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Abstract

We motivate and present biVI, which combines the variational autoencoder framework of scVI

with biophysically motivated, bivariate models for nascent and mature RNA distributions. While
previous approaches to integrate bimodal data via the variational autoencoder framework ignore
the causal relationship between measurements, biVI models the biophysical processes that give rise
to observations. We demonstrate through simulated benchmarking that biVI captures cell type
structure in a low-dimensional space and accurately recapitulates parameter values and copy num-
ber distributions. On biological data, biVI provides a scalable route for identifying the biophysical
mechanisms underlying gene expression. This analytical approach outlines a generalizable strategy
for treating multimodal datasets generated by high-throughput, single-cell genomic assays.
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1 Main

Advances in experimental methods for single-cell RNA sequencing (scRNA-seq) allow for the simul-
taneous quantification of multiple cellular species, such as nascent and mature transcriptomes [1,2],
surface [3–5] and nuclear [6] proteomes, and chromatin accessibility [7,8]. While these rich datasets
have the potential to enable unprecedented insight into cell type and state in development and dis-
ease, joint analyses of distinct modalities remain challenging. We show that principled biophysical
“integration” of multimodal datasets can be achieved through parameterization of interpretable
mechanistic models [9], scalable to measurements made for thousands of genes in tens of thousands
of cells [10].

Recent approaches to integrate and reduce the dimensionality of multimodal single-cell ge-
nomics data have leveraged advances in machine learning [11–13]. For example, the popular tool
scVI is a variational autoencoder (VAE) that uses neural networks to encode scRNA-seq counts to
a low-dimensional representation. This is decoded by another neural network to a set of cell- and
gene- specific parameters for conditional likelihood distributions of observed counts. These distri-
butions are chosen post hoc to be consistent with the discrete, over-dispersed nature of scRNA-seq
counts, but can be derived from biophysical models (Section S1). Extensions of scVI to bimodal
data have been attempted for protein [11] and chromatin measurements [14] by jointly encoding
data modalities to a single latent space, then employing two decoding networks to produce pa-
rameters for independent conditional likelihoods specific to each datatype. Nascent and mature
transcripts, available by realigning existing scRNA-seq reads [1,2], could be similarly treated (Fig-
ure 1a). However, using independent conditional likelihoods for bimodal measurements derived
from the same gene ignores the inherent causality between observations and has no biophysical
basis: the generative model is merely part of a neural “black box” used to summarize data.

Nevertheless, good causal model candidates are available: for example, Figure 1b illustrates
the extensively validated [15–17] bursty model of transcription. Nascent RNA molecules are pro-
duced in geometrically distributed bursts with mean b at constant rate k and spliced at rate � to
produce mature molecules, which are degraded with constant rate �. While the joint steady-state
distribution induced by the bursty model is analytically intractable [18], we have previously shown
that it can be approximated by a set of basis functions with neural-network learned weights [19].

We introduce biVI, a strategy that adapts scVI to work with well-characterized stochastic
models of transcription. First, we propose several models, formalized by chemical master equations
(CMEs), that could give rise to bivariate count distributions for nascent and mature transcripts. We
then use the bivariate, CME-derived distribution as the conditional data likelihood distribution for
nascent and mature counts (Figure 1c). The inferred conditional likelihood parameters thus have
biophysical interpretations as part of a mechanistic model of transcriptional dynamics. Although
we focus on the bursty model, biVI implements the closed-form constitutive and extrinsic noise
models previously discussed in the literature [9, 20, 21] (derivations in Section S1 and diagrams in
Figures S1 and S2).

After using simulations to show that biVI models, when compared to scVI, better recapitulate
ground-truth distributions and achieve similar clustering of cell types’ latent representations (Fig-
ures S3, S4, S5, and Section S6.7), we applied biVI and scVI to experimental data [22] (Section 2.6)
from mouse brain tissue [22]. As shown in Figure 2a-b, biVI recapitulates empirical distribution
shapes better than scVI (Section 3) while allowing for interpretation of cell-specific parameters to
determine how genes are regulated (Section S8). For example, in Figure 2c-d, we illustrate that
the upregulation of markers Foxp2 and Rorb can be ascribed to an increase in burst size. We
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Figure 1: biVI reinterprets and extends scVI to infer biophysical parameters. a. scVI can take
in concatenated nascent (N ) and mature (M) RNA count matrices, encode each cell to a low-
dimensional space z, and learn per-cell parameters µN and µM and per-gene parameters ↵N and
↵M for independent nascent and mature count distributions. This approach is not motivated by
any specific biophysical model. b. A schematic of the telegraph model of transcription: a gene
locus has the on rate k, the o↵ rate koff , and the RNA polymerase binding rate kRNAP. Nascent
RNA molecules are produced in geometrically distributed bursts with mean b = kRNAP/koff , which
are spliced at a constant rate � and degraded at a constant rate �. Although there is no closed-
form solution, this model’s steady-state distribution can be approximated by a pre-trained neural
network F and a set of basis functions { i

}. c. biVI can take in nascent and mature count
matrices, produce a low-dimensional representation for each cell, and output per-cell parameters b
and �/k, as well as the per-gene parameters �/k, for a mechanistically motivated joint distribution
of nascent and mature counts.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2023. ; https://doi.org/10.1101/2023.01.13.523995doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523995
http://creativecommons.org/licenses/by/4.0/


4

Figure 2: biVI successfully fits single-cell neuron data and suggests the biophysical basis for expres-
sion di↵erences. a.-b. Observed, scVI, and biVI reconstructed distributions of Foxp2, a marker
gene for L6 CT (layer 6 corticothalamic) cells, and Rorb, a marker gene for L5 IT (layer 5 intratelen-
cephalic) cells, restricted to respective cell type. c.-d. Cell-specific parameters inferred for Foxp2

and Rorb demonstrate identifiable di↵erences in means and parameters in the marked cell types.
e. Cell subclasses show di↵erent modulation patterns, with especially pronounced distinctions in
non-neuronal cells (top: fractions of genes exhibiting di↵erences in each parameter; bottom: num-
ber of cells in each subclass). f. biVI allows the identification of cells which exhibit di↵erences
in burst size or relative degradation rate, without necessarily demonstrating di↵erences in mature
mean expression. Hundreds of genes demonstrate this modulation behavior, with variation across
cell subclasses. g. Histograms of biVI parameters and scVI mature means for two genes that
exhibit parameter modulation without identifiable mature mean modulation. Trem2 (top) shows
di↵erences in the degradation rate in L5 IT cells, whereas Ndnf (bottom) shows di↵erences in burst
size in L6 CT cells.
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generalize this approach in Figure 2e, which shows the fraction of identified genes in each cell sub-
class that exhibited significant di↵erences in burst size, relative degradation rate, or both (Section
2.8). Interesting trends across cell subclasses begin to emerge: neuronal cells appear to regulate
gene expression via a mix of regulatory strategies, while non-neuronal cells seem to preferentially
modulate burst size.

Finally, biVI can identify distributional di↵erences which do not result in mean expression
changes (Section 2.8, Figure 2g-h). For some cell subclasses, there were several hundred such
genes, interesting targets for follow-up experimental investigation. For example, the gene Ndnf,
which codes for the neuron derived neurotrophic factor NDNF, demonstrated a statistically signifi-
cant di↵erence in the biVI inferred burst size, but not scVI inferred mature mean, in the neuronal
subclass L6 CT (Figure 2i, top row). NDNF promotes the growth, migration, and survival of
neurons [23]; characterizing its regulatory patterns could help elucidate its role in neuronal main-
tenance. As another example, the relative degradation rate of the gene coding for the triggering
receptor expressed on myeloid cells-2 (TREM2), variants of which are strongly associated with in-
creased risk of Alzheimer’s disease [24], was found to be greater in the neuronal L5 IT subclass than
in other subclasses (Figure 2i, bottom row). While known to be highly expressed in microglia [24],
understanding its modulation in other cell subclasses could yield a better understanding of its cell
type specific e↵ects on the development of Alzheimer’s disease. Such mechanistic description pro-
vides a framework for characterizing the connection between a gene’s role and a cell’s regulatory
strategies beyond a mere change in mean expression [25,26].

We have demonstrated that bivariate distributions arising from mechanistic models can be used
in variational autoencoders for principled integration of unspliced and spliced RNA-seq data. This
improves model interpretability: conditional parameter estimates give insight into the mechanisms
of gene regulation that result in di↵erences in expression. While we impose biophysical constraints
on species’ conditional joint distributions, orthogonal improvements in interpretability can be made
by changing the decoder architecture. biVI models can be instantiated with single-layer linear
decoders [27] to directly link latent variables with gene mean parameters via layer weights (Section
S9 and Figure S9).

Relaxing assumptions and modeling more molecular modalities (e.g., protein counts and chro-
matin accessibility) are natural extensions. As single-cell technologies evolve to provide larger-scale,
more precise measurements of biomolecules, we anticipate that our approach can be applied and
extended for a more comprehensive picture of biophysical processes in living cells.
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2 Methods

In order to extend the scVI method to work with multimodal molecule count data in a way that is coherent with
biology, we define bivariate likelihood functions that (i) encode a specific, precedented mechanistic model of tran-
scriptional regulation and (ii) are admissible under the assumptions made in the standard scVI pipeline. On a high
level, our method entails the following steps:

1. Choose one of the scVI univariate generative models (Section 2.2), including the functional form of its likelihood
and any assumptions about its distributional parameters.

2. Identify a one-species chemical master equation (CME) that produces this distribution as its steady state,
and translate assumptions about distributional parameters into assumptions about the biophysical quantities
that parameterize the CME (Section 2.3). The one-species system and its assumptions will typically not be
uniquely determined.

3. Identify a two-species CME and derive assumptions about parameter values consistent with the one-species
system (Section 2.3). There will typically be multiple ways to preserve the assumptions but only a single CME.

4. Modify the autoencoder architecture to output the variables that parameterize the CME solution under the
foregoing assumptions, and use this solution as the generative model (Section 2.5).

2.1 Statistical preliminaries

We use the standard parameterization of the Poisson distribution:

PPoiss(x;µ) =
µ
x
e
�µ

x!
. (1)

We use the shape-mean parameterization of the univariate negative binomial distribution:

PNB(x;↵, µ) =
�(↵+ x)
x!�(↵)

✓
↵

↵+ µ

◆↵ ✓
µ

↵+ µ

◆x

. (2)

We use mean parameterization of the geometric distribution on N0:

PGeo(x; b) =

✓
b

b+ 1

◆x ✓ 1
b+ 1

◆
. (3)

2.2 scVI models

A brief summary of the generative process of the standard, univariate scVI pipeline is useful to contextualize the
options and constraints of the bivariate model. In the Bayesian model, each cell has some posterior probability pc(zc)
over a low-dimensional space and can be represented as a sample zc from that posterior. scVI uses the “decoder”
neural network to map from realizations zc to quantities ⇢cg, which describe the compositional abundance of gene
g in cell c as a function of zc, such that

P
g ⇢cg = 1. Furthermore, a cell-specific “size factor” `c is sampled from

a lognormal distribution parameterized by either fit or plug-in estimates of mean and variance such that the mean
expression of a gene in a given cell is µcg = ⇢cg`c.

The univariate workflow provides the options of three discrete generative models: Poisson with mean µcg,
negative binomial with mean µcg and gene-specific dispersion parameter ↵g, and zero-inflated negative binomial,
with an additional Bernoulli mixture parameter. We report the master equation models consistent with the first two
generative laws below, and discuss a potential basis for and reservations about the zero-inflated model in Section
S1.4.

Due to the intractability of the posterior probability pc(zc), scVI uses variational inference to infer an approx-
imate posterior qz(zc), which is in form a multivariate Gaussian. Models are trained via stochastic optimization of
the Evidence Lower Bound, or ELBO, which minimizes the Kullback-Leibler divergence between the approximate
posterior and a prior and maximizes the expectation value of conditional likelihood over the approximate posterior.
The Gaussian form of the approximate posterior makes possible a reparameterization trick to calculate gradients
of the ELBO over expectation estimates made by Monte Carlo sampling from the approximate posterior. Further,
the encoding network amortizes inference by learning a map between data to parameters of the approximate poste-
rior [12,28].
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2.3 Master equation models

The one-species CMEs encode reaction schema of the following type:

? �! X ��! ?, (4)

where X is a generic transcript species used to instantiate a univariate scVI generative model, � is the transcript’s
Markovian degradation rate, and the specific dynamics of the transcription process (first arrow) are deliberately left
unspecified for now. Such systems induce univariate probability laws of the form P (x).

The two-species CMEs encode reaction schema of the following type:

? �! N ��! M ��! ?, (5)

where N denotes a nascent species, M denotes a mature species, and � denotes the nascent species’ Markovian
conversion rate. Such systems induce bivariate probability laws of the form P (n,m). We typically identify the
nascent species with unspliced transcripts and the mature species with spliced transcripts. We use the nascent/mature
nomenclature to simplify notation and emphasize that this identification is natural for scRNA-seq data, but not
mandatory in general.

Formalizing a model in terms of the CME requires specifying the precise mechanistic meaning of ⇢cg and `c.
Previous reports equivocate regarding the latter [11], appealing either to cell-wide e↵ects on the biology (in the spirit
of [20, 21]) or technical variability in the sequencing process (in the spirit of [29]). For completeness, we treat both
cases.

Below, we present the theoretical results, including the biophysical models, the functional forms of bivariate
distributions consistent with the standard scVI models, and the consequences of introducing further assumptions.
The full derivations are given in Section S1.

2.3.1 Constitutive: The Poisson model and its mechanistic basis

The Poisson generative model can be recapitulated by the following schema:

? k�! N ��! M ��! ?, (6)

where k is a constant transcription rate. This process converges to the bivariate Poisson stationary distribution, with
the following likelihood:

P (n,m;µN , µM ) = PPoiss(n;µN )PPoiss(m,µM ), (7)

where µN = k/� and µM = k/�. If we suppose each gene’s � and � are constant across cell types, the likelihoods
involve a single compositional parameter ⇢cg, such that

µN =
�g

�g
⇢cg`c

µM = ⇢cg`c,

(8)

where �g/�g 2 R+ is a gene-specific parameter that can be fit or näıvely estimated by the ratio of the unspliced and
spliced averages. On the other hand, if the downstream processes’ kinetics can also change between cell types, we
must use two compositional parameters:

µN = ⇢
(N)
cg `c

µM = ⇢
(M)
cg `c.

(9)

We refer to this model as “Poisson,” reflecting its functional form, or “constitutive,” reflecting its biophysical
basis.

2.3.2 Extrinsic: The negative binomial model and a possible mixture basis

The negative binomial generative model can be recapitulated by the following schema:

? k ⇠ K����! N ��! M ��! ?, (10)
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where k is the transcription rate, a realization of K, a gamma random variable with shape ↵, scale ⌘, and mean
hKi = ↵⌘. This process converges to the bivariate negative binomial (BVNB) stationary distribution, with the
following likelihood:

Pextrinsic(n,m;↵, µN , µM ) =
�(↵+ n+m)
n!m!�(↵)

✓
1

↵+ µN + µM

◆↵+n+m

↵
↵
µ
n
Nµ

m
M , (11)

where µN = hKi/� and µM = hKi/�. If we suppose that cell type di↵erences only involve changes in the transcription
rate scaling factor ⌘, with constant ↵, �, and �, the likelihoods involve a single compositional parameter ⇢cg. The
mean parameters are identical to Equation 8, with an analogous parameter �g/�g, as well as a gene-specific shape
parameter ↵g. On the other hand, if the downstream processes’ kinetics can also change between cell types, we must
use two compositional parameters, as in Equation 9.

We refer to this model as “extrinsic” to reflect its biophysical basis in extrinsically stochastic rates of transcrip-
tional initiation.

2.3.3 Bursty : The negative binomial model and a possible bursty basis

The negative binomial generative model may be recapitulated by the alternative schema [18]:

? k�! B ⇥N ��! M ��! ?, (12)

where k is the burst frequency and B is a geometric random variable with mean b (Equation 3). This system converges
to the following stationary distribution:

Pbursty(n,m;↵, µN , µM ) = PNB(n;↵, µN )P (m|n;↵, µN , µM ), (13)

where µN = kb/�, µM = kb/�, and ↵ is arbitrarily set to k/� for simplicity.
Although the nascent marginal is known to be negative binomial, the joint P (n,m) and conditional P (m|n)

distributions are not available in closed form. For a given set of parameters, the joint distribution can be approximated
over a finite microstate domain n,m 2 [0, ßN � 1] ⇥ [0, ßM � 1], with total state space size ßNßM . This approach
is occasionally useful, if intensive, for evaluating the likelihoods of many independent and identically distributed
samples. The numerical procedure entails using quadrature to calculate values of the generating function on the
complex unit sphere, then performing a Fourier inversion to obtain a probability distribution [18]. However, this
strategy is ine�cient in the variational autoencoder framework, where each observation is associated with a distinct
set of parameters. Furthermore, it is incompatible with automatic di↵erentiation.

In [19], we demonstrated that the numerical approach can be simplified by approximating P (m|n) with a learned
mixture of negative binomial distributions: the weights are given by the outputs of a neural network, whereas the
negative binomial bases are constructed analytically. The neural network is trained on the outputs of the generating
function procedure. Although the generative model does not have a simple closed-form expression, it is represented
by a partially neural, pre-trained function that is a priori compatible with the VAE.

If we suppose cell type di↵erences only involve changes in the burst size b, with constant k, � and �, we use
Equation 13 to evaluate likelihoods. These likelihoods involve a single compositional parameter ⇢cg, with mean
parameters identical to Equation 8, with an analogous parameter �g/�g, as well as a gene-specific shape parameter
↵g. On the other hand, if kinetics of the degradation process can also change between cell types, we must use two
compositional parameters, as in Equation 9. There is no admissible way to allow modulation in the burst frequency.

We refer to this model as “bursty,” reflecting its biophysical basis.

2.4 biVI bursty generative model

Following the notation of scVI [28], biVI ’s generative process for the bursty hypothesis models expression values of
xcn and xcm of nascent and mature counts, respectively, in cell c as:

zc ⇠ Normal(0, I)

`c ⇠ log normal(`µ, `�2)

⇢
(N)
cg , ⇢

(M)
cg = f(zc, sc)

µcn, µcm = ⇢
(N)
cg `c, ⇢

(M)
cg `c

xcn, xcm ⇠ Pbursty(n,m;↵, µcn, µcm),

(14)
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with a standard, multivariate normal prior on the latent space z vector. Here, `µ, `�2 are by default observed
mean and variance in log-sequencing depth (‘log-library size’ in scVI ) across a cell’s batch, although they can be

learned. Further, as in scVI, f is neural network that produces fraction of sequencing depth parameters ⇢
(N)
cg , ⇢

(M)
cg

for nascent and mature counts. The sum of nascent and mature fractions is constrained to be 1 over a cell c by
a softmax applied to the network output:

PG
n,m=0(⇢

(N)
cg , ⇢

(M)
cg ) = 1, where G is the number of genes. ↵ 2 RG is a

network parameter jointly optimized across all cells during the variational inference procedure. To recover biophysical
parameters, ↵ is arbitrarily set to k/�. Burst size b and relative degradation rate k/� can be recovered according to
the following conversions:

b =
µcn

↵

�/k =
µnc

µcm↵

(15)

We further set k = 1 with no loss of generality at steady-state. Generative processes for constitutive and
extrinsic noise models are discussed in Sections S2 and S3.

2.5 biVI modifications to scVI

Our code is built upon scVI version 0.18.0 [30]; the following outlines the modifications we made for biVI. The scVI
framework already supports the constitutive model. By setting conditional likelihood to “poisson,” no modification of
scVI architecture is necessary. The conditional data likelihood distribution is the product of two Poisson distributions
(Equation 7). Explicitly, unspliced and spliced count matrices can be concatenated along the cell axis to produce a
matrix of shape C by 2G, where C is the number of cells and G the number of genes. scVI will then produce 2G
Poisson mean parameters for the two Poisson distributions of Equation 7.

For the extrinsic and bursty models, mean parameters for nascent and mature counts, µN and µM , and a single
shape parameter ↵ are necessary. The default scVI architecture returns two independent parameters for nascent and
mature counts of the same gene. biVI thus modifies the scVI architecture to update vectors ↵ 2 RG

�0 rather than

↵ 2 R2G
�0, where G is the number of genes. For the extrinsic model, the conditional data likelihood distribution is

set to the extrinsic likelihood Pextrinsic(n,m;↵, µN , µM ) (Equation 11). For the bursty model, the conditional data
likelihood distribution is set to the bursty likelihood Pbursty(n,m;↵, µN , µM ) (Equation 13). These models also intake
concatenated unspliced and spliced matrices of shape C by 2G.

2.6 Preprocessing Allen data

Raw 10x v3 single-cell data were originally generated by the Allen Institute for Brain Science [22]. The raw reads
in FASTQ format [31] and cluster metadata [32] were obtained from the NeMO Archive. We selected mouse library
B08 (donor ID 457911) for analysis.

To obtain spliced and unspliced counts, we first obtained the pre-built mm10 mouse genome released by 10x
Genomics (https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest, ver-
sion 2020-A). We used kallisto|bustools 0.26.0 [2] to build an intronic/exonic reference (kb ref with the option
--lamanno). Next, we pseudoaligned the reads to this reference (kb count with the option --lamanno) to produce
unspliced and spliced count matrices. We used the outputs produced by the standard bustools filter. This filter
was relatively permissive: all (8,424) barcodes given cell type annotations in the Allen metadata were present in the
output count matrix (10,975 barcodes).

Based on previous clustering results, we selected cells that were given cell type annotations, and omitted “low
quality” or “doublet” barcodes [22], for a total of 6,418 cells. Although any choice to retain or omit cells from analysis
is arbitrary, our work models the generating process that produced cells’ nascent and mature counts by presupposing
each barcode corresponds to a single cell. Therefore, we propose that cells identified as low-quality (empty cells) or
as doublets (two cells measured in one observation) [22] have a fundamentally di↵erent data-generating process than
individual single cells, and therefore remove them before fitting VAE models. However, we stress that the stochastic
nature of transcription and sequencing, the intrinsic uncertainties associated with read alignment, and the numerical
compromises made in clustering large datasets mean that previous annotations are not “perfect,” merely a reasonable
starting point for comparing alternative methods.

We used Scanpy [33] to restrict our analysis to the most variable genes, which presumably reflect the cell
type signatures of interest. The spliced count matrix for the 6,418 retained cells was normalized to sum to 10,000
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counts per cell, then transformed with log1p. The top 2,000 most highly variable genes were identified using
scanpy.pp.highly_variable_genes on spliced matrices with minimum mean of 0.0125, maximum mean of 3, and
minimum dispersion of 0.5 [33]. Spliced and unspliced matrices were subset to include only the 2,000 identified highly
variable genes, then concatenated along the cell axis in the order unspliced, spliced to produce a count matrix of size
6,418 by 4,000.

2.7 Fitting Allen data

We applied biVI with the three generative models (bursty, constitutive, and extrinsic) and scVI with negative
binomial likelihoods to the concatenated unspliced and spliced count matrix obtained by the filtering procedures
outlined above. We made the key assumption that unspliced and spliced counts could be treated as the nascent and
mature species of the bursty generative model (see discussion in Section S5). 4,622 cells were used for training with
513 validation cells, and 1,283 cells were held out for testing performance. All models were trained for 400 epochs
with a learning rate of 0.001. Encoders and decoder consisted of 3 layers of 128 nodes, and each model employed a
latent dimension of 10.

2.8 Bayes factor hypothesis testing for di↵erential expression

After fitting the VAE models, we sought to identify meaningful statistical di↵erences that distinguish cell types. We
excluded cell subclasses “L6 IT Car3,” “L5 ET,” “VLMC,” and “SMC” from this analysis, as they contained fewer
than ten annotated cells and may require more sophisticated statistical models to account for small sample sizes.
The following analysis thus considers 6,398 cells in 16 unique subclasses. We only computed di↵erential expression
metrics under the bursty model.

Di↵erential parameter values were tested for each assigned subclass label (as annotated in [22]) versus all others
using a Bayes factor hypothesis test following [11]. We reproduce Equations (18) - (21) of [11] below for clarity.

Estimating di↵erential values of any parameter ✓
g of gene g in cells a and b can be done according to the

following Bayesian framework. First, as in Equation (18) of [11], the log fold change (LFC) of ✓g between two cells
a and b can be calculated as follows:

LFCg
a,b := log2✓

g
b � log2✓

g
a. (16)

Then, as in Equation (19) of [11], the probability that the magnitude of the LFC is greater than some e↵ect
threshold T can be found by evaluating LFCg

a,b over the posterior distributions of each cell:

P (|LFCg
a,b| � T |a, b) ⇡

Z
I(|LFCg

a,b| � T )qa(za)qb(zb)dzadzb, (17)

where, in practice, the integral is approximated with many Monte Carlo samples from the two cells’ posteriors.
Two hypotheses are tested: H1, or that the magnitude of the LFC is greater than or equal to threshold T , and H0,
or the null hypothesis that the magnitude of the LFC is less than T . A Bayes factor for gene g between cells a and b

(BF
g
a,b) is calculated to compare the two hypotheses, as in Equation (20) of [11]:

BFg
a,b =

P (|LFCg
a,b| � T |a, b)

P (|LFCg
a,b| < T |a, b) . (18)

Extending this to test di↵erential expression between two groups of cells A and B amounts to “aggregating the
posterior,” as in Equation (21) of [11], or evaluating the same P (|LFCg

A,B | � TkA,B) over

1
|A|

1
|B|

X

a2A

qa(za)
X

b2B

qb(zb). (19)

In other words, a random sample za can be be taken from the approximate posterior of any cell belonging to
group A and decoded to produce parameter ✓

g
a; likewise a random sample zb can be taken from the approximate

posterior of any cell belonging to group B and decoded to produce parameter ✓ba. The LFC between the two parameters
can then be calculated. Repeating this for many Monte Carlo samples over the aggregate posteriors allows estimation
of the Bayes factor between two groups.

For the results shown in Figure 1, we used cuto↵s of T � 1.0, or a magnitude LFC of � 2, and a Bayes factor
threshold of 1.5. The Bayes factors were calculated on normalized burst size and means for biVI, i.e., the fractional
inferred burst size or inferred means (before scaling by sampled sequencing depth for that cell), and normalized
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means for scVI. This controlled for di↵erences in parameters due to sequencing depth that were not biologically
meaningful. Relative degradation rate �/k is independent of sequencing depth: hypothesis tests were performed
directly on inferred relative degradation rates. While batch identity can also be integrated over to compare groups
of cells from di↵erent batches, our analysis did not require this as all cells were from the same batch.

3 Reconstructing gene distributions

Let ✓g be mechanistic model parameters for gene g in cell type . While parameters for a given gene are identical
across all cells in a specific cell type, biVI and scVI infer unique parameters for every cell and gene: ✓cg, where c

indexes over cells and g indexes over genes. To reconstruct distributions for a given gene in a specific cell type , we
sample once from the posterior distribution qc(z) of each cell c 2  to obtain point-estimates of conditional parameters
✓cg, where conditional refers to a single sampling from a cell’s posterior, or a particular realization of zc. We then
average over the cell-specific conditional probabilities for the gene to produce a cell type marginal distribution:

P̂g(n,m) =
1
n

nX

c=1

P (n,m; ✓cg), (20)

where n is the total number of cells in cell type , and c indexes over all cells in that cell type. This identity follows
immediately from defining the cell type’s distribution as the mixture of the distributions of its constituent cells. In
the case of biVI, we plug in Equation 7, 11, or 13 for P (n,m; ✓cg). In the case of scVI, we use a product of two
independent negative binomial laws:

P (n,m; ✓cg) = PNB(n;↵
N
g , µN )PNB(m;↵M

g , µM ), (21)

where µN and µM are cell- and gene-specific, whereas ↵
N and ↵

M are fit separately and take on di↵erent values
(Section 2.5). For simplicity, this comparison omits uncertainty associated with ✓cg, which is formally inherited from
the uncertainty in the latent representation z for each cell c.

Thus, Equation 21 is an approximation to the posterior predictive distribution, or marginal distribution of data
given the approximated posterior, if we assume Monte Carlo sampling from the approximate posterior distributions
of cells within that cell type as a reasonable proxy for sampling from the cell type’s posterior distribution. The
posterior predictive, or marginal, distribution is:

P,g(n,m) ⇡
Z

P (n,m|z)q(z)dz

where q(z) is the approximate posterior. We further note that conditional data likelihood and the marginal
distribution are not necessarily of the same form (for example, if the conditional data likelihood distribution is
negative binomial, the marginal distribution of genes is not necessarily negative binomial).

4 Data availability

Simulated datasets, simulated parameters used to generate them, and Allen dataset B08 and its as-
sociated metadata are available in the Zenodo package 7497222. All analysis scripts and notebooks
are available at https://github.com/pachterlab/CGCCP_2023. The repository also contains a
Google Colaboratory demonstration notebook applying the methods to a small human blood cell
dataset.
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