2011; He et al., 2022;
Kenchanmane Raju et al., 2023). The CG gene body methylation of non-hvNLRs may therefore
be related to their low diversity through some unknown mechanism. TEs generate large effect
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mutations (Quadrana et al., 2019) and alter the methylation and expression landscape of
surrounding genes. hvNLRs are closer to TEs and more likely to have them within their genic
sequence than non-hvNLRs, and this likely contributes to hvNLR diversification.

Once generated, nucleotide diversity can be actively maintained by diversifying or
balancing selection, or passively accumulate in the absence of selection. We do not observe any
difference in diversifying selection between hv and non-hvNLRs using the 𝜋N/𝜋S metric, but
hvNLRs have a significantly higher proportion of codons under pervasive and episodic
diversifying selection. While hvNLRs have higher Tajima’s D values than the genome average
and non-hvNLRs, they are not present in the tails of the genome-wide distribution. The 5th and
95th percentiles of the empirical distribution is a conservative cutoff, and it is possible for a locus
to be under selection but not in a tail of the distribution if selection is weak. Therefore, balancing
selection may play a role in promoting hvNLR diversity, but cannot be distinguished from
evolution under relaxed selection using this criteria. non-hvNLRs, however, have a strong
signature of purifying selection, which helps to explain their low amino acid diversity relative to
hvNLRs.

Given the heterogeneous mutation rate across the Arabidopsis genome, it is tempting to
speculate that the distinctive genomic features we observed in hvNLRs may be related to their
allelic diversity. Alternatively, there might be a selection of specific features on non-hvNLRs to
enhance DNA repair and inhibit other diversity-generation activities facilitating their
maintenance. Our findings serve as a starting point for the investigation of the mechanisms that
promote diversity generation in a subset of the plant immune receptors.

Materials and Methods
To examine the methylation and expression of NLRs, we used available matched bisulfite and

RNA sequencing from split Col-0 leaves (Williams et al., 2022). Reads were trimmed using Trim Galore!
v0.6.6 with a Phred score cutoff of 20 and Illumina adapter sequences, with a maximum trimming error
rate 0.1 (Babraham Bioinformatics). Using Bismark v0.23.0, reads were mapped to the Araport11
genome, PCR duplicates were removed, and percent methylation at each cytosine was determined using
the methylation extraction function (Krueger and Andrews, 2011). Cytosines with at least 5 reads were
used for analysis, and the symmetrical cytosines within CG base pairs were averaged (Williams et al.,
2022). The percent methylation of each CG site was averaged across each NLR gene, and across four
biological replicates. Five hvNLR genes did not have sufficient coverage at any cytosines and were
excluded from analysis (AT1G58807, AT1G58848, AT1G59124, AT1G59218, and AT4G26090).

RNA-seq reads from four matched leaf samples (explained above) were mapped to the Araport11
genome using STAR v2.7.10a and were counted using htseq-count v2.0.2 (Dobin et al., 2013). Counts
were converted to transcripts per million and averaged across four biological replicates, then log2
transformed for visualization. NLRs are repetitive and often similar, making them difficult to sequence
with short reads. To determine if any NLRs were unmappable, RNAseq reads were simulated using
Polyester v1.2.0 (Frazee et al., 2015). Four NLRs were determined to be unmappable due to zero assigned
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read counts and were excluded from expression analysis (AT1G58807, AT1G58848, AT1G59124, and
AT1G59218). Single sample gene set enrichment of hvNLRs and non-hvNLRs was performed on each
replicate using singscore (Foroutan et al., 2018).

We determined distance to transposable elements based on the TE annotation file
TAIR10_Transposable_Elements.txt and gene annotation file TAIR10_GFF3_genes.gff available from
arabidopsis.org. The phylogenetic tree of all NLRs in Col-0 was generated as described previously
(Prigozhin and Krasileva, 2021) with feature annotations using iTOL. The UpSet plot was generated
using the R package ComplexUpset v1.3.3.

Protein alignments for each NLR were generated as described previously (Prigozhin and
Krasileva, 2021) and converted to codon alignments using PAL2NAL v14 (Suyama, Torrents and Bork,
2006). The population genetics statistics of NLRs were calculated using EggLib v3.1.0 (Siol et al., 2022).
Domain specific statistics were calculated on subsets of codon alignments using majority vote across
annotations. NB-ARC, TIR, and CC annotations were collected from previous work (Van de Weyer et al.,
2019), and LRR annotations were determined using LRRpredictor (Martin et al., 2020). Sliding window
analysis was performed with 300 base pair windows with a 75 base pair step. Sites under pervasive
diversifying selection were identified using FEL (Kosakovsky Pond and Frost, 2005) and sites under
episodic diversifying selection were identified using MEME (Murrell et al., 2012) using the internal
branches of the phylogeny. Empirical distributions of population genetics statistics of coding sequences
were calculated from the all sites 1001 Genomes VCF subset to the accessions used to generate the
NLRome long read dataset using vcftools v0.1.17 (Danecek et al., 2011; Alonso-Blanco et al., 2016; Van
de Weyer et al., 2019).

All the data generated in this study is hosted on the Zenodo Public Repository at
10.5281/zenodo.7527904. The processing pipelines and figure generation code are available on Github
(https://github.com/chandlersutherland/nlr_features).
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Supplemental Figures

Supplemental Figure 1: Distribution of NLR Shannon entropy at the tenth highest amino acid position
as shown as a histogram with 30 bins. Described NLRs are annotated. The designation of hvNLR is
entropy of >1.5 bits at the tenth highest position, as shown by the dashed line.
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Supplemental Figure 2: Integrative Genomics Viewer screenshot of Methylation, RNAseq
coverage, and TE proximity of the A. RPP4 and B. RPP7 clusters.
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Supplemental Figure 3: Empirical distribution of Tajima’s D and 𝜋 calculated on coding sequences of
Arabidopsis. Position of hv and non-hvNLRs shown via rug plot, as well as the 5th and 95th percentiles
of the distribution.

Supplemental Figure 4: 𝜋N/𝜋S calculated per domain.
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