
 1 

TITLE: Integrative Analysis of Germline Rare Variants in Clear and Non-Clear Cell Renal 
Cell Carcinoma  
 
AUTHORS  
Seunghun Han1,2,3, Sabrina Y. Camp2,3, Hoyin Chu2,3, Ryan Collins2,3,4, Riaz Gillani3,5,6,7, Jihye 
Park2,3, Ziad Bakouny2,3, Cora A. Ricker2,3, Brendan Reardon2,3, Nicholas Moore8, Eric Kofman9, 
Chris Labaki2, David Braun10, Toni K. Choueiri11,12, Saud H. AlDubayan2,3,13,14^, Eliezer M. Van 
Allen2,3,15^ 
 
Affiliations: 

1. Ph.D. Program in Biological and Biomedical Sciences, Harvard Medical School, 
Boston, MA, USA 

2. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical 
School, Boston, MA, USA 

3. Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 
4. Department of Medicine, Harvard Medical School, Boston, MA, USA 
5. Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA 
6. Department of Pediatrics, Harvard Medical School, Boston, MA, USA 
7. Boston Children’s Hospital, Boston, MA, USA 
8. Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 

USA 
9. Department of Cellular and Molecular Medicine, University of California San Diego, La 

Jolla, CA, USA 
10. Center of Molecular and Cellular Oncology, Yale School of Medicine, New Haven, CT, 

USA 
11. Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard 

Medical School, Boston, MA, USA 
12. Brigham and Women’s Hospital, Boston, MA, USA 
13. Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA 
14. College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 

Saudi Arabia 
15. Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA 

 
 

^ Co-senior authors 
Corresponding Authors: 

1- Eliezer Van Allen, MD (EliezerM_VanAllen@dfci.harvard.edu) 
Dana-Farber Cancer Institute  
450 Brookline Ave, LC 
 

2- Saud H. AlDubayan, MD (Saud_Aldubayan@dfci.harvard.edu) 
Dana-Farber Cancer Institute 
41 Avenue Louis Pasteur, Suite 303-01, Boston, MA, 02215 
Tel. 617-515-5776 
 
 

Keywords: Renal cell carcinoma, population stratification, germline pathogenic variants, cryptic 
splice variant, copy number variant, CHEK2 associated cancer risk 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.18.23284664doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.01.18.23284664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

KEY Points  

Question: Can we improve the assessment of germline genetic risk determinants for clear cell 

and non-clear cell renal cell carcinoma (RCC) with approaches that are aware to population-

stratification and RCC histological subtypes? 

Findings: In this systematic case-control study of 1,356 RCC patients and 16,512 ancestry-

matched cancer-free controls strictly controlling for population stratification, clear-cell RCC 

patients exhibited a significantly higher prevalence of rare germline pathogenic variants (PVs) in 

VHL, and non-clear cell RCC patients carried significantly more rare germline PVs in FH and 

MET. European clear-cell RCC patients harbored a nominally significant enrichment of two low-

penetrance CHEK2 variants (p.Ser428Phe and p.Ile157Thr) while European non-clear RCC 

patients carried a nominally significant enrichment of rare germline loss-of-function (LOF) 

variants in CHEK2. Subsequent somatic analyses identified secondary somatic events in genes 

significantly enriched for germline PVs (VHL, FH, MET), and these variant carriers presented 

with earlier age of disease onset, but CHEK2 germline variant carriers harbored relatively fewer 

somatic events in CHEK2 and did not present with earlier age of onset. Finally, we identified 6 

RCC patients with rare germline cryptic splice and copy number variants that impacted known 

kidney cancer risk genes, increasing the diagnostic yield of pathogenic variants in RCC risk 

genes from 2.1% to 2.5%. 

Meaning: Clear and non-clear RCCs have distinct germline pathogenic variant enrichment 

patterns and somatic variants. Accurate risk assessment of CHEK2 in RCC requires careful 

adjustment for population stratification. In addition, previously underappreciated forms of 

germline variants may explain a portion of the missing heritability in RCC. 
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ABSTRACT  

IMPORTANCE RCC encompasses a set of histologically distinct cancers with a high estimated 

genetic heritability, of which only a portion is currently explained. Previous rare germline variant 

studies in RCC have usually pooled clear and non-clear cell RCCs and have not adequately 

accounted for population stratification that may significantly impact the interpretation and 

discovery of certain candidate risk genes. 

OBJECTIVE To evaluate the enrichment of germline PVs in established cancer-predisposing 

genes (CPGs) in clear cell and non-clear cell RCC patients compared to cancer-free controls 

using approaches that account for population stratification and to identify unconventional types 

of germline RCC risk variants that confer an increased risk of developing RCC. 

DESIGN, SETTING, AND PARTICIPANTS In 1,436 unselected RCC patients with sufficient 

data quality, we systematically identified rare germline PVs, cryptic splice variants, and copy 

number variants (CNVs). From this unselected cohort, 1,356 patients were ancestry-matched 

with 16,512 cancer-free controls, and gene-level enrichment of rare germline PVs were 

assessed in 143 CPGs, followed by an investigation of somatic events in matching tumor 

samples.  

MAIN OUTCOMES AND MEASURES Gene-level burden of rare germline PVs, identification of 

secondary somatic events accompanying the germline PVs, and characterization of less-

explored types of rare germline PVs in RCC patients.   

RESULTS In clear cell RCC (n = 976 patients), patients exhibited significantly higher 

prevalence of PVs in VHL compared to controls (OR: 39.1, 95% CI: 7.01-218.07, p-value:4.95e-

05, q-value:0.00584). In non-clear cell RCC (n = 380 patients), patients carried enriched burden 

of PVs in FH (OR: 77.9, 95% CI: 18.68-324.97, p-value:1.55e-08, q-value: 1.83e-06) and MET 

(OR: 1.98e11, 95% CI: 0-inf, p-value: 2.07e-05, q-value: 3.50e-07). In a CHEK2-focused 

analysis with European cases and controls, clear cell RCC patients (n=906 European patients) 

harbored nominal enrichment of the previously reported low-penetrance CHEK2 variants, 
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p.Ile157Thr (OR:1.84, 95% CI: 1.00-3.36, p-value:0.049) and p.Ser428Phe (OR:5.20, 95% CI: 

1.00-26.40, p-value:0.045) while non-clear cell RCC patients (n=295 European patients) 

exhibited nominal enrichment of CHEK2 LOF germline PVs (OR: 3.51, 95% CI: 1.10-11.10, p-

value: 0.033). RCC patients with germline PVs in FH, MET, and VHL exhibited significantly 

earlier age of cancer onset compared to patients without any germline PVs in CPGs (Mean: 

46.0 vs 60.2 years old, Tukey adjusted p-value < 0.0001), and more than half had secondary 

somatic events affecting the same gene (n=10/15, 66.7%, 95% CI: 38.7-87.0%). Conversely, 

patients with rare germline PVs in CHEK2 exhibited a similar age of disease onset to patients 

without any identified germline PVs in CPGs (Mean: 60.1 vs 60.2 years old, Tukey adjusted p-

value: 0.99), and only 30.4% of the patients carried secondary somatic events in CHEK2 

(n=7/23, 95% CI: 14.1-53.0%). Finally, rare pathogenic germline cryptic splice variants 

underexplored in RCC were identified in SDHA and TSC1, and rare pathogenic germline CNVs 

were found in 18 patients, including CNVs in FH, SDHA, and VHL.  

CONCLUSIONS AND RELEVANCE This systematic analysis supports the existing link 

between several RCC risk genes and elevated RCC risk manifesting in earlier age of RCC 

onset. Our analysis calls for caution when assessing the role of germline PVs in CHEK2 due to 

the burden of founder variants with varying population frequency in different ancestry groups. It 

also broadens the definition of the RCC germline landscape of pathogenicity to incorporate 

previously understudied types of germline variants, such as cryptic splice variants and CNVs.  
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INTRODUCTION  

            Renal cell carcinoma (RCC) is the ninth most common neoplasm in the United States, 

accounting for 2% of all cancers worldwide1. The Nordic Twin study has placed the genetic 

heritability of RCC as high as 38%2, however, only a fraction of the heritability is explained by 

currently identified rare and common RCC risk loci. Moving beyond known RCC risk genes 

(eTable 1)3,4, several pan-RCC studies have reported rare germline PVs in DNA damage repair 

(DDR) genes such as CHEK2, ATM, or BRCA1/2 5-10, suggesting that inherited defects in DDR 

may contribute to RCC risk. However, most studies lacked ancestry-matched cancer-free 

controls to formally test these hypotheses. 

Two recent studies performed case-control gene-level burden analyses, in RCC alone11 

and across cancer types, finding a higher burden of germline PVs in CHEK2 in RCC patients 

compared to matched controls12. However, these studies pooled all RCC subtypes together as 

one phenotype for association testing, although clear cell RCC (ccRCC) and non-clear cell 

RCCs (nccRCC, e.g., papillary, chromophobe) have distinct molecular and clinical features13,14. 

Furthermore, additional analyses are necessary to account for fine-level population stratification 

within Europe to mitigate spurious association15, especially when evaluating genes like CHEK2, 

which is known to harbor many putative PVs that are founder variants from bottlenecked 

populations (e.g., Ashkenazi Jewish) with highly variable allele frequencies between different 

European sub-populations. 

 Here, we first performed a germline variant discovery analysis of 1,436 unselected RCC 

patients to characterize several types of genomic variation. Next, we performed a case-control 

association study of ccRCC and nccRCC in a subset (n=1,356) that was successfully ancestry-

matched with 16,512 cancer-free controls, and we utilized an ancestry-informed generalized 

linear model (GLM) to evaluate the major germline drivers of RCC risk. Furthermore, we 

performed a sub-European ancestry-focused meta-analysis of CHEK2 to address finer-level 

population stratification within European populations, and we evaluated associated tumor 
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genomic data for concomitant somatic assessments of candidate PVs. Finally, we evaluated 

potential clinically relevant but underexplored germline variant types (cryptic splice and copy 

number variants) by using integrative genomic and transcriptomic analyses, all toward 

expanding and refining the landscape of germline pathogenic variation in RCC.  

 

METHODS  

RCC Case Cohort 

Whole-exome sequencing (WES) Binary Alignment Maps (BAMs) aligned to Genome 

Research Consortium human build 37 (GRCh37) from 1,436 RCC patients were collected from 

8 different RCC studies (Figure 1; Table 1). Samples from TCGA-KIRC16, TCGA-KIRP17, and 

TCGA-KICH18 studies were analyzed using the germline BAMs stored in the controlled access 

TCGA workspaces in the Terra analysis platform (https://terra.bio/). Germline BAMs from 

CheckMate-02519 (NCT01668784, EGAD00001006029), CheckMate-01020 (NCT01354431, 

EGAS00001004291), CheckMate-00921 (NCT01358721, EGAD00001006027) were 

downloaded from European Genome-Phenome Archive (EGA) data repository. Whole genome 

sequencing (WGS) BAMs of ccRCC patients were downloaded from the International Network 

of Cancer Genome Consortium (ICGC) PanCancer Analysis of Whole Genomes (PCAWG) 

Dataset22: Renal Cell Cancer – EU/FR (RECA-EU) PCAWG WGS (Dataset ID: 

EGAD00001002131) and were sliced using a custom exome-target intervals to only include 

coding regions captured in the WES samples. Data from papillary and chromophobe RCC 

patients from Genentech were downloaded from EGA (Dataset ID: EGAD0000100102323). All 

samples underwent identical quality control procedures and were processed using the same 

analytical methods. This study was approved by the participating institutions where written 

consent from participants was collected. This study conforms to the Declaration of Helsinki. 

Cancer-Free Control Cohort 

            WES BAMs aligned to GRCh37 from a total of 24,128 adult unrelated individuals without 
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known cancer diagnosis were collected from the following studies: Autism Sequencing 

Consortium (ASC) (Database of Genotypes and Phenotypes (dbGAP):phs000298.v4.p3), 

Framingham Cohort (dbGAP:phs000007.v32.p1), Multi-Ethnic Study of Atherosclerosis (MESA) 

Cohort (dbGAP: phs000209.v13.p3), National Heart, Lung and Blood Institute (NHLBI) GO-

ESP: Lung Cohorts Exome Sequencing Project (dbGAP: phs000291.v2.p1), 1000 Genomes 

Project24. All control samples were processed using methods identical to those used for the 

RCC case cohort. 

Evaluation of Exome Sequencing Coverage 

            The average sample level sequencing coverage was calculated using Genome Analysis 

Toolkit (GATK)25 (version 3.7) tool “DepthofCoverage” to ensure that all BAMs of cases and 

controls had sufficient read counts to confidently call germline variants. Exome-wide mean 

coverage of 10X was considered the minimum acceptable coverage to ensure confident 

germline variant detection; samples below this threshold were excluded from our final analysis. 

Germline Variant Detection from WES Data 

Germline variants were called from the BAM files using a deep learning-based variant 

discovery method, DeepVariant (version 0.8.0, docker: gcr.io/deepvariant-

docker/deepvariant:0.8.0)26 that had demonstrated superior sensitivity and specificity than 

GATK based joint-genotyping27,28. All germline variants annotated with “PASS” in the FILTER 

column of the Variant Call Format (VCF) files were selected. Variants with low read coverage 

(<10 Read Depth) and low variant allele frequency (VAF <0.20) were excluded. Final sets of 

high-quality variants were then merged into cohort-level VCF files using GATK (version 3.7) tool 

“CombineVariants”. Subsequently, the ‘vt’ tool (version 3.13) was used on the cohort VCF files 

to normalize and decompose multiallelic variants. 

Genetic Relatedness Analysis  

             We performed a genetic relatedness analysis on the cohort VCF files in two steps. In 

the first step, we implemented GENESIS (version 2.12.0) tool PC-AiR29 to perform a principal 
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components analysis (PCA) on the detected germline variants for the detection of population 

structure in the case and control cohort, respectively. We then used GENESIS tool “PC-

Relate”30 implemented in “Hail”31 (version 0.2.11, https://github.com/hail-is/hail) to estimate 

kinship coefficients between every possible pair within a cohort. We removed one sample out of 

each pair that had a kinship coefficient above 0.125 which indicates genetic relatedness within 

second-degree relatives. Related samples were removed from the cohort VCF using GATK’s 

(version 3.7) tool “SelectVariants”. 

Genetic Ancestry Inference  

First, cohort VCF files for cases and controls were combined with a cohort VCF file of 

1000 Genomes Project24 samples (n=2,504) with known continental ancestries of Admixed 

American (AMR), African (AFR), European (EUR), East Asian (EAS), and South Asian (SAS), 

and the resulting VCF file was filtered for germline variants identified in the exome intervals well-

covered (>15X read coverage) in over 95% of all samples. Next, the filtered VCF file was loaded 

into a matrix table using Hail (version 0.2.11, https://github.com/hail-is/hail), and rare germline 

variants with a cohort allele frequency below 1% and deviating from Hardy-Weinberg equilibrium 

(chi-squared p-value <1x10-6) were excluded. We next performed Linkage Disequilibrium (LD) 

pruning using the “ld_prune” method in Hail to prune out variants with Spearman correlation 

coefficient greater than 0.1 within a 1 million base pair window, and the resulting filtered 

germline variants were used for PCA using Hail “hwe_normalized_pca” method. Finally, Sklearn 

(version 0.20.0) “RandomForestClassifier” function was applied to the top 10 global principal 

components (PCs) of reference samples from the 1000 Genomes Project to train random forest 

classifiers for the 5 continental ancestries, which were used to uniformly assign continental 

ancestry to the cases and controls (Supplementary Figure 1A). 

Ancestry Pair-Matching of Cases and Controls 

Once continental ancestry was assigned, cases and controls were divided into each 

continental ancestry group, and the second round of PCA was performed on each group to 
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identify continental ancestry-specific PCs. We then used the R optmatch (version 0.9-14) 

package’s “pairmatch” function to identify control samples that were closest to each case based 

on the top 10 PCs. To ensure an equivalent representation of each ancestry group, we applied 

a fixed 1:12 ratio between the number of cases and controls across all continental ancestry 

groups, and AMR cases and controls were excluded in the gene-level burden analysis due to 

the limited number of AMR control samples failing to meet the case-control ratio. We also 

removed RCC patients with subtypes other than clear cell, papillary, or chromophobe RCC 

(Supplementary Figure 1B, C). 

Sub-European Ancestry Inference and Ashkenazi Jewish Inference 

For sub-European ancestry inference, the same variant filtering and PCA were repeated 

as in the continental ancestry inference, but only using samples identified as Europeans. The 

top 10 PCs and sub-European ancestry labels (Finnish in Finland (FIN), Iberian Population in 

Spain (IBS), Toscani in Italia (TSI), Utah Residents with Northern and Western European 

Ancestry (CEU), and British in England and Scotland (GBR)) from the 1000 Genomes European 

samples were used to train a random forest classifier. The classifier was applied to the case and 

control samples to infer sub-European ancestry. 

Since Ashkenazi Jewish (ASJ) individuals were unable to be identified using the above 

approach, we used SNPweights32 software with pre-calculated SNP weights from Ashkenazi 

Jewish reference samples to identify ASJ individuals (Supplementary Figure 3). Samples with 

ASJ proportion >0.5 were defined as ASJ. In the end, European cases and controls were 

divided into Northwestern Europeans (including CEU and GBR), Southern Europeans (IBS and 

TSI excluding ASJ), Finnish, and Ashkenazi Jewish. 

Functional and Clinical Annotation and Prioritization of Germline Variants  

            Germline variants in the cohort VCF files were annotated using Variant Effect Predictor 

(VEP, version 104.3)33 with dbNSFP34 (version 4.1a, GRCh37) and ClinVar35 (Release 

20220829, GRCh37) plug-ins. A curated list of 143 CPGs (eTable 2) was used to identify 
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candidate rare (Minor Allele Frequency (MAF) <1%) germline PVs. All identified variants were 

then classified into five categories: benign, likely benign, variants of unknown significance, likely 

pathogenic, and pathogenic, using the American College of Medical Genetics (ACMG) 

classification36 provided by VarSome37 website (accessed between September-November 

2022). Variants classified as likely pathogenic or pathogenic are collectively referred to as 

pathogenic variants (PVs). The presence of the identified PVs was further validated by manual 

examination of the BAM files using Integrative Genomics Viewer (IGV, version 2.11.1). 

Gene-level Burden Analysis with a Generalized Linear Model 

             To perform gene-level burden analysis, a null model based on a generalized linear 

model (GLM), as implemented in the Python “statsmodel” library (version 0.13.2)38 was first 

constructed using the top 10 global PCs from ancestry inference as covariates and RCC case 

status as the dependent variable. For each gene with at least one pathogenic variant in RCC 

cases or controls, a corresponding extended model incorporating a burden indicator variable 

representing the presence of a pathogenic variant in the gene for every sample was 

constructed. A likelihood ratio test was then performed between the null model and each 

extended model, and the resulting test statistics were adjusted for the false discovery rate 

(FDR) using the Benjamini-Hochberg procedure with FDR=0.05. The burden of three low-

penetrance CHEK2 variants defined by a recent study12  - CHEK2 p.Ile157Thr, p.Ser428Phe, 

and p.Thr476Met – were evaluated separately from the pathogenic LOF variants identified in 

CHEK2. 

Statistical Analysis and Data Visualization 

Odds ratios, 95% confidence intervals, and p-values for two-sided Fisher’s Exact test 

were computed as implemented in the exact2x2 R package. Adjusted p-values (q-values) were 

computed based on the Benjamini-Hochberg procedure with FDR=0.05. A one-way ANOVA test 

was run using the “f_oneway” function from Python “scipy” library (version 1.5.2)39, and post hoc 

pairwise comparisons were performed where applicable using the “pairwise_tukeyhsd” function 
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from Python “statsmodels” library. Sample proportion confidence intervals were calculated using 

the R “prop.test” function. For the meta-analysis, association statistics from sub-European 

groups were combined using a fixed-effects meta-analysis implemented using the “metafor" R 

package40. All figures were generated using Python “Seaborn” (version 0.11.0, Waskom M) and 

“Matplotlib” (version 3.3.2) packages and were further refined using Adobe Photoshop 2021. 

The commutation plot (Figure 4) summarizing the germline and somatic variants in RCC cases 

was generated using Python “CoMut” package41 (version 0.0.3, 

https://github.com/vanallenlab/comut). 

Identification of Somatic Variants and Copy Number Events 

For carriers of germline pathogenic variants in VHL, MET, FH, and CHEK2, somatic variants 

data provided from TCGA and ICGC were downloaded from the GDC data portal 

(https://portal.gdc.cancer.gov/) and ICGC data portal (https://dcc.icgc.org/) respectively 

(accessed: Oct. 2022) and was analyzed to identify somatic variants and copy number 

alterations involving the genes of interest. For somatic variants, LOF truncating variants 

including frameshift, splice site, or nonsense variants as well as missense variants with 

oncogenic annotation from OncoKB were included. For samples from CheckMate studies, 

somatic variants and copy number alterations were identified with the CGA WES 

Characterization pipeline (https://github.com/broadinstitute/CGA_Production_AnalysisPipleline), 

which detects, filters, and annotates somatic variants and copy number alterations. The CGA 

pipeline employs the following tools: MuTect42, ContEst43, Strelka44, Orientation Bias Filter45, 

DeTiN46, AllelicCapSeq47, MAFPoNFilter48, RealignmentFilter, ABSOLUTE49, GATK25, 

PicardTools 

(https://software.broadinstitute.org/gatk/documentation/tooldocs/4.0.1.0/picard_fingerprint_Cros

scheckFingerprints.php), Variant Effect Predictor33,and Oncotator50. Samples were excluded for 

quality control as previously described51. Briefly, tumor samples with ≥ 5% contamination43, 

normal samples contaminated with ≥ 20% tumor nuclei46, samples with poor sequencing 
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coverage (tumor mean target coverage < 25x, normal mean target coverage < 15x), and 

samples identified as a tumor/normal swap based on the copy number profile (lane mix-up > 1) 

were excluded from further analyses. To assess tumor purity, both ABSOLUTE49 and FACETS52 

were used. ASBOLUTE solutions were reviewed for tumor samples with < 20% estimated purity 

from FACETS and samples were subsequently excluded if < 20% purity was estimated from 

ABSOLUTE. To ensure adequate power for detecting somatic variants, a power calculation for 

each tumor sample was performed as previously described and samples with < 80% power 

were excluded53. 

Identification and Validation of Cryptic Splice Variants 

SpliceAI (version 1.3.1, https://github.com/Illumina/SpliceAI)54 was used to identify 

cryptic splice variants among the called germline variants detected by DeepVariant. The 

“SpliceAI” INFO column provided Delta scores ranging from 0 to 1 for the probability of acceptor 

gain/loss and donor gain/loss. The maximum Delta score was defined as the “SpliceAI” score in 

the annotated cohort VCF files, and the putative cryptic splice variants were further categorized 

according to the official cutoff recommendations: 0.2 (high recall), 0.5 (recommended), and 0.8 

(high precision). Rare germline variants with SpliceAI score over 0.5 were defined as putative 

cryptic splice variants. For samples carrying a cryptic splice variant identified from SpliceAI, 

available tumor or germline mRNA BAM files were manually reviewed using IGV to visualize 

and evaluate their splicing patterns. 

CNV Detection from Whole Exome Sequencing Data 

We applied GATK-gCNV to detect rare germline CNVs from exome sequencing data55. 

To minimize the discrepancy among the different exome sequencing baits used for different 

sources, GATK (version 4.1.9.0) tool “CollectReadCounts” was used to gather read counts on 

the 8441 sequencing bait regions unique to 7 major capture kits, and PCA was run to make 

batches of samples sequenced using the same sequencing bait (Supplementary Figure 5A). 

From each identified batch, germline CNVs were detected using GATK-gCNV55 following the 
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best practices on the Terra platform (https://app.terra.bio/#workspaces/help-gatk/Germline-

CNVs-GATK4). The detected CNVs were harmonized and filtered using the gCNV filtering R 

scripts downloaded from the gCNV repository 

(https://github.com/theisaacwong/talkowski/tree/master/gCNV), which combines CNVs from 

multiple batches and identifies high-quality rare CNVs determined by assessing 3 quality control 

measures – Quality Score (QS), the rarity of a CNV (PASS_Freq, for site frequency of 1% or 

less), and the number of samples carrying a rare CNV (PSS_Sample, Samples carrying more 

than 100 unfiltered or more than 10 filtered calls are excluded). 

 

RESULTS  

Patient Characteristics of RCC Discovery Case Cohort  

We collected whole-exome sequencing (WES) data from 1,436 RCC patients unselected 

for earlier age of disease onset or positive family history from 8 independent RCC studies 

(Figure 1, Table 1). 71.8% of patients had clear cell RCC (ccRCC, n=1,031), while the rest had 

non-clear cell RCCs (nccRCC), including papillary (n=302, 21.0%) and chromophobe RCC 

(n=103, 7.2%). Broad continental-level genetic ancestry inference (Supplementary Figure 1) 

identified most of the cohort as being of predominantly European ancestry (83.6%, n=1,200) 

followed by African (9.1%, n=131), Admixed American (5.6%, n=80), East Asian (1.3%, n=19), 

and South Asian (0.4%, n=6).  

Prevalence of Rare Germline Pathogenic Variants in ccRCC and nccRCC 

We first evaluated rare (MAF<1%) germline variants that met existing clinical 

interpretation guidelines36 as pathogenic or likely pathogenic in 1,031 ccRCC patients (Figure 

2). In known RCC risk genes, we identified rare germline PVs in VHL (n=4, 0.38%, 95% CI: 

0.12-1.1%), BAP1, MITF (n=3 each, 0.29%, 95% CI: 0.075-0.92%), FLCN, FH, and SDHD (n=1 

each, 0.097%, 95% CI: 0.0051-0.63%). When evaluating DNA damage repair (DDR) genes 

(eTable 3), we identified 52 ccRCC patients that harbored rare germline PVs in homologous 
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recombination or Fanconi Anemia genes such as CHEK2, RECQL4, FANCA, or BRCA1/2 

(5.04%, 95% CI: 3.82-6.60%), 26 in base excision repair genes MUTYH and NTHL1 (2.52%, 

95% CI:1.69-3.73%), 8 in nucleotide excision repair genes; ERCC1, ERCC2, ERCC3, XPA, and 

XPC (0.77%, 95% CI:0.36-1.59%), and 2 in mismatch repair genes MLH1 and PMS2 (0.19%, 

95% CI:0.033-0.79%). Overall, 131 ccRCC patients carried one or more heterozygous rare 

germline PVs (12.71%, 95% CI:10.77-14.93%; eTable 4); 13 in previously established RCC risk 

genes (1.26%, 95% CI: 0.71-2.21%), 86 in DDR genes (8.34%, 95% CI:6.76-10.24%), and 37 in 

rest of the germline cancer predisposition genes (CPGs, 3.59%, 95% CI:2.57-4.96%). Among 

these, 9 ccRCC patients carried rare germline PVs in two different CPGs (0.87%, 95% CI: 0.43-

1.71%; eTable 6). 

In parallel, we also characterized rare germline PVs in 405 nccRCC patients (Figure 2). 

Rare germline PVs were found in the following known kidney cancer risk genes: 7 in FH (1.72%, 

95% CI:0.76-3.69%), 6 in MITF (1.48%, 95% CI:0.60-3.36%), 3 in MET (0.74%, 95% CI:0.19-

2.33%), and 1 in TSC2 (0.25%, 0.013-1.59%). Regarding DDR genes, 24 germline PVs were 

detected in homologous recombination or Fanconi Anemia genes (5.93%, 95% CI:3.91-8.81%), 

8 in base excision repair genes with PVs in ccRCC - MUTYH and NTHL1 (1.98%, 95% CI:0.92-

4.01%), and 4 each in mismatch repair and nucleotide excision repair genes (0.99%, 95% 

CI:0.32-2.69% each). Altogether, one or more rare pathogenic germline PVs were detected in 

68 nccRCC patients (16.79%, 95% CI:13.35-20.87%; eTable 5) – 17 in known RCC risk genes 

(4.20%, 95% CI: 2.54-6.77%), 39 in DNA damage repair genes (9.63%, 95% CI:7.02-13.03%), 

and 13 in other CPGs (3.21%, 95% CI:1.79-5.57%). Four patients were identified with rare 

germline PVs in two different CPGs (0.99%, 95% CI:0.32-2.69% eTable 6). Thus, the relatively 

higher proportion of patients with identified germline PVs in DDR genes, which was mainly 

driven by rare germline PVs in CHEK2 and MUTYH (3.90%, n=56/1436 across RCC subtypes, 

95% CI: 2.98-5.07%) was consistent with observations in the pan-RCC patients from previous 

RCC studies6,8-10. 
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Gene-Level Enrichment of Rare Germline Pathogenic Variants in ccRCC and nccRCC 

Patients  

To investigate whether the identified PVs predispose individuals to an increased risk of 

RCC, we performed genetic ancestry inference and case-control pair matching to link 1,356 

RCC patients (of the original 1,436; 94.4% of the RCC cohort) with 16,512 cancer-free controls 

(Method; Supplementary Figure 1) and compared the gene-level burden of rare germline PVs in 

ccRCC (n=976) and nccRCC (n=380) separately against the cancer-free controls. To further 

account for residual population stratification not captured in our ancestry matching procedure, 

we conducted gene-level burden analysis for each gene using a generalized linear model (GLM) 

that accounts for continental ancestry (Methods). As expected, ccRCC patients exhibited a 

significantly higher enrichment of germline PVs in VHL compared to the ancestry-matched 

controls (OR: 39.1, 95% CI: 7.01-218.07, p-value:4.95e-05, q-value:0.00584), and in the low-

penetrance CHEK2 p.Ser428Phe variant (OR: 31.96, 95% CI: 6.23-163.89, p-value:0.000385, 

q-value:0.0227) after multiple-hypothesis correction (Table 2). ccRCC patients also carried a 

nominally higher frequency of PVs in the two other known kidney cancer risk genes, BAP1 and 

SDHD, as well as in the common low penetrance CHEK2 p.Ile157Thr variant (p-values <0.05, 

q-values > 0.05; eTable 7).  

For nccRCC, patients carried a significantly higher prevalence of germline PVs 

compared to the controls in FH (OR: 77.9, 95% CI: 18.68-324.97, p-value:1.55e-08, q-value: 

1.83e-06) and MET (OR: 1.98e11, 95% CI: 0-inf, p-value: 2.07e-05, q-value: 3.50e-07). LZTR1, 

PMS2, MITF, EXT2, and CHEK2 p.Ser428Phe also exhibited nominal enrichment of germline 

PVs but did not pass multiple hypothesis correction (p-values <0.05, q-values > 0.05, Table 2). 

In contrast to prior studies9,11,12, LOF variants in CHEK2 were not significantly enriched in 

ccRCC after excluding low-penetrance variants (OR: 1.01, CI: 0.41-2.52; p-value of 0.980, q-

value: 0.997) or nccRCC (OR: 2.82, CI: 1.13-7.05; p-value of 0.0536, q-value: 0.79). No other 
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DDR genes were enriched with PVs in ccRCC or nccRCC patients compared to the cancer-free 

controls (eTables 7 and 8). 

Evaluation of CHEK2 in RCC Risk Via Accounting for Fine-Scale Genetic Differences in 

European Sub-populations 

The three main germline PVs identified in CHEK2 in our study – c.1100del, Ser428Phe, 

and Ile157Thr – are all founder variants from different European sub-populations, with 

substantial variation in population minor allele frequencies across different European 

populations (eTable 9)56. These variants were also identified at different frequencies in our 

cases and controls of different sub-European ancestries (Supplementary Figure 2). Therefore, 

to explore whether subtle ancestry differences in European populations may have confounded 

CHEK2 rare variant analyses, we performed three additional CHEK2 burden analyses restricted 

to European samples to evaluate the impact of addressing fine-level population stratification on 

the role of CHEK2 as an RCC risk gene: (1) a Fisher’s Exact-based association study on all 

Europeans pooled together; (2) a GLM-based burden-analysis using the top 10 genetic principal 

components from a European-only principal components analysis; (3) a meta-analysis 

combining test statistics from different sub-European populations (Figure 3; Methods). CHEK2 

germline LOF PVs did not demonstrate enrichment in ccRCC cases in all three tests, though 

they exhibited a nominal enrichment in nccRCC only in the meta-analysis (OR: 3.51, 95% 

CI:1.10-11.10, combined p-value: 0.0330, Figure 3A). In contrast, only ccRCC patients exhibited 

a nominally higher burden of CHEK2 p.Ile157Thr variant in the meta-analysis (OR: 1.84, 95% 

CI:1.00-3.36, combined p-value: 0.0486) (Figure 3B). Finally, this expanded statistical 

framework demonstrated that the CHEK2 p.Ser428Phe variant that was significantly enriched in 

the above multi-ancestry GLM-based burden analysis were only modestly enriched in these 

ccRCC patients (OR:5.20, 95% CI:1.00-26.40, combined p-value:0.0449), reflecting the 

localized burden of the variant in the inferred Ashkenazi Jewish RCC individuals in cases and 

cancer-free controls (Figure 3C). Taken together, the results demonstrate that the risk 
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assessment of CHEK2 germline variants requires careful consideration of population 

stratification due to the varying frequency of founder variants in this gene.  

Prevalence of Somatic Second-Hit Variants in Carriers of Germline Pathogenic Variants 

To further clarify the potential roles of the rare germline PVs identified in these analyses, 

we next investigated the available tumor samples from the RCC patients in our study to identify 

somatic events (truncating somatic variants or copy number alterations; Methods) 

accompanying the germline PVs identified in our analyses (Figure 4A; eTable 10). Tumors from 

ccRCC patients carrying germline PVs in VHL had a somatic copy number deletion in 

chromosome 3 spanning VHL (n=3/4, 75.0%, 95% CI: 21.94-98.68%).57 Regarding nccRCC, all 

3 carriers of germline MET PVs were patients with type 1 papillary RCC (pRCC) whose tumors 

had somatic copy number gains at chromosome 7 (spanning the MET locus), while 87.5% 

(n=7/8,  95% CI: 46.68-99.34%) of patients with germline PVs in FH were from type 2 pRCC 

whose tumors often had somatic variants or copy number deletions in FH (n=4/7, 57.1%, 95% 

CI: 20.24-88.19%). Overall, 10 patients (66.7%, 95% CI: 38.69-87.01%) carrying germline PVs 

in FH, MET, or VHL harbored identifiable secondary somatic events in the same genes, further 

indicating the importance of these genes in the RCC oncogenesis. In contrast, patients carrying 

CHEK2 germline variants were not limited to a specific RCC subtype, and only 7 of 23 (30.4%, 

95% CI: 14.06-53.01%) RCC patients with germline variants in CHEK2 had secondary somatic 

variants in CHEK2 (1 patient with both somatic variant and copy number deletion in CHEK2; 6 

patients with CHEK2 copy number deletions).  

Age of RCC Presentation for Carriers of Germline Pathogenic Variants in RCC Risk 

Genes 

Rare germline PVs in genes known to cause hereditary cancer syndromes have been 

associated with an earlier onset of disease in different cancers including RCC58-62, and detection 

of these variants with genetic testing can guide clinical management in at elevated genetic risk 

for cancer63. To further characterize the clinical impact of the rare germline PVs identified in the 
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genes with a significantly higher burden of PVs in RCC patients, we compared the age of 

disease onset between the groups defined by genetic status: (1) patients carrying germline PVs 

in the known RCC risk genes; FH, MET, and VHL; (2) patients carrying germling PVs in CHEK2; 

(3) patients carrying germline PVs in other CPGs without enrichment; (4) patients carrying no 

germline PVs (Figure 4B; eTable 11). The carriers of rare germline PVs in FH, MET, and VHL 

presented with disease at a significantly earlier age compared to the other three groups (Mean: 

46.0, Median: 49.0 years old, Tukey post hoc adjusted p-values < 0.01 for all three pairwise 

comparisons), and patients with germline and somatic biallelic events presented with disease at 

an earlier age (n=10/15, Mean: 44.6, Median: 44.5 years old, Figure 4A). However, the age of 

disease onset for the patients carrying germline CHEK2 PVs showed no evidence of age 

difference from that of patients carrying no germline PVs (Mean: 60.1, Median: 61 vs Mean: 

60.2, Median: 61 years old, Tukey post hoc adjusted p-value =1.0) or patients carrying PVs in 

the rest of CPGs that did not exhibit enrichment in RCC (Mean: 60.1, Median: 61 vs Mean: 61.3, 

Median: 61 years old, Tukey post hoc adjusted p-value =0.949). Similarly, RCC patients 

carrying both germline and somatic variants in CHEK2 did not present at an earlier age of onset 

compared to patients without any germline PVs (n=7/23, Mean: 62.1, Median: 61.0 years old). 

These results, taken together with the only modest enrichment of germline PVs in CHEK2, 

suggests caution for considering CHEK2 as a RCC predisposition gene.   

Identifying Additional Forms of Inherited Genomic Alterations in RCC Risk Genes  

While 13.9% (n=199/1436, 95% CI: 12.13-15.78%) of total RCC (ccRCC and nccRCC) 

patients carried rare germline PVs in CPGs, only 15 RCC patients (1.04%, 95% CI: 0.61-1.76%) 

harbored germline PVs in known RCC risk genes (FH, MET, and VHL), but the rest of the CPGs 

did not exhibit increased burden of PVs in RCC patients in our analyses and thus are of 

uncertain biological significance in RCC pathogenesis. Thus, we hypothesized that RCC risk 

genes may also be disrupted through mechanisms that can escape the detection of 

conventional germline variant detection methods commonly used in clinical and research 
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contexts, such as cryptic splice variants outside of the canonical splice sites and germline copy 

number variants (CNVs). Using existing computational methods to predict cryptic splice 

variants, we identified 109 candidate rare germline cryptic splice variants in CPGs in 102 RCC 

patients (Supplementary Figure 4A; eTable 12; Methods). Of these, 86 patients had tumor 

and/or germline mRNA sequencing data available to validate these predicted splice variants. 

The available RNA sequencing data showed no evidence of aberrant splicing for 82 variants 

(95.35%, 95% CI: 87.87-98.50%). However, two cryptic splice variants in two RCC risk genes, 

TSC1 and SDHA, demonstrated a clear pattern of aberrant splicing (Figure 5). The cryptic splice 

variant in TSC1 in a chromophobe RCC patient changed antisense cytosine upstream of a 

splice donor motif to thymine, leading to complete exon-skipping of exon 21. In the papillary 

RCC patient with a variant in SDHA, the cryptic splice variant introduced a cryptic donor motif 

inside exon 13 and removed 15 amino acids at the end of the exon. Two other cryptic splice 

variants in TP53 and LZTR1 showed aberrant splicing, but the number of splice junction reads 

was too low to confidently conclude them as clear splice variants (Supplementary Figure 4B; 

Methods). 

We next evaluated germline CNVs (Methods). Collectively, we identified 2,503 high-

quality rare germline CNVs in 888 RCC samples (1,211 deletions and 1,292 duplications; 

Supplementary Figure 5B-C; Methods). Of these, 18 heterozygous CNVs in 18 (1.25%, 95% CI: 

0.77-2.02%) RCC patients affected 14 CPGs including RCC risk genes FH, VHL, and SDHA 

(Figure 6A; eTable 13). For example, we found a ccRCC patient harboring a deletion spanning 

part of the last exon of VHL (Chr3:10191124-10192282, GRCh37, Figure 6C), and another 

deletion was identified in a papillary RCC patient overlapped the last 761bp of FH 

(Chr1:240070386-241661618, Figure 6D). We also identified a large 215 kbp deletion 

completely spanning SDHA in a different papillary RCC patient (Chr5:139251-354374, Figure 

6B), which disrupted a region similar to a variant previously described in the gnomAD structural 

variant (SV) database (gnomAD ID: DEL_5_54065, Chr5:135575-308762)64. Thus, by 
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characterizing underappreciated variant types such as cryptic splice and CNVs, we identified 6 

additional putative pathogenic variants in the established RCC risk genes, increasing the 

diagnostic yield of rare germline PVs in risk genes from 2.1% (n=30/1436, 95% CI: 1.44-3.01%) 

to 2.5% (n=36/1436, 95% CI: 1.79-3.49%). 

 

DISCUSSION  

Thus far, fourteen genes in the HIF, PI3K/mTOR, chromatin regulation, and cell cycle 

pathways have been identified as established RCC risk genes65, but the estimated high genetic 

heritability of RCC is not fully explained by germline PVs detected in these genes. Multiple 

recent studies have built on these foundational discoveries to report frequencies of rare 

germline PVs in DDR genes in large RCC cohorts. However, analyses with proper cancer-free 

controls and statistical models accounting for population structure are necessary to determine 

whether these PVs are significantly enriched in RCC populations. Attempts to demonstrate 

association by comparing frequencies of PVs in RCC cases against public databases such as 

ExAC66 or gnomAD56 are fraught with major technical limitations, including that the samples are 

likely not sequenced using the same sequencing platform, variants were not called using the 

same variant discovery pipeline and were not processed identically, and cases and controls 

were not ancestry-matched to ensure a robust statistical comparison. Recently, two studies 

leveraged case-control approaches to report an association of rare germline PVs in CHEK2 with 

an elevated risk of RCC11,12. However, both studies treated different subtypes of RCC together 

as a single phenotype and included CHEK2 variants with distinct population properties. To 

address the gaps of knowledge in the field, we performed histology-specific and case-control 

analyses of rare germline PVs in RCC, finding that PVs in the three significantly enriched genes 

– VHL, MET, and FH – had no significant overlap in different RCC subtypes. This molecular 

difference was also clearly demonstrated when we investigated companion somatic variants 

and copy number events stratified by histological subtype.  
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Furthermore, while adjusting for finer-scale population stratification is the current 

standard in GWAS studies, many case-control rare germline variant studies in cancer (including 

most RCC studies) only adjusted for population stratification by limiting their association 

analysis to cases and controls of European descent under the assumption that individuals of 

broad continental European ancestry would have a similar genetic background. Consistent with 

prior observations that population stratification can confound rare variant association studies in 

other disease contexts67-70, we found that a standard Fisher’s Exact test-based association 

model without addressing finer-scale population stratification can lead to a false association in 

this context, especially for CHEK2 that has several founder variants with varying population 

frequency within Europe. For example, the most well-studied CHEK2 c.1100del variant’s 

population frequency substantially varies in different regions of Europe, ranging from ~0% in 

Spain to 1.6% in the Netherlands and has a relatively lower population frequency in North 

America compared to Europe71-77. These factors may explain why in our study, the CHEK2 

variant was detected in only 0.35% of RCC cases, where most patients were from the U.S. and 

patients were unselected for family history. Meanwhile, this variant was identified in more than 

1% of RCC cases in a UK-based RCC association study11 and significant enrichment of CHEK2 

germline PVs was reported in studies with patients selected for positive family history9 or 

positive CHEK2 germline variant carrier status in panel sequencing12. The variation in 

population frequency of CHEK2 variants combined with prior studies lacking robust genetic 

ancestry inference and case-control matching may partially explain the disagreeing risk 

assessment within and across cancer types for this gene78. Our result warrants caution against 

the commonly used practice of treating all “white” or “Caucasian” individuals with predominantly 

European ancestry as one group in cancer genetic studies. This practice can substantially 

confound association studies, particularly for studies including participants from the U.S. 

population which consists of different European ancestry groups as well as non-European 

ancestry groups.  
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 Furthermore, in this study, RCC patients with germline PVs in CHEK2 did not have 

frequent secondary somatic events, whereas tumors from carriers of PVs in bona fide RCC 

predisposition genes like FH, MET, or VHL largely exhibited secondary somatic events in these 

genes. In addition, in this cohort of RCC patients unselected for the age of disease onset, RCC 

patients with germline PVs in CHEK2 did not exhibit earlier age of RCC onset, contrasting the 

relatively early age of breast cancer onset for germline CHEK2 variant carriers reported in 

several studies71,73,79-81, which suggests uncertainty regarding the role of CHEK2 germline PVs 

in RCC risk. Unlike in breast cancer, the biological role of DDR genes in Fanconi anemia or 

homologous recombination pathways such as CHEK2 has not definitively been demonstrated in 

RCC, and we did not identify an enrichment of germline PVs in other DDR genes besides 

CHEK2. Given these observations, we suggest caution in including CHEK2 or any other DDR 

genes as RCC risk genes. Critically, our analysis does not preclude the association of CHEK2 

with RCC but advises for addressing population stratification in larger cohorts that include 

different sub-European ancestry groups is warranted to clarify the role of this gene in RCC risk 

and heritability.  

           Moreover, the general focus on germline small nucleotide variants and small indels in 

coding sequences in prior studies may limit our understanding of potential PVs in established 

RCC risk genes or other candidate genes. Thus, we also investigated rare germline cryptic 

splice variants and germline CNVs that have not been well-characterized in RCC or cancer 

germline studies. Cryptic splice variants can introduce or remove splicing donor or acceptor 

motifs inducing aberrant mRNA splicing and loss of protein function82,83. However, they can be 

easily overlooked as non-pathogenic because they are usually annotated as non-truncating 

when using conventional annotation approaches. In this study, we identified two rare germline 

cryptic splice variants which induced aberrant splicing in RCC risk genes SDHA and TSC1, 

which appear to reduce wild-type transcript abundance based on our investigation of matched 

transcriptome sequencing data. To our knowledge, this is the first description of germline cryptic 
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splice variants in RCC and may warrant incorporation of them into comprehensive clinical 

genetic testing strategies.  

            Lastly, to further augment the search space for germline inherited risk events, we 

systematically characterized rare germline CNVs in RCC patients. Rare germline CNVs are 

known to increase susceptibility for different cancers84-89 and a few RCC studies reported CNVs 

detected in FLCN and VHL in RCC patients90,91. However, a systematic characterization of 

germline CNVs using WES data has not been fully explored in RCC despite the wider 

availability of whole exome sequencing data and improved methods for germline CNV detection. 

Here, we successfully identified 18 rare germline copy number duplications and deletions in 

CPGs from the whole-exome sequenced samples, including 4 CNVs in RCC risk genes FH, 

SDHA, and VHL. With the widespread use of WES and improvement in CNV identification 

methods, investigation of germline SNVs and short insertions and deletions together with cryptic 

splice and CNVs should be considered as a routine testing strategy for RCC inherited risk 

assessment and possibly across cancer types.  

 

LIMITATIONS  

The current study has several limitations. First, the findings from our gene-burden 

analyses merit validation in additional independent case and control cohorts, particularly in 

larger and more diverse patient populations. Indeed, even for the sub-European ancestry 

identification, we did not have the means to distinguish Northwestern Europeans from Eastern 

or central Europeans who might have clustered together with the Northwestern Europeans in 

the 1000 Genomes Project-based inference, let alone for the myriad subpopulations on other 

non-European continents. In the future, more refined meta-analyses might take advantage of 

reference panels representing diverse ancestry groups to better address such subtle sub-

continental differences. In addition, we had to constrain the analysis to 143 CPGs instead of a 

whole-exome-wide analysis due to the limited study power, further emphasizing the need for 
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larger and more diverse patient cohorts. Finally, further studies comparing chromophobe RCC 

as distinct from papillary RCC as well as studies of other rare subtypes such as medullary or 

collecting duct RCCs are needed to better characterize inherited risk events in heterogeneous 

nccRCC subtypes.  

 

CONCLUSIONS AND RELEVANCE 

 This systematic population stratification-aware analysis supports the link between 

several RCC risk genes and elevated risk and describes distinct patterns of inherited germline 

and somatic variants in different RCC subtypes. Our results also call for caution when assessing 

the risk conferred by germline PVs in CHEK2. Finally, it broadens the definition of the RCC 

germline landscape of pathogenicity to incorporate previously underutilized germline variations.  

 

DATA AND CODE AVAILABILITY 

All computation tools and packages in this study are publicly available. The docker 

image containing all GATK tools is available at (https://hub.docker.com/r/broadinstitute/gatk/). 

The docker image containing the germline variant detection tool, DeepVariant can be found at 

(https://hub.docker.com/r/google/deepvariant). Tools and detailed usage for SpliceAI 

(https://github.com/Illumina/SpliceAI) and GATK-gCNV 

(https://github.com/theisaacwong/talkowski/tree/master/gCNV) can be found on the respective 

GitHub pages. All raw sequencing data for TCGA studies can be accessed with controlled 

access on the GDC data portal (https://portal.gdc.cancer.gov/) with approval. All raw 

sequencing data for the ICGC study can be accessed with controlled access on the ICGC data 

portal (https://dcc.icgc.org/) with approval. All raw sequencing data for CHECKMATE clinical 

studies and Genentech study can be downloaded from European Genome-Phenome Archive 

(Dataset ID: EGAD00001001023) with approval. All raw sequencing data for cancer-free control 

samples can be accessed on dbGAP– Autism Sequencing Consortium (ASC) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.18.23284664doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.18.23284664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

(dbGAP:phs000298.v4.p3), Framingham Cohort (dbGAP:phs000007.v32.p1), MESA Cohort 

(dbGAP: phs000209.v13.p3), NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project 

(dbGAP: phs000291.v2.p1). In-house exome data for controls is available upon request. 
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Figure 1. Overview of the study  
Rare germline PVs, cryptic splice variants and copy number variants were characterized in 
1,436 RCC patients. Gene-level burden analysis was restricted to 1,356 RCC patients ancestry-
matched with 16,512 cancer-free controls after genetic ancestry inference and case-control pair-
matching (Method). CHEK2 focused analysis was restricted to 1,201 European RCC patients 
and 20,264 European cancer-free controls.  
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Table 1. Patient characteristics of all 1,436 renal cell carcinoma patients  
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Figure 2. Rare germline pathogenic variants identified in the 1,436 RCC patients 
The proportion of ccRCC or nccRCC patients carrying rare (MAF <1%) germline pathogenic 
variants in one of the 143 germline cancer predisposition genes tested. 3 known CHEK2 low-
penetrance variants were treated separately from the rest of the PVs in CHEK2. Numbers next 
to the bars indicate counts of RCC patients carrying PVs in each gene.  
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Table 2. Gene-level burden analysis of clear cell and non-clear cell RCCs 
Test statistics from the generalized linear model for genes with nominal enrichment. Genes with 
adjusted p-value less than 0.05 were considered significant and highlighted. A table of results 
for all genes tested can be found in eTables 7 and 8 
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Figure 3. Meta-Analysis of CHEK2 risk in ccRCC and nccRCC in European samples 
Tables and forest plots summarize the model estimates summary statistics from the sub-
European meta-analysis for CHEK2 germline variants. The area of squares is proportional to 
the -log10 of the p-values, and the horizontal bars indicate 95% confidence intervals for the 
estimated odds ratio. Test statistics from Fisher’s Exact and GLM tests were plotted for 
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comparison. 
A) Summary tables for CHEK2 LOF excluding the low-penetrance variants 
B) Summary tables for CHEK2 founder variant p.Ile157Thr  
C) Summary tables for CHEK2 founder variant p.Ser428Phe  
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Figure 4. Somatic events in the carriers of pathogenic variants in genes with enrichment 
A) Comutation plot summarizing germline and somatic variants in RCC patients with germline 
pathogenic variants in the three significantly enriched genes as well as CHEK2. For the somatic 
events, only variants in relevant genes are featured. The dotted horizontal line on the bar plot 
indicates the age of onset at 45. CNA indicates copy number alterations 
B) Density plot (left) and Box plot (right) for the distribution of age of disease onset for the 
different pathogenic variant carrier groups. Adjusted p-value was calculated after a one-way 
ANOVA with post hoc Tukey’s HDS test.  
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Figure 5. Example cryptic splice variants in established RCC risk genes  
Left: IGV screenshot of the tumor mRNA sequencing data of the wildtype control (above) and 
the carrier of cryptic splice variant (bottom). Right: Sashimi plot showing the pattern of splicing 
with the numbered split junction reads.  
A) Disruption of splice donor motif led to complete exon skipping in TSC1 
B) The cryptic splice variant in SDHA introduced a new splice donor motif GT inside an exon  
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Figure 6. Example rare germline copy number variants (CNVs) in established cancer-
predisposing genes  
A) Bar-plot summarizing the counts of deletions and duplications including the germline cancer 
predisposing genes 
B-D) Denoised linear copy ratio (DCR) plot indicating heterozygous copy number deletion with 
copy ratio of 1 for the carriers of CNV. The blue line indicates DCR for the CNV carrier, and the 
dotted grey lines indicate DCR for the rest of wild type samples.  
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Supplementary Figure 1. Genetic ancestry inference and ancestry matching of cases and 
controls All available RCC patients were ancestry-matched with cancer-free controls, and 
patients with RCC subtypes other than clear cell, papillary, or chromophobe RCC were 
excluded from the final matched set of cases and controls. 
(A) Projection of cases and controls on the first two principal components (PCs) along with five 
broad continental reference clusters formed using the samples of the 1000 Genomes project.  
(B) Ancestry pair-matching of the cases and controls identified as European in the inference. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.18.23284664doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.18.23284664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

Control samples closest to each case were identified using the top 10 PCs and the rest was 
excluded  
(C) Continental ancestry assignment of cases and controls. Each sample was assigned to one 
of the five continental ancestries (EUR: European, AFR: African, EAS: East Asian, AMR: 
Admixed American, SAS: South Asian) after the first round of PCA and random forest. (D) 
Cases and controls were matched with a 1:12 ratio in each ancestry group. To secure the 
largest ratio possible between cases and controls, AMR cases and controls were excluded 
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Supplementary Figure 2. Substantial variation in population allele frequencies of CHEK2 
founder variants in different European populations  
A) gnomAD minor allele frequency in % for the three CHEK2 founder variants indicating the 
wide range of population frequency in different European groups  
B) Distribution of the three CHEK2 founder variants in RCC cases (Left) and in cancer-free 
controls (Right). Reference sub-European clusters were formed using 1000 Genomes European 
samples with corresponding sub-European labels.  
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Supplementary Figure 3. SNPWEIGHSTs sub-European ancestry inference 
Ashkenazi Jewish individuals, which were unable to be identified using PCA and random forest 
with 1000 Genomes were identified using SNPweights.  
A) Left - Projection of the first two PCs for all European RCC cases color coded with inferred 
sub-EUR ancestry. All 4 carriers of CHEK2 p.Ser428Phe clustered with Southern European 
individuals. Right - Projection of the two PCs from SNPweights with color coding indicating the 
level of inferred Ashkenazi Jewish proportion. All CHEK2 p.Ser428Phe carriers fell within a 
cluster with a high (>0.6) ASJ proportion  
B) Same as A for the European controls.    
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Supplementary Figure 4. Validation of cryptic splice variants identified in the TCGA and 
CHECKMATE samples  
A) mRNA sequencing data of 89 TCGA and CHECKMATE samples with identified cryptic splice 
variants were evaluated to confirm the effect of the variants. Most of the putative cryptic splice 
variants didn’t show evidence of aberrant splicing 
B) A cryptic splice variant in TP53 and another in LZTR1 shows aberrant splicing induced by 
donor loss and acceptor loss respectively, but the number of junction split reads were too low to 
confidently support the presence of aberrant splicing. 
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Supplementary Figure 5. Germline copy number variant detection from whole exome 
sequencing data  
A) PCA on sequencing baits formed 5 different clusters to run GATK-gCNV 
B) Bar plots indicate the number of raw deletions and duplications as well as high-quality CNVs  
     after stringent filtering steps 
C) Histogram summarizing the length of high-quality duplications and deletions  
D) The large duplication of 56kbp covering 7 different genes including FH  
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